Spelling suggestions: "subject:"large entrains"" "subject:"large 7strains""
11 |
Caractérisation et modélisation du comportement hyper-viscoelastique d'un élastomère chargé pour la simulation de pièces lamifiées élastomère-métal et étude en fatigue / Characterization and modelling of the hyper-viscoelastic behaviour of a filled rubber in order to simulate elastomer-metal laminated devices and study of fatigueDelattre, Alexis 19 September 2014 (has links)
Dans le cadre d’une Cifre avec Airbus Helicopters, le projet a pour but le développement d’un modèle pour le pré-dimensionnement de pièces lamifiées élastomère-métal dont le rôle est critique en termes de conception et de sécurité pour les architectures de rotors d’hélicoptères. Pour cela, un premier volet de la thèse a consisté à caractériser le comportement élasto-dissipatif du matériau d’étude (un butadiène chargé de noir de carbone) via une campagne d’essais statiques et dynamiques, sous différents modes de sollicitations (uniaxiales et biaxiales) et sur un spectre assez large de fréquences, d’amplitudes et de températures. A partir de ces observations, un modèle phénoménologique de comportement hyper-viscoélastique est proposé. Sur la base d’un modèle de Maxwell généralisé, il permet de traduire les phénomènes observés sur la gamme de sollicitations visées. Un accent particulier a été porté sur la prise en compte de l’effet Payne en adoptant une approche originale. Les paramètres du modèle sont identifiés par une méthode robuste et rapide. Le modèle est ensuite développé à la fois dans un code commercial de calcul par éléments finis et dans un outil de calcul basé sur une méthode de réduction de modèles. Enfin, une étude du comportement en fatigue est réalisée à travers une campagne d’essais originaux servant de point de départ à la proposition d’une loi d’endommagement continu. / In association with Airbus Helicopters, the aim of the project is to develop a model to pre-size elastomer-metal laminated devices whose role is critical in terms of design and safety for helicopters rotor architectures. To do so, the first part of this thesis consisted in characterizing the elasto-dissipatice behavior of the studied material (a carbon black filled butadiene rubber) thanks to static and dynamic tests, with several kind of loading (uni-axial and bi-axial) and over a wide range of frequences, amplitudes and temperatures. From these observations, a phenomenological hyper-viscoelastic model is proposed. Based on a generalized Maxwell model, it is able to describe the phenomena over the loading range of concern. A particular focus is made to take in account the Payne effect thanks to an original approach. The model parameters are identified with a fast and robust method. The model is then implemented in a commercial finite element code and in a tool based on a model reduction method. Last, a study of the behaviour in fatigue is performed with an original characterization campaign from which a continuous damage law is proposed.
|
12 |
Sobre modelos constitutivos não lineares para materiais com gradação funcional exibindo grandes deformações: implementação numérica em formulação não linear geométrica / On nonlinear constitutive models for functionally graded materials exhibiting large strains: numerical implementation in geometrically nonlinear formulationJoão Paulo Pascon 18 April 2012 (has links)
O objetivo precípuo deste estudo é a implementação computacional de modelos constitutivos elásticos e elastoplásticos para materiais com gradação funcional em regime de grandes deslocamentos e elevadas deformações. Para simular numericamente um problema estrutural, são empregados aqui elementos finitos sólidos (tetraédrico e hexaédrico) com ordem de aproximação polinomial qualquer. Grandezas da Mecânica Não Linear do Contínuo, como deformação e tensão, são utilizadas na formulação deste estudo. Para reproduzir os grandes deslocamentos, é empregada a análise não linear geométrica. A descrição adotada aqui é a Lagrangiana total, e o equilíbrio da estrutura é expresso pelo Princípio da Mínima Energia Potencial Total. Com relação à resposta elástica do material, são usadas leis constitutivas hiperelásticas, nas quais a relação tensão-deformação é obtida a partir de um potencial escalar. O comportamento elastoplástico do material é definido pela decomposição da deformação nas parcelas elástica e plástica, pelo critério de plastificação de von-Mises, pela lei de fluxo associativa, pelas condições de consistência e de complementaridade, pelo parâmetro de encruamento isotrópico e pelo tensor das tensões inversas, relacionado ao encruamento cinemático. Duas formulações elastoplásticas são utilizadas aqui: a de Green-Naghdi, na qual a deformação é decomposta de forma aditiva; e a hiperelastoplástica, em que o gradiente é decomposto de forma multiplicativa. É empregado também o conceito de material com gradação funcional (GF), a qual é definida como a variação gradual (contínua e suave) das propriedades constitutivas do material. A solução numérica do equilíbrio de forças é feita via método iterativo de Newton-Raphson. Para satisfazer o critério de plastificação, são utilizadas as estratégias de previsão elástica, e de correção plástica via algoritmos de retorno. Basicamente foram desenvolvidos cinco programas computacionais: o gerador automático das funções de forma; o gerador de malhas de elementos finitos sólidos; o código para análise de materiais em regime elástico; o código para análise de materiais em regime elastoplástico; e o programa de pós-processamento. Além desses, o aluno teve contato com os programas EPIM3D e DD3IMP ao longo de seu estágio de doutorado na Universidade de Coimbra (Portugal). Os programas EPIM3D e DD3IMP são empregados para analisar, respectivamente, materiais em regime elastoplástico, e processos de conformação de metais. Para o problema da barra sob tração uniaxial uniforme, são descritas equações e soluções analíticas para materiais homogêneos e com GF em regime elastoplástico. Para reduzir o tempo de simulação, foi empregada a programação em paralelo. De acordo com os resultados das simulações numéricas, as principais conclusões são: o refinamento da malha de elementos finitos melhora a precisão dos resultados para materiais em regimes elástico e elastoplástico; as formulações elastoplásticas de Green-Naghdi e hiperelastoplástica parecem ser equivalentes para pequenas deformações; a formulação hiperelastoplástica é equivalente ao modelo mecânico dos programas EPIM3D e DD3IMP para materiais em regime de pequenas deformações elásticas; foram constatados ganhos significativos, em termos de tempo de simulação, com a paralelização dos códigos computacionais de análise estrutural; e os programas desenvolvidos são capazes de simular - com precisão - problemas complexos, como a membrana de Cook e o cilindro fino transversalmente tracionado. / The main objective of this study is the computational implementation of elastic and elastoplastic constitutive models for functionally graded materials in large deformation regime. In order to numerically simulate a structural problem, the finite elements used are solids (tetrahedric and hexahedric) of any order of approximation. Entities from Nonlinear Continnum Mechanics, as strain and stress, are used in the present formulation. To reproduce the finite displacements, the geometrically nonlinear analysis is employed. The description adopted here is the total Lagrangian, and the structural equilibrium is expressed by means of the Principal of Minimum Total Potential Energy. Regarding the elastic material response, hyperelastic constitutive laws are used, in which the stress-strain relation is obtained from a scalar potential. The elastoplastic material behavior is defined by the strain decomposition in the elastic and plastic parts, by the von-Mises yield criterion, by the associative flow law, by the consistency and complementarity conditions, by the isotropic hardening parameter, and by the backstress tensor, related to the kinematic hardening. Two elastoplastic formulations are used here: the Green-Naghdi one, in which the strain is additively decomposed; and the hyperelastoplasticiy, in which the gradient is multiplicatively decomposed. The concept of functionally graded (FG) material, in which the constitutive properties vary gradually (continuous and smoothly), is also used. The numerical solution of the forces equilibrium is obtained via Newton-Raphson iterative procedure. In order to satisfy the yield criterion, the strategies of elastic prediction and plastic correction (via return algorithms) are used. Basically, five computer codes have been developed: the automatic shape functions generator; the solid mesh generator; the code for analysis of materials in the elastic regime; the code for analysis of materials in the elastoplastic regime; and the post-processor. Besides these, the student had contact with the programs EPIM3D and DD3IMP during his doctoral stage in the University of Coimbra (Portugal). The programs EPIM3D and DD3IMP are employed to analyze, respectively, materials in the elastoplastic regime, and sheet-metal forming processes. For the problem of the bar under uniform uniaxial tension, equations and analytical solutions are described for homogeneous and FG materials. To reduce the simulation time, the parallel programming has been employed. According to the numerical simulation results, the main conclusions are: the results accuracy is improved with mesh refinement for materials in the elastic and elastoplastic regimes; the Green-Naghdi elastoplastic formulation and the hyperelastoplasticity appear to be equivalent for small strains; the hyperelastoplastic formulation is equivalent to the mechanical model of the programs EPIM3D and DD3IMP for materials the small elastic strains regime; simulation time reduction has been obtained with the parallelization of the computer codes for structural analysis; the developed programs are capable of simulating, precisely, complex problems, such as the Cook\'s membrane and the pulled thin cylinder.
|
13 |
Ein numerischer Vergleich alternativer Formulierungen des Materialmodells der anisotropen Elastoplastizität bei großen VerzerrungenGörke, Uwe-Jens, Bucher, Anke, Kreißig, Reiner 16 December 2008 (has links)
Following generally accepted axioms and assumptions the authors developed a phenomenological, thermodynamically
consistent material model for large anisotropic elastoplastic deformations based on a substructure concept.
The material model originally includes a stress relation in rate formulation, evolutional equations for the
internal variables modeling the hardening behavior, and the yield condition. Due to the necessary time
discretization solving the initial value problem (IVP) this approach is associated with an incremental
stress computation. It will be shown that, within this context, the accuracy of stress values
essentially deteriorates with increasing load steps. Consequently, the authors substitute the usual
stress relation including the symmetric plastic strain tensor of right Cauchy-Green type instead of the
stress tensor into the set of unknown constitutive variables. Stresses are explicitly computed from a
hyperelastic material law depending on the elastic strain tensor. Furthermore, as an alternative to the
plastic strain tensor the solution of the IVP considering an
evolutional equation for the plastic part of the deformation gradient has been studied.
This procedure simplifies the mathematical structure of the system to be solved as well
as the computation of substructure-based variables which are suitable for the analysis
of texture development. The presented numerical strategies were implemented into an in-house FE-code.
Some examples illustrating their accuracy, stability as well as efficiency are discussed.
|
14 |
Thermodynamisch konsistente Formulierung des gekoppelten Systems der Thermoelastoplastizität bei großen Verzerrungen auf der Basis eines SubstrukturkonzeptsGörke, Uwe-Jens, Landgraf, Ralf, Kreißig, Reiner 16 December 2008 (has links)
Non-negligible coupled thermal and mechanical
effects occur in several physical and industrial
procedures, e.g. warm for ming processes.
The authors present the theoretical background of
a phenomenological thermoelastoplastic material
model at large strains as well as its numerical
realization within the context of appropriate
finite element formulations. As usual, the presented
thermodynamical consistent constitutive approach is
based on the multiplicative decomposition of
the deformation gradient, and a corresponding
additive decomposition of the free Helmholtz
energy density. For the numerical treatment of
thermoelastoplastic problems within a finite
element approach, weak formulations of the balance
equation of momentum and the heat conduction
equation in material description are developed.
For the solution of non-linear boundary value
problems the linearization of the weak formulations
is presented. Within the context of the mechanical
problem the temperature dependence of material
parameters as well as the thermal expansion are
considered. The temperature evolution will be
affected by non-thermal phenomena like the
thermoelastic effect and plastic dissipation.
Several numerical procedures for the solution of
the coupled thermomechanical problem are
discussed.
|
15 |
Ein Beitrag zur gemischten Finite-Elemente-Formulierung der Theorie gesättigter poröser Medien bei großen VerzerrungenGörke, Uwe-Jens, Kaiser, Sonja, Bucher, Anke, Kreißig, Reiner 24 April 2009 (has links)
This paper presents the theoretical background of
a phenomenological biphasic material approach at
large strains based on the theory of porous media
as well as its numerical realization within the
context of an adaptive mixed finite element formulation.
The study is aimed at the simulation of coupled
multiphysics problems with special focus on biomechanics.
As the materials of interest can be considered as
a mixture of two immiscible components (solid and
fluid phases), they can be modeled as saturated
porous media. For the numerical treatment of according
problems within a finite element approach, weak
formulations of the balance equations of momentum
and volume of the mixture are developed. Within this
context, a generalized Lagrangean approach is
preferred assuming the initial configuration of
the solid phase as reference configuration of the
mixture. The transient problem results in weak
formulations with respect to the displacement and
pore pressure fields as well as their time derivatives.
Therefore special linearization techniques are applied,
and after spatial discretization a global system for the
incremental solution of the initial boundary value
problem within the framework of a stable mixed U/p-c
finite element approach is defined. The global system
is solved using an iterative solver with hierarchical
preconditioning. Adaptive mesh evolution is controlled
by a residual a posteriori error estimator.
The accuracy and the efficiency of the numerical
algorithms are demonstrated on a typical example.
|
16 |
Análise numérica bidimensional de sólidos com comportamento visco-elasto-plástico em grandes deformações e situações de contato / Two-dimensional numerical analysis of solids with visco-elasto-plastic behavior under large strains and contact situationsCarvalho, Péricles Rafael Pavão 26 March 2019 (has links)
Motivado por diversos processos de manufatura, tais como conformação de metais a frio ou mesmo manufatura aditiva, este trabalho consiste no desenvolvimento de um código computacional para a simulação numérica de problemas bidimensionais que abordam três tipos de não-linearidade: a geométrica, presente em situações de grandes deslocamentos; a física, presente no modelo constitutivo do material; e a de contato. Na primeira etapa, desenvolve-se um programa para análise dinâmica bidimensional de sólidos elásticos, utilizando a abordagem posicional do método dos elementos finitos, que engloba naturalmente a não-linearidade geométrica em sua formulação. Em seguida, implementam-se modelos constitutivos não-elásticos para problemas com grandes deformações. No modelo elastoplástico, adota-se o critério de von Mises com encruamento cinemático baseado na lei de Armstrong-Frederick. Essa formulação é então generalizada para o caso visco-plástico, onde é considerado o modelo de Perzyna em conjunto com a lei de Norton. No caso visco-elástico, utiliza-se uma formulação que parte do modelo reológico de Zener. Por fim, apresenta-se um modelo visco-elasto-plástico que consiste no acoplamento dos modelos visco-elástico e visco-plástico descritos anteriormente. Em todos os casos, utiliza-se a decomposição multiplicativa do gradiente da função mudança de configuração. Com respeito à aplicação 2D, consideram-se as hipóteses de estado plano de deformações e estado plano de tensões, onde a última é resolvida numericamente por um procedimento local de Newton-Raphson. Para o problema de contato, aplica-se a estratégia Nó-a-Segmento, sendo as condições de não-penetração impostas com a introdução de multiplicadores de Lagrange. A formulação é testada em cada uma das etapas por meio de exemplos numéricos de verificação. Além disso, para mostrar as potencialidades do código desenvolvido, são propostos diversos exemplos numéricos, sendo alguns inspirados por processos de manufatura existentes. Nesses exemplos, são estudados os efeitos de diferentes parâmetros dos materiais e diferentes taxas de deformação na resposta numérica, permitindo uma análise do comportamento dissipativo decorrente da plastificação e da viscosidade, incluindo a influência desses sobre o amortecimento dinâmico. / Motivated by several manufacturing processes, such as cold metal forming or even additive manufacturing, in this work we develop a computational code for numerical simulation of two-dimensional problems addressing three types of nonlinearities: geometric nonlinearity, present in large displacements situations; physical non-linearity, present in the material constitutive model; and contact non-linearity. In the first step, we develop a computational program for dynamic analysis of two-dimensional elastic solids using the positional finite element method, which naturally takes into account geometric non-linearity in its formulation. Following, we implement inelastic constitutive models for large strain problems. In the elasto-plastic model, we adopt von Mises yeld criteria and kinematic hardening based on the Armstrong-Frederick law. The formulation is then generalized to the visco-plastic case, where we consider Perzyna model associated with Norton\'s law. In the visco-elastic case, Zener\'s rheological model is employed. Finally, we present a visco-elasto-plastic model by coupling the visco-elastic and visco-plastic models described previously. In every case, the multiplicative decomposition of the deformation gradient is employed. Regarding the 2D application, we consider both plane strain and plane stress hypothesis, where the latter is solved numerically by a local Newton-Raphson procedure. For the contact problem, we employ the Node-to-Segment strategy, imposing non-penetration conditions with the introduction of Lagrange multipliers. The resulting computational code is tested in each step by means of numerical verification examples. In addition, to show the potentialities of the developed code, several numerical examples are proposed, some of which inspired by existing manufacturing processes. On these examples, we study the effects of different material parameters and strain rates on the numerical response, allowing an analysis of the dissipative behavior due to plasticity and viscosity, including the influence of these on the dynamic damping.
|
17 |
Modélisation et optimisation des préformes du procédé de forgeage par Approche Pseudo Inverse / Modelling and optimization of preform forging process by Pseudo Inverse ApproachHalouani, Ali 30 May 2013 (has links)
Une nouvelle approche appelée “Approche Pseudo Inverse” (API) est développée pour la modélisation du procédé de forgeage à froid des pièces axisymétriques. L'API est basée sur la connaissance de la forme de la pièce finale. Certaines configurations intermédiaires « réalistes » ont été introduites dans l'API pour considérer le chemin de déformations. Elles sont créées géométriquement sans traitement de contact et ensuite corrigées par la méthode de surface libre afin de respecter l'équilibre, les conditions aux limites et la condition d'incompressibilité. Un nouvel algorithme direct de plasticité est développé, conduisant à une méthode d'intégration plastique très rapide, précise et robuste même dans le cas de très grands incréments de déformations. Un modèle d'endommagement en déformation, est couplé à la plasticité et implémenté dans l'API. Les validations numériques montrent que l'API donne des résultats très proches des résultats de l'approche incrémentale mais en utilisant beaucoup moins de temps de calcul.L'API est adoptée comme solveur du forgeage pour la conception et l'optimisation des préformes du forgeage multi-passes. La rapidité et la robustesse de l'API rendent la procédure d'optimisation très performante. Une nouvelle technique est développée pour générer automatiquement le contour initial d'un outil de préforme pour la procédure d'optimisation. Les variables de conception sont les positions verticales des points de contrôle des courbes B-spline définissant les formes des outils de préforme. Notre optimisation multi-objectif consiste à minimiser la variation de la déformation plastique équivalente dans la pièce finale et la force du poinçon au cours du forgeage. Un algorithme génétique et un algorithme de recuit simulé sont utilisés pour trouver les points d'optimum de Pareto. Pour réduire le nombre de simulations de forgeage, un méta-modèle de substitution basé sur la méthode de krigeage est adopté pour établir une surface de réponse approximative. Les résultats obtenus par l'API en utilisant les outils de préforme optimaux issues de l'optimisation sont comparés à ceux obtenus par les approches incrémentales classiques pour montrer l'efficacité et les limites de l'API. La procédure d'optimisation combinée avec l'API peut être un outil numérique rapide et performant pour la conception et l'optimisation des outillages de préforme. / A new method called “Pseudo Inverse Approach” (PIA) is developed for the axi-symmetrical cold forging modelling. The PIA is based on the knowledge of the final part shape. Some « realistic » intermediate configurations are introduced in the PIA to consider the deformation path. They are created geometrically without contact treatment, and then corrected by using a free surface method in order to satisfy the equilibrium, the boundary conditions and the metal incompressibility. A new direct algorithm of plasticity is proposed, leading to a very fast, accurate and robust plastic integration method even in the case of very large strain increments. An isotropic damage model in deformation is coupled with the plasticity and implemented in the PIA. Numerical tests have shown that the Pseudo Inverse Approach gives very close results to those obtained by the incremental approach, but using much less calculation time.The PIA is adopted as forging solver for the design and optimization of preform tools in the multi-stage forging process. The rapidity and robustness of the PIA make the optimization procedure very powerful. A new method is developed to automatically generate the initial preform tool shape for the optimization procedure. The design variables are the vertical positions of the control points of B-spline curves describing the preform tool shape. Our multi-objective optimization is to minimize the equivalent plastic strain in the final part and the punch force during the forging process. The Genetic algorithm and Simulated Annealing algorithm are used to find optimal Pareto points. To reduce the number of forging simulations, a surrogate meta-model based on the kriging method is adopted to build an approximate response surface. The results obtained by the PIA using the optimal preform tools issued from the optimization procedure are compared to those obtained by using the classical incremental approaches to show the effectiveness and limitations of the PIA. The optimization procedure combined with the PIA can be a rapid and powerful tool for the design and optimization of the preform tools.
|
18 |
Etude du comportement mécanique de tôles en alliage de titane et des paramètres procédé dans les opérations d'emboutissage à hautes températures / Study of the mechanical behavior of titanium sheets alloys and process parameters in hot stamping operationsSirvin, Quentin 06 September 2018 (has links)
Dans l'industrie aéronautique, les alliages de titane sont utilisés pour leur excellent comportement mécanique associé à une faible masse volumique. Ils sont largement employés sous forme de tôles dont la mise en forme peut se faire par le biais de trois procédés : à température ambiante par opération d'emboutissage, à très hautes températures (T≈900°C) par formage superplastique (SPF) et à des températures intermédiaires (T=730°C, 880°C) par formage à chaud (HF). Le projet repose sur le développement du procédé d'emboutissage à chaud d'une tôle d'alliage de titane Ti-6Al-4V en conditions isothermes à des températures inférieures à 700°C. Par conséquent, la détermination des paramètres procédés et matériaux constitue une étape importante pour la mise en œuvre de simulations numériques et contribue à la réussite des opérations d'emboutissage de pièces industrielles. Ces paramètres procédés sont liés à la vitesse du poinçon, aux efforts de serre-flan et au frottement induit entre le flan et l'outillage. Leur analyse a permis de déterminer deux niveaux de températures (400°C et 500°C) offrant une chute drastique du coût énergétique, en comparaison des procédés HF ou SPF, tout en conservant des niveaux d'allongement suffisants. Les paramètres matériaux influençant le comportement de l'alliage sont analysés et quantifiés. Ils peuvent être influencés par plusieurs mécanismes : élasticité, viscosité, anisotropie (Hill48, Barlat91) et nature de l’écrouissage (isotrope, cinématique). Dans cette étude, un modèle de comportement élasto-viscoplastique anisotrope, capable de considérer les trajets de chargement subis par la tôle lors de sa mise en forme, a été formulé pour les deux niveaux de température. L’implantation du modèle de comportement a été réalisée dans le code de calcul éléments finis Abaqus/Standard 6.14® interfacé avec le logiciel ZMAT®. Elle a permis d’une part des simulations d’emboutissage de profil Omega pour lesquelles des comparaisons avec les expériences ont été réalisées et d’autre part, des calculs sur une pièce de forme complexe. / In the aerospace industry, titanium alloys are used for their excellent mechanical behavior associated with low density. They are widely available in sheet form and the final shape can be obtained through three processes: at room temperature by stamping operation, at very high temperatures (T≈900°C) by superplastic forming (SPF) and at intermediate temperature (T=730°C, 880°C) by hot forming (HF). The project is based on the development of the hot stamping process of Ti-6Al-4V titanium alloy sheet under isothermal conditions at temperatures below than 700°C. Therefore, the determination of the process and material parameters constitutes an important stage for implementing the numerical simulation while contributing to the success of the stamping operation at the scale of an industrial part. The process parameters are related to the punch speed, the blank holder forces and the friction induced between the sheet and the tool. Their analysis allowed to determine two temperature levels (400°C et 500°C) leading a drastic drop in energy cost, compared to HF or SPF processes, while maintaining enough elongation levels. The material parameters influencing the behavior of the alloy are analyzed and quantified. They can be influenced by several mechanisms: elasticity, viscosity, anisotropy (Hill48, Barlat91) and nature of hardening (isotropic, kinematic). In this study, an anisotropic elasto-viscoplastic behavior model, able to consider the loading path undergone by sheet during forming, has been formulated for both temperature levels. The implementation of the behavior model is achieved in Abaqus/Standard 6.14® Finite Element code with the material library plugin ZMAT®. It enables, on the one hand, stamping numerical simulations of a simple shape Omega profile for which experimental comparisons were done, on the other hand, calculations on an industrial part with a complex shape.
|
19 |
Modélisation et optimisation numérique de l'emboutissage de pièces de précision en tôlerie fine / Modelisation and numerical optimisation of heigh precision thin metallic parts stampingAzaouzi, Mohamed 11 December 2007 (has links)
Le présent travail de thèse s’inscrit dans le cadre d’un projet industriel proposé par une entreprise luxembourgeoise et en collaboration avec le Centre de Recherche Public Henry Tudor du Luxembourg (Laboratoire des Technologies Industriels (LTI)). L’objectif consiste à mettre au point une méthode numérique de détermination de la forme des outils d’emboutissage et du flan de pièces de précision en tôlerie fine pour que ce dernier, une fois déformé en une ou plusieurs opérations, correspond à la définition tridimensionnelle du cahier des charges. La méthode a pour objectif de remplacer une démarche expérimentale coûteuse par essais–erreur. Deux démarches numériques sont proposées, la première est relative à la détermination de la forme du flan. Elle consiste à estimer la forme du flan par Approche Inverse en partant de la forme 3D demandée. Puis, un logiciel de simulation incrémental par éléments finis en 3D est utilisé dans une procédure d’optimisation heuristique pour déterminer la forme du flan. Dans la deuxième démarche, il s’agit de déterminer la forme des outils d’emboutissage en utilisant le logiciel de simulation incrémental couplé avec une méthode de compensation du retour élastique en 2D. La démarche numérique est validée expérimentalement dans le cas d’un emboutissage réalisé en une ou plusieurs passes, à l’aide d’une presse manuelle, sans serre flan et avec des outils de forme très complexe. / The present study deals with an industrial project proposed by a luxembourgian enterprise and in collaboration with the luxembourgian research centre Henry Tudor (Laboratory of Industrial Technologies (LTI)). The main objective is to build a numerical approaches for the determination of the initial blank shape contour and tools shape for 3D thin metallic precision parts obtained by stamping, knowing the 3D CAD geometry of the final part. The purpose of the present procedure is to replace the expensive and time consuming experimental trial and error optimization method. Two numerical approaches have been proposed, the first is regarding the determination of the blank shape. An estimation of the blank shape can be given using the Inverse Approach. Update of the blank shape will then be continued by iterations combining heuristic optimization algorithms and incremental stamping codes. The second approach is based on precise finite element models and on spring-back compensation algorithm. The numerical approaches are tested in the case of a special stamping process where the parts are pressed in one or more steps using a manual press, without blank holder and by the mean of complex shape tools.
|
20 |
Modellierung des mechanischen Verhaltens der Komponenten eines intrinsischen HybridverbundesKießling, Robert 10 January 2020 (has links)
Durch die Kombination verschiedener Werkstoffklassen ermöglichen Hybridverbunde die Entwicklung von Strukturbauteilen, die sich beispielsweise durch eine hohe Festigkeit bei einem gleichzeitig geringen Gewicht auszeichnen. Trotz des großen Einsatzpotentials wurden Hybridverbunde, begründet durch eine kostenintensive und zeitaufwendige Fertigung, bislang nicht für Großserienbauteile vorgesehen. Mit der Konzeption intrinsischer, das heißt einstufiger, Produktionsprozesse wird es jedoch gelingen die Attraktivität zu steigern und damit die Anwendung von Hybridverbunden unter anderem auch in der Automobilindustrie zu etablieren. Exemplarisch soll im Rahmen dieser Arbeit die Entwicklung eines intrinsischen Hybridverbundes für crashbelastete Strukturbauteile simulativ begleitet werden. Der dabei betrachtete Hybridverbund besteht aus einem endlosfaserverstärktem Kunststoff, in den ein metallischer Einleger eingebracht ist. Zur Realisierung der Anbindung der Komponenten sieht das Konzept des Hybridverbundes die Kombination von Form- und Stoffschluss vor. Dabei resultiert der Stoffschluss aus der Beschichtung des metallischen Einlegers, die die Ausbildung eines Interface bewirkt. Zur Realisierung des Formschlusses werden während des überlagerten Umformprozesses lokal Formschlusselemente des metallischen Einlegers in den endlosfaserverstärkten Kunststoff gepresst. Dadurch weisen die resultierenden Bauteile eine komplexe innere Struktur auf, die die simulative Analyse und damit die Bauteilauslegung erschwert.
Das Ziel der vorliegenden Arbeit besteht in der Modellierung und Simulation dieses intrinsischen Hybridverbundes. Dazu ist zunächst das Materialverhalten aller Komponenten durch adäquate Materialmodelle für große Deformationen abzubilden. Für deren Entwicklung wird ein Konzept zur Materialmodellierung aufgegriffen und erweitert, das die Formulierung auf der Basis direkt verschalteter rheologischer Elemente ermöglicht. Nach entsprechenden Parameteridentifikationen werden die Materialmodelle im Rahmen von Finite-Elemente-Simulationen eines aus dem Hybridverbund gefertigten Demonstratorbauteils angewendet. Dabei ermöglicht das Vorgehen zur Modellerstellung die Berücksichtigung und Bewertung von Einflüssen der intrinsischen Fertigung auf das Bauteilverhalten. / Hybrid parts, combining for example low weight with high strength, are based on the combination of different material classes. Despite an enormous potential for applications, hybrid composites are not well established for large series parts due to the expensive and complex production. To increase the number of applications, intrinsic, i.e. single-step, manufacturing processes are designed. Within this work, the development of an intrinsic hybrid composite for crash-relevant structural parts is supported by simulations. The considered hybrid composite is made up of a fibre-reinforced polymer, in which a metallic insert is integrated. The connection between these components is based on a combination of geometrical form fit and adhesive bonding. On one hand, adhesive bonds result from a coating of the metallic insert. On the other hand, local form fit elements are pressed into the fibre reinforced polymer during the global forming process. Consequently, the resulting parts, manufactured in just one step, show a complex inner structure, which make simulative analyses and dimensioning more difficult.
Within the work at hand, the main research goal is the modelling and simulation of this intrinsic hybrid composite. To this end, the mechanical behaviour of all individual components has to be described by appropriate material models at large strains. For those developments, a concept of material modelling, which enables the formulation based on directly connected rheological elements, is adopted and extended. After identifying the according material parameters, these material models are applied within finite element simulations of a demonstrator made up of the hybrid composite. Thereby, the applied procedure for creating finite element models allows to consider and evaluate how the intrinsic manufacturing process affects the mechanical behaviour of the parts.
|
Page generated in 0.0651 seconds