Spelling suggestions: "subject:"lagrange"" "subject:"malgrange""
271 |
Theoretical Studies of Atomic and Molecular Systems by Electronic Stress Tensor Theory / 電子ストレステンソル理論に基づく原子分子系の理論的研究Nozaki, Hiroo 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第19702号 / 工博第4157号 / 新制||工||1641(附属図書館) / 32738 / 京都大学大学院工学研究科マイクロエンジニアリング専攻 / (主査)教授 立花 明知, 教授 木村 健二, 教授 伊藤 秋男 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
272 |
Asymptotic and Stationary Preserving Schemes for Kinetic and Hyperbolic Partial Differential Equations / Asymptotische und Stationäre Erhaltungsverfahren für Kinetische und Hyperbolische Partielle DifferentialgleichungenKanbar, Farah January 2023 (has links) (PDF)
In this thesis, we are interested in numerically preserving stationary solutions of balance laws. We start by developing finite volume well-balanced schemes for the system of Euler equations and the system of MHD equations with gravitational source term. Since fluid models and kinetic models are related, this leads us to investigate AP schemes for kinetic equations and their ability to preserve stationary solutions. Kinetic models typically have a stiff term, thus AP schemes are needed to capture good solutions of the model. For such kinetic models, equilibrium solutions are reached after large time. Thus we need a new technique to numerically preserve stationary solutions for AP schemes. We find a criterion for SP schemes for kinetic equations which states, that AP schemes under a particular discretization are also SP. In an attempt to mimic our result for kinetic equations in the context of fluid models, for the isentropic Euler equations we developed an AP scheme in the limit of the Mach number going to zero. Our AP scheme is proven to have a SP property under the condition that the pressure is a function of the density and the latter is obtained as a solution of an elliptic equation. The properties of the schemes we developed and its criteria are validated numerically by various test cases from the literature. / In dieser Arbeit interessieren wir uns für numerisch erhaltende stationäre Lösungen von Erhaltungsgleichungen. Wir beginnen mit der Entwicklung von well-balanced Finite-Volumen Verfahren für das System der Euler-Gleichungen und das System der MHD-Gleichungen mit Gravitationsquell term. Da Strömungsmodelle und kinetische Modelle miteinander verwandt sind, untersuchen wir asymptotisch erhaltende (AP) Verfahren für kinetische Gleichungen und ihre Fähigkeit, stationäre Lösungen zu erhalten. Kinetische Modelle haben typischerweise einen steifen Term, so dass AP Verfahren erforderlich sind, um gute Lösungen des Modells zu erhalten. Bei solchen kinetischen Modellen werden Gleichgewichtslösungen erst nach langer Zeit erreicht. Daher benötigen wir eine neue Technik, um stationäre Lösungen für AP Verfahren numerisch zu erhalten. Wir finden ein Kriterium für stationär-erhaltende (SP) Verfahren für kinetische Gleichungen, das besagt, dass AP Verfahren unter einer bestimmten Diskretisierung auch SP sind. In dem Versuch unser Ergebnis für kinetische Gleichungen im Kontext von Strömungsmodellen nachzuahmen, haben wir für die isentropen Euler-Gleichungen ein AP Verfahren für den Grenzwert der Mach-Zahl gegen Null, entwickelt. Unser AP Verfahren hat nachweislich eine SP Eigenschaft unter der Bedingung, dass der Druck eine Funktion der Dichte ist und letztere als Lösung einer elliptischen Gleichung erhalten wird. Die Eigenschaften des von uns entwickelten und seine Kriterien werden anhand verschiedener Testfälle aus der Literatur numerisch validiert. / In this thesis, we are interested in numerically preserving stationary solutions of balance laws. We start by developing finite volume well-balanced schemes for the system of Euler equations and the system of Magnetohydrodynamics (MHD) equations with gravitational source term. Since fluid models and kinetic models are related, this leads us to investigate Asymptotic Preserving (AP) schemes for kinetic equations and their ability to preserve stationary solutions.
In an attempt to mimic our result for kinetic equations in the context of fluid models, for the isentropic Euler equations we developed an AP scheme in the limit of the Mach number going to zero. The properties of the schemes we developed and its criteria are validated numerically by various test cases from the literature.
|
273 |
Electric propulsion of satellites as an alternative for implementation of a sunshade systemArfan, Maheen, Bonnier, Isabelle January 2022 (has links)
As an alternative solution to global warming, this thesis explores the possibility of aspace-based geoengineering scheme that may prove worthwhile to implement in parallel toother environmental efforts that help mitigate impact of climate change. One suggestionof a geoengineering solution is deploying a large number of sunshades in the vicinity ofthe first Lagrange point of the Sun-Earth system, and this prospective sunshade projectwould serve to shield Earth from incident solar radiation. This thesis is an extension ofa feasibility study for the implementation of this large-scale mission, and has a focus oncomparing electric thrusters to solar sailing as a means of propulsion. Background onelectric propulsion systems and spaceflight mechanics is provided. The investigation wasperformed by defining the spacecraft configurations, and then computing trajectories toa point of escape from Earth and from there to the final equilibrium point.Our results show that in order to meet the propellant demands of the electric thrusters,the launch mass would need to increase by around 15-25 % compared to the solar sailingimplementation, equating to around 1010 kg. Nevertheless, electric propulsion could stillbe a beneficial choice since it would allow shorter transfer times for each shade whichreduces the radiation exposure and subsequent degradation of the spacecraft’s systems.It was found that the transfer time with electric propulsion would be about one-half orone-fifth that of solar sailing, depending on spacecraft parameters. Additionally, electricpropulsion allows a much lower initial parking orbit, and while this would increase the ra-diation exposure it would also reduce the launch costs due to the higher payload capacityto lower altitudes. However, electric propulsion of this scale require prior advancementsin xenon or other inert propellant extraction methods and possibly a wide-scale construc-tion of air separation plants.
|
274 |
Nonlinear Model Development and Validation for Ball and Plate Control SystemRichter, Zachary 01 August 2021 (has links) (PDF)
Ball and plate balancing control systems are commonly studied due to the complex dynamics associated with the instability of the system in open-loop. For simplicity, mathematical models describing the ball and plate dynamics are often linearized and the effects of complex motion are assumed to be negligible. These assumptions are rarely backed with evidence or explanations validating the simplified form of the dynamical equations of motion. This thesis focuses on developing a nonlinear model that more accurately defines the dynamics of the system, in order to quantify the error of linear and nonlinear models when compared to a Simscape physical system model. To develop the nonlinear model, this thesis considers both Newton-Euler and Lagrangian modeling methods and applies the method best suited for the ball and plate system. A linear state-feedback controller is developed to compare the stable responses of each system model. The response of each plant model in open-loop and closed-loop configurations subject to different inputs, initial conditions, and disturbances are simulated in the Simulink environment.
When compared to the physical system, there was less error from the nonlinear model than from the linear model for both initial condition and disturbance responses. The differences in error were as high as 2% compared to 10% for the nonlinear and linear models, respectively. These results show that there are significant differences associated with model simplification. To optimize the performance, it may be advantageous to utilize a nonlinear model, however, the linearized model is still valid to be used in certain applications due to its stable response behavior.
|
275 |
Mean Field Games price formation modelsGutierrez, Julian 06 September 2023 (has links)
This thesis studies mean-field games (MFGs) models of price formation. The thesis focuses explicitly on a MFGs price formation model proposed by Gomes and Saude. The thesis is divided into two parts. The first part examines the deterministic supply case, while the second part extends the model to incorporate a stochastic supply function. We explore different approaches, such as Aubry-Mather theory, to study the properties of the MFGs price formation model and alternative formulations using a convex variational problem with constraints. We propose machine-learning-based numerical methods to approximate the solution of the MFGs price formation model in the deterministic and stochastic setting.
|
276 |
Investigation and control of Görtler vortices in high-speed flowsEs-Sahli, Omar 08 December 2023 (has links) (PDF)
High-amplitude freestream turbulence and surface roughness elements can excite a laminar boundary-layer flow sufficiently enough to cause streamwise-oriented vortices to develop. These vortices resemble elongated streaks having alternate spanwise variations of the streamwise velocity. Following the transient growth phase, the fully developed vortex structures downstream undergo an inviscid secondary instability mechanism and, ultimately, transition to turbulence. This mechanism becomes much more complicated in high-speed boundary layer flows due to compressibility and thermal effects, which become more significant for higher Mach numbers. In this research, we formulate and test an optimal control algorithm to suppress the growth rate of the aforementioned streamwise vortex system. The derivation of the optimal control algorithm follows two stages.
In the first stage, to optimize the computational cost of the analysis, the study develops an efficient numerical algorithm based on the nonlinear boundary region equations (NBREs), a reduced form of the compressible Navier-Stokes equations in a high-Reynolds-number asymptotic framework. The NBREs algorithm results agree well with direct numerical simulation (DNS) results. The numerical simulations are substantially less computationally costly than a full DNS and have a more rigorous theoretical foundation than parabolized stability equation (PSE) based models. The substantial reduction in computational time required to predict the full development of a G\"{o}rtler vortex system in high-speed flows allows investigation into feedback control in reasonable total computational time, which is the focus of the second part of the study.
In the second stage, the method of Lagrange multipliers is utilized -- via an appropriate transformation of the original constrained optimization problem into an unconstrained form -- to obtain the adjoint compressible boundary-region equations (ACBREs) and corresponding optimality conditions, which constitute the basis of the optimal control approach. Numerical solutions for high-supersonic and hypersonic flows reveal a significant decrease in the kinetic energy and wall shear stress for all configurations considered. Streamwise velocity contour plots illustrate the qualitative effect of the optimal control iterations, demonstrating a significant decrease in the amplitude of the primary vortex instabilities.
|
277 |
Optimization of nonlinear dynamic systems without Lagrange multipliersClaewplodtook, Pana January 1996 (has links)
No description available.
|
278 |
Nonlinear interactions of acoustic-gravity wavesMoo, Charles Anthony January 1976 (has links)
Thesis. 1976. Ph.D.--Massachusetts Institute of Technology. Dept. of Earth and Planetary Sciences. / Microfiche copy available in Archives and Science. / Bibliography: leaves 122-123. / by Charles A. Moo. / Ph.D.
|
279 |
The generalized Hamiltonian model for the shafting transient analysis of the hydro turbine generating sets.Zeng, Y., Zhang, L., Guo, Yakun, Qian, J., Zhang, C. 12 January 2014 (has links)
yes / Traditional rotor dynamics mainly focuses on the steady- state behavior of the rotor and shafting. However, for systems such as hydro turbine generating sets (HTGS) where the control and regulation is frequently applied, the shafting safety and stabilization in transient state is then a key factor. The shafting transient state inevitably involves multiparameter domain, multifield coupling, and coupling dynamics. In this paper, the relative value form of the Lagrange function and its equations have been established by defining the base value system of the shafting. Takingthe rotation angle and the angular speed of the shafting as a link, the shafting lateral vibration and generator equations are integrated into the framework of generalized
Hamiltonian system. The generalized Hamiltonian control model is thus established. To make the model more general, additional forces of the shafting are taken as the input excitation in proposed model. The control system of the HTGS can be easily connected with the shafting model to form the whole simulation system of the HTGS. It is expected that this study will
build a foundation for the coupling dynamics theory using the generalized Hamiltonian theory to investigate coupling dynamic mechanism among the shafting vibration, transient of hydro turbine generating sets, and additional forces of the shafting. / National Natural Science Foundation of China under Grant Nos. 51179079 and 50839003
|
280 |
Assessment of mixing quality in full-scale, biogas-mixed anaerobic digestion using CFDDapelo, Davide, Bridgeman, John 15 June 2018 (has links)
Yes / An Euler-Lagrange CFD model is applied to a full-scale, biogas-mixed anaerobic digester to improve mixing efficiency and improve overall performance. Two quantitative mixing criteria previously adopted in anaerobic digestion (viz., uniformity index and dead volume) are critically assessed for the first time. A novel qualitative method is introduced to clarify the output of the quantitative methods. The first-ever quantitative assessment of mixing quality in full-scale, biogas-mixed anaerobic digestion is then proposed, and a strategy to improve mixing, involving the combined use of concentric nozzle manifolds at the base of the digester, is evaluated. / University of Birmingham (UK) Postgraduate Teaching Assistantship award; University of Bradford (UK) Postdoctoral research assistant contract, who provided financial support
|
Page generated in 0.0566 seconds