Spelling suggestions: "subject:"1earning (ML)"" "subject:"c1earning (ML)""
21 |
Data Augmentation GUI Tool for Machine Learning ModelsSharma, Sweta 30 October 2023 (has links)
The industrial production of semiconductor assemblies is subject to high requirements. As a result, several tests are needed in terms of component quality. In the long run, manual quality assurance (QA) is often connected with higher expenditures. Using a technique based on machine learning, some of these tests may be carried out automatically. Deep neural networks (NN) have shown to be very effective in a diverse range of computer vision applications. Especially convolutional neural networks (CNN), which belong to a subset of NN, are an effective tool for image classification. Deep NNs have the disadvantage of requiring a significant quantity of training data to reach excellent performance. When the dataset is too small a phenomenon known as overfitting can occur. Massive amounts of data cannot be supplied in certain contexts, such as the production of semiconductors. This is especially true given the relatively low number of rejected components in this field. In order to prevent overfitting, a variety of image augmentation methods may be used to the process of artificially creating training images. However, many of those methods cannot be used in certain fields due to their inapplicability. For this thesis, Infineon Technologies AG provided the images of a semiconductor component generated by an ultrasonic microscope. The images can be categorized as having a sufficient number of good and a minority of rejected components, with good components being defined as components that have been deemed to have passed quality control and rejected components being components that contain a defect and did not pass quality control.
The accomplishment of the project, the efficacy with which it is carried out, and its level of quality may be dependent on a number of factors; however, selecting the appropriate tools is one of the most important of these factors because it enables significant time and resource savings while also producing the best results. We demonstrate a data augmentation graphical user interface (GUI) tool that has been widely used in the domain of image processing. Using this method, the dataset size has been increased while maintaining the accuracy-time trade-off and optimizing the robustness of deep learning models. The purpose of this work is to develop a user-friendly tool that incorporates traditional, advanced, and smart data augmentation, image processing,
and machine learning (ML) approaches. More specifically, the technique mainly uses
are zooming, rotation, flipping, cropping, GAN, fusion, histogram matching,
autoencoder, image restoration, compression etc. This focuses on implementing and
designing a MATLAB GUI for data augmentation and ML models. The thesis was
carried out for the Infineon Technologies AG in order to address a challenge that all
semiconductor industries experience. The key objective is not only to create an easy-
to-use GUI, but also to ensure that its users do not need advanced technical
experiences to operate it. This GUI may run on its own as a standalone application.
Which may be implemented everywhere for the purposes of data augmentation and
classification. The objective is to streamline the working process and make it easy to
complete the Quality assurance job even for those who are not familiar with data
augmentation, machine learning, or MATLAB. In addition, research will investigate the
benefits of data augmentation and image processing, as well as the possibility that
these factors might contribute to an improvement in the accuracy of AI models.
|
22 |
Extraction of gating mechanisms from Markov state models of a pentameric ligand-gated ion channelKaralis, Dimitrios January 2021 (has links)
GLIC är en pH-känslig pentamerisk ligandstyrd jonkanal (pLGIC) som finns i cellmembranet hos prokaryoten Gloeobacter violaceus. GLIC är en bakteriell homolog till flera receptorer som är viktiga i nervsystemet hos de flesta eukaryotiska organismer. Dessa receptorer fungerar som mallar för utvecklingen av målstyrda bedövnings- och stimulerande läkemedel som påverkar nervsystemet. Förståelsen av ett proteins mekanismer har därför hög prioritet inför läkemedelsutvecklingen. Eukaryota pLGICs är dock mycket komplexa eftersom några av de är heteromera, har flera domäner, och de pågår eftertranslationella ändringar. GLIC, å andra sidan, har en enklare struktur och det räcker att analysera strukturen av en subenhet - eftersom alla subenheter är helt lika. Flertalet möjliga grindmekanismer föreslogs av vetenskapen men riktiga öppningsmekanismen av GLIC är fortfarande oklar. Projektets mål är att genomföra maskininlärning (ML) för att upptäcka nya grindmekanismer med hjälp av datormetoder. Urspungsdatan togs från tidigare forskning där andra ML-redskap såsom molekyldynamik (MD), elastisk nätverksstyrd Brownsk dynamik (eBDIMS) och Markovstillståndsmodeller (MSM) användes. Utifrån dessa redskap simulerades proteinet som vildtyp samt med funktionsförstärkt mutation vid två olika pH värden. Fem makrotillstånd byggdes: två öppna, två stängda och ett mellanliggande. I projektet användes ett annat ML redskap: KL-divergens. Detta redskap användes för att hitta skillnader i avståndfördelning mellan öppet och stängt makrotillstånd. Utifrån ursprungsdatan byggdes en tensor som lagrade alla parvisa aminosyrornas avstånd. Varje aminosyrapar hade sin egen metadata som i sin tur användes för att frambringa alla fem avståndsfördelningar fråm MSMs som byggdes i förväg. Sedan bräknades medel-KL-divergens mellan två avståndfördelningar av intresse för att filtrera bort aminosyropar med överlappande avståndsfördelningar. För att se till att aminosyror inom aminosyrapar som låg kvar kan påverka varandra, filtrerades bort alla par vars minsta och medelavstånd var stora. De kvarvarande aminosyroparen utvärderades i förhållande till alla fem makrotillstånd Viktiga nya grindmekanismer som hittades genom både KL-divergens och makrotillståndsfördelningar innefattade loopen mellan M2-M3 helixarna av en subenhet och både loopen mellan sträckor β8 och β9 (Loop F)/N-terminal β9-sträckan och pre-M1/N-terminal M1 av närliggande subenheten. Loopen mellan sträckor β8 och β9 (Loop F) visade höga KL-värden också med loopen mellan sträckor β1 och β2 loop samt med loopen mellan sträckor β6 och β7 (Pro-loop) och avståndet mellan aminosyror minskade vid kanalens grind. Övriga intressanta grindmekanismer innefattade parning av aminosyror från loopen β4-β5 (Loop A) med aminosyror från sträckor β1 och β6 samt böjning av kanalen porangränsande helix. KL-divergens påvisades vara ett viktigt redskap för att filtrera tillgänglig data och de nya grindmekanismer kan bli användbara både för akademin, som vill reda ut GLIC:s fullständiga grindmekanismer, och läkemedelsföretag, som letar efter bindningsställen inom molekylen för att utveckla nya läkemedel. / GLIC is a transmembrane proton-gated pentameric ligand-gated ion channel (pLGIC) that is found in the prokaryote Gloeobacter violaceus. GLIC is the prokaryotic homolog to several receptors that are found in the nervous system of many eukaryotic organisms. These receptors are targets for the development of pharmaceutical drugs that interfere with the gating of these channels - such drugs involve anesthetics and stimulants. Understanding the mechanism of a drug’s target is a high priority for the development of a novel medicine. However, eukaryotic pLGICs are complex to analyse, because some of them are heteromeric, have more domains, and because of their post-translational modifications (PTMs). GLIC, on the other hand, has a simpler structure and it is enough to study the structure of only one subunit - since all subunits are identical. Several possible gating mechanisms have been proposed by the scientific community, but the complete gating of GLIC remains unclear. The goal of this project is to implement machine learning (ML) to discover novel gating mechanisms by computational approaches. The starting data was extracted from a previous research where computational tools like unbiased molecular dynamics (MD), elastic network-driven Brownian Dynamics (eBDIMS), and Markov state models (MSMs) were used. From those tools, the protein was simulated in wild-type and in a gain-of-function mutation at two different pH values. Five macrostates were constructed: two open, two closed, and an intermediate. In this project another ML tool was used: KL divergence. This tool was used to score the difference between the distance distributions of one open and one closed macrostate. The starting data was used to create a tensor that stored all residue-residue distances. Each residue pair had its own metadata, which in turn was used to yield the distance distributions of all five pre-build MSMs. Then the average KL scores between two states of interest were calculated and were used to filter out the residue pairs with overlapping distance distributions. To make sure that the residues within a pair can interact with each other, all residue pairs with very high minimum and average distance were filtered out as well. The residue pairs that remained were later evaluated across all five macrostates for further studies. Important novel mechanisms discovered in this project through both the KL divergence and the macrostate distributions involved the M2-M3 loop of one subunit and both the β8-β9 loop/N-terminal β9 strand and the preM1/N-terminal M1 region of the neighboring subunit. The β8-β9 loop (Loop F) showed high KL scores with the β1-β2 and β6-β7 (Pro-loop) loops as well with decreasing distances upon the channel’s opening. Other notable gating mechanisms involved are the pairing of residues from the β1-β2 loop (Loop A) with residues from the strands β1 and β6, as well as the kink of the pore-lining helix. KL divergence proved a valuable tool to filter available data and the novel mechanisms can prove useful both to the academic community that seeks to unravel the complete gating mechanism of GLIC and to the pharmaceutical companies that search for new binding sites within the molecule for new drugs.
|
23 |
Two New Applications of Tensors to Machine Learning for Wireless CommunicationsBhogi, Keerthana 09 September 2021 (has links)
With the increasing number of wireless devices and the phenomenal amount of data that is being generated by them, there is a growing interest in the wireless communications community to complement the traditional model-driven design approaches with data-driven machine learning (ML)-based solutions. However, managing the large-scale multi-dimensional data to maintain the efficiency and scalability of the ML algorithms has obviously been a challenge. Tensors provide a useful framework to represent multi-dimensional data in an integrated manner by preserving relationships in data across different dimensions. This thesis studies two new applications of tensors to ML for wireless communications where the tensor structure of the concerned data is exploited in novel ways.
The first contribution of this thesis is a tensor learning-based low-complexity precoder codebook design technique for a full-dimension multiple-input multiple-output (FD-MIMO) system with a uniform planar antenna (UPA) array at the transmitter (Tx) whose channel distribution is available through a dataset. Represented as a tensor, the FD-MIMO channel is further decomposed using a tensor decomposition technique to obtain an optimal precoder which is a function of Kronecker-Product (KP) of two low-dimensional precoders, each corresponding to the horizontal and vertical dimensions of the FD-MIMO channel. From the design perspective, we have made contributions in deriving a criterion for optimal product precoder codebooks using the obtained low-dimensional precoders. We show that this product codebook design problem is an unsupervised clustering problem on a Cartesian Product Grassmann Manifold (CPM), where the optimal cluster centroids form the desired codebook. We further simplify this clustering problem to a $K$-means algorithm on the low-dimensional factor Grassmann manifolds (GMs) of the CPM which correspond to the horizontal and vertical dimensions of the UPA, thus significantly reducing the complexity of precoder codebook construction when compared to the existing codebook learning techniques.
The second contribution of this thesis is a tensor-based bandwidth-efficient gradient communication technique for federated learning (FL) with convolutional neural networks (CNNs). Concisely, FL is a decentralized ML approach that allows to jointly train an ML model at the server using the data generated by the distributed users coordinated by a server, by sharing only the local gradients with the server and not the raw data. Here, we focus on efficient compression and reconstruction of convolutional gradients at the users and the server, respectively. To reduce the gradient communication overhead, we compress the sparse gradients at the users to obtain their low-dimensional estimates using compressive sensing (CS)-based technique and transmit to the server for joint training of the CNN. We exploit a natural tensor structure offered by the convolutional gradients to demonstrate the correlation of a gradient element with its neighbors. We propose a novel prior for the convolutional gradients that captures the described spatial consistency along with its sparse nature in an appropriate way. We further propose a novel Bayesian reconstruction algorithm based on the Generalized Approximate Message Passing (GAMP) framework that exploits this prior information about the gradients. Through the numerical simulations, we demonstrate that the developed gradient reconstruction method improves the convergence of the CNN model. / Master of Science / The increase in the number of wireless and mobile devices have led to the generation of massive amounts of multi-modal data at the users in various real-world applications including wireless communications. This has led to an increasing interest in machine learning (ML)-based data-driven techniques for communication system design. The native setting of ML is {em centralized} where all the data is available on a single device. However, the distributed nature of the users and their data has also motivated the development of distributed ML techniques. Since the success of ML techniques is grounded in their data-based nature, there is a need to maintain the efficiency and scalability of the algorithms to manage the large-scale data. Tensors are multi-dimensional arrays that provide an integrated way of representing multi-modal data. Tensor algebra and tensor decompositions have enabled the extension of several classical ML techniques to tensors-based ML techniques in various application domains such as computer vision, data-mining, image processing, and wireless communications. Tensors-based ML techniques have shown to improve the performance of the ML models because of their ability to leverage the underlying structural information in the data.
In this thesis, we present two new applications of tensors to ML for wireless applications and show how the tensor structure of the concerned data can be exploited and incorporated in different ways. The first contribution is a tensor learning-based precoder codebook design technique for full-dimension multiple-input multiple-output (FD-MIMO) systems where we develop a scheme for designing low-complexity product precoder codebooks by identifying and leveraging a tensor representation of the FD-MIMO channel. The second contribution is a tensor-based gradient communication scheme for a decentralized ML technique known as federated learning (FL) with convolutional neural networks (CNNs), where we design a novel bandwidth-efficient gradient compression-reconstruction algorithm that leverages a tensor structure of the convolutional gradients. The numerical simulations in both applications demonstrate that exploiting the underlying tensor structure in the data provides significant gains in their respective performance criteria.
|
24 |
ENHANCED MULTIPLE DENSE LAYER EFFICIENTNETAswathy Mohan (18806656) 03 September 2024 (has links)
<p dir="ltr">In the dynamic and ever-evolving landscape of Artificial Intelligence (AI), the domain of deep learning has emerged as a pivotal force, propelling advancements across a broad spectrum of applications, notably in the intricate field of image classification. Image classification, a critical task that involves categorizing images into predefined classes, serves as the backbone for numerous cutting-edge technologies, including but not limited to, automated surveillance, facial recognition systems, and advanced diagnostics in healthcare. Despite the significant strides made in the area, the quest for models that not only excel in accuracy but also demonstrate robust generalization across varied datasets, and maintain resilience against the pitfalls of overfitting, remains a formidable challenge.</p><p dir="ltr">EfficientNetB0, a model celebrated for its optimized balance between computational efficiency and accuracy, stands at the forefront of solutions addressing these challenges. However, the nuanced complexities of datasets such as CIFAR-10, characterized by its diverse array of images spanning ten distinct categories, call for specialized adaptations to harness the full potential of such sophisticated architectures. In response, this thesis introduces an optimized version of the EffciientNetB0 architecture, meticulously enhanced with strategic architectural modifications, including the incorporation of an additional Dense layer endowed with 512 units and the strategic use of Dropout regularization. These adjustments are designed to amplify the model's capacity for learning and interpreting complex patterns inherent in the data.</p><p dir="ltr">Complimenting these architectural refinements, a nuanced two-phase training methodology is also adopted in the proposed model. This approach commences with the initial phase of training where the base model's pre-trained weights are frozen, thus leveraging the power of transfer learning to secure a solid foundational understanding. The subsequent phase of fine-tuning, characterized by the selective unfreezing of layers, meticulously calibrates the model to the intricacies of the CIFAR-10 dataset. This is further bolstered by the implementation of adaptive learning rate adjustments, ensuring the model’s training process is both efficient and responsive to the nuances of the learning curve.</p><p><br></p>
|
25 |
FEDERATED LEARNING AMIDST DYNAMIC ENVIRONMENTSBhargav Ganguly (19119859) 08 November 2024 (has links)
<p dir="ltr">Federated Learning (FL) is a prime example of a large-scale distributed machine learning framework that has emerged as a result of the exponential growth in data generation and processing capabilities on smart devices. This framework enables the efficient processing and analysis of vast amounts of data, leveraging the collective power of numerous devices to achieve unprecedented scalability and performance. In the FL framework, each end-user device trains a local model using its own data. Through the periodic synchronization of local models, FL achieves a global model that incorporates the insights from all participat- ing devices. This global model can then be used for various applications, such as predictive analytics, recommendation systems, and more.</p><p dir="ltr">Despite its potential, traditional Federated Learning (FL) frameworks face significant hur- dles in real-world applications. These challenges stem from two primary issues: the dynamic nature of data distributions and the efficient utilization of network resources in diverse set- tings. Traditional FL frameworks often rely on the assumption that data distributions remain stationary over time. However, real-world environments are inherently dynamic, with data distributions constantly evolving, which in turn becomes a potential source of <i>temporal</i> het- erogeneity in FL. Another significant challenge in traditional FL frameworks is the efficient use of network resources in heterogeneous settings. Real-world networks consist of devices with varying computational capabilities, communication protocols, and network conditions. Traditional FL frameworks often struggle to adapt to these diverse <i>spatially</i> heterogeneous settings, leading to inefficient use of network resources and increased latency.</p><p dir="ltr">The primary focus of this thesis is to investigate algorithmic frameworks that can miti- gate the challenges posed by <i>temporal</i> and <i>spatial</i> system heterogeneities in FL. One of the significant sources of <i>temporal</i> heterogeneities in FL is owed to the dynamic drifting of client datasets over time, whereas <i>spatial</i> heterogeneities majorly broadly subsume the diverse computational capabilities and network conditions of devices in a network. We introduce two novel FL frameworks: MASTER-FL, which addresses model staleness in the presence of <i>temporally</i> drifting datasets, and Cooperative Edge-Assisted Dynamic Federated Learning CE-FL, which manages both <i>spatial</i> and <i>temporal</i> heterogeneities in extensive hierarchical FL networks. MASTER-FL is specifically designed to ensure that the global model remains accurate and up-to-date even in environments which are characterized by rapidly changing datasets across time. CE-FL, on the other hand, leverages server-side computing capabili- ties, intelligent data offloading, floating aggregation and cooperative learning strategies to manage the diverse computational capabilities and network conditions often associated with modern FL systems.</p>
|
26 |
Prediction Models for TV Case Resolution Times with Machine Learning / Förutsägelsemodeller för TV-fall Upplösningstid med maskininlärningJavierre I Moyano, Borja January 2023 (has links)
TV distribution and stream content delivery of video over the Internet, since is made up of complex networks including Content Delivery Networks (CDNs), cables and end-point user devices, that is very prone to issues appearing in different levels of the network ending up affecting the final customer’s TV services. When a problem affects the customer, and this prevents from having a proper TV delivery service in devices used for stream purposes, the issue is reported through a call, a TV case is opened and the company’s customer handling agents start supervising it to solve the problem as soon as possible. The goal of this research work is to present an ML-based solution that predicts the Resolution Times (RTs) of the TV cases in each TV delivery service type, therefore how long the cases will take to be solved. The approach taken to provide meaningful results consisted in utilizing four Machine Learning (ML) algorithms to create 480 models for each of the two scenarios. The results revealed that Random Forest (RF) and, specially, Gradient Boosting Machine (GBM) performed exceptionally well. Surprisingly, hyperparameter tuning didn’t significantly improve the RT as expected. Some challenges included the initial data preprocessing and some uncertainty in hyperparameter tuning approaches. Thanks to these predicted times, the company is now able to better inform their costumers on how long the problem is expected to last until is resolved. This real case scenario also considers how the company processes the available data and manages the problem. The research work consists in, first, a literature review on the prediction of RT of Trouble Ticket (TT) and customer churn in telecommunication companies, as well as the study of the company’s available data for the problem. Later, the research focuses in analysing the provided dataset for the experimentation, the preprocessing of the this data according to the industry standards and, finally, the predictions and analysis of the obtained performance metrics. The proposed solution is designed to offer an improved resolution for the company’s specified task. Future work could involve increasing the number of TV cases per service for improving the results and exploring the link between resolution times and customer churn decisions. / TV-distribution och leverans av strömningsinnehåll via internet består av komplexa nätverk, inklusive CDNs, kablar och slutanvändarutrustning. Detta gör det känsligt för problem på olika nätverksnivåer som kan påverka slutkundens TV-tjänster. När ett problem påverkar kunden och hindrar en korrekt TV-leveranstjänst rapporteras det genom ett samtal. Ett ärende öppnas, och företagets kundhanteringsagenter övervakar det för att lösa problemet så snabbt som möjligt. Målet med detta forskningsarbete är att presentera en maskininlärningsbaserad lösning som förutsäger löstiderna (RTs) för TV-ärenden inom varje TV-leveranstjänsttyp, det vill säga hur lång tid ärendena kommer att ta att lösa. För att få meningsfulla resultat användes fyra maskininlärningsalgoritmer för att skapa 480 modeller för var och en av de två scenarierna. Resultaten visade att Random Forest (RF) och framför allt Gradient Boosting Machine (GBM) presterade exceptionellt bra. Överraskande nog förbättrade inte finjusteringen av hyperparametrar RT som förväntat. Vissa utmaningar inkluderade den initiala dataförbehandlingen och osäkerhet i metoder för hyperparametertuning. Tack vare dessa förutsagda tider kan företaget nu bättre informera sina kunder om hur länge problemet förväntas vara olöst. Denna verkliga fallstudie tar också hänsyn till hur företaget hanterar tillgängliga data och problemet. Forskningsarbetet börjar med en litteraturgenomgång om förutsägelse av RT för Trouble Ticket (TT) och kundavhopp inom telekommunikationsföretag samt studier av företagets tillgängliga data för problemet. Därefter fokuserar forskningen på att analysera den tillhandahållna datamängden för experiment, förbehandling av datan enligt branschstandarder och till sist förutsägelser och analys av de erhållna prestandamätvärdena. Den föreslagna lösningen är utformad för att erbjuda en förbättrad lösning för företagets angivna uppgift. Framtida arbete kan innebära att öka antalet TV-ärenden per tjänst för att förbättra resultaten och utforska sambandet mellan löstider och kundavhoppbeslut.
|
27 |
AI inom radiologi, nuläge och framtid / AI in radiology, now and the futureTäreby, Linus, Bertilsson, William January 2023 (has links)
Denna uppsats presenterar resultaten av en kvalitativ undersökning som syftar till att ge en djupare förståelse för användningen av AI inom radiologi, dess framtida påverkan på yrket och hur det används idag. Genom att genomföra tre intervjuer med personer som arbetar inom radiologi, har datainsamlingen fokuserat på att identifiera de positiva och negativa aspekterna av AI i radiologi, samt dess potentiella konsekvenser på yrket. Resultaten visar på en allmän acceptans för AI inom radiologi och dess förmåga att förbättra diagnostiska processer och effektivisera arbetet. Samtidigt finns det en viss oro för att AI kan ersätta människor och minska behovet av mänskliga bedömningar. Denna uppsats ger en grundläggande förståelse för hur AI används inom radiologi och dess möjliga framtida konsekvenser. / This essay presents the results of a qualitative study aimed at gaining a deeper understanding of the use of artificial intelligence (AI) in radiology, its potential impact on the profession and how it’s used today. By conducting three interviews with individuals working in radiology, data collection focused on identifying the positive and negative aspects of AI in radiology, as well as its potential consequences on the profession. The results show a general acceptance of AI in radiology and its ability to improve diagnostic processes and streamline work. At the same time, there is a certain concern that AI may replace humans and reduce the need for human judgments. This report provides a basic understanding of how AI is used in radiology and its possible future consequences.
|
28 |
Digital transformation: How does physician’s work become affected by the use of digital health technologies?Schultze, Jakob January 2021 (has links)
Digital transformation is evolving, and it is driving at the helm of the digital evolution. The amount of information accessible to us has revolutionized the way we gather information. Mobile technology and the immediate and ubiquitous access to information has changed how we engage with services including healthcare. Digital technology and digital transformation have afforded people the ability to self-manage in different ways than face-to-face and paper-based methods through different technologies. This study focuses on exploring the use of the most commonly used digital health technologies in the healthcare sector and how it affects physicians’ daily routine practice. The study presents findings from a qualitative methodology involving semi-structured, personal interviews with physicians from Sweden and a physician from Spain. The interviews capture what physicians feel towards digital transformation, digital health technologies and how it affects their work. In a field where a lack of information regarding how physicians work is affected by digital health technologies, this study reveals a general aspect of how reality looks for physicians. A new way of conducting medicine and the changed role of the physician is presented along with the societal implications for physicians and the healthcare sector. The findings demonstrate that physicians’ role, work and the digital transformation in healthcare on a societal level are important in shaping the future for the healthcare industry and the role of the physician in this future. / Den digitala transformationen växer och den drivs vid rodret för den digitala utvecklingen. Mängden information som är tillgänglig för oss har revolutionerat hur vi samlar in information. Mobila tekniker och den omedelbara och allmänt förekommande tillgången till information har förändrat hur vi tillhandahåller oss tjänster inklusive inom vården. Digital teknik och digital transformation har gett människor möjlighet att kontrollera sig själv och sin egen hälsa på olika sätt än ansikte mot ansikte och pappersbaserade metoder genom olika tekniker. Denna studie fokuserar på att utforska användningen av de vanligaste digitala hälsoteknologierna inom hälso- och sjukvårdssektorn och hur det påverkar läkarnas dagliga rutin. Studien presenterar resultat från en kvalitativ metod som involverar semistrukturerade, personliga intervjuer med läkare från Sverige och en läkare från Spanien. Intervjuerna fångar vad läkare tycker om digital transformation, digital hälsoteknik och hur det påverkar deras arbete. I ett fält där brist på information om hur läkare arbetar påverkas av digital hälsoteknik avslöjar denna studie en allmän aspekt av hur verkligheten ser ut för läkare. Ett nytt sätt att bedriva medicin och läkarens förändrade roll presenteras tillsammans med de samhälleliga konsekvenserna för läkare och vårdsektorn. Resultaten visar att läkarnas roll, arbete och den digitala transformationen inom hälso- och sjukvården på samhällsnivå är viktiga för att utforma framtiden för vårdindustrin och läkarens roll i framtiden.
|
29 |
Machine Learning Potentials - State of the research and potential applications for carbon nanostructuresRothe, Tom 13 November 2019 (has links)
Machine Learning interatomic potentials (ML-IAP) are currently the most promising Non-empirical IAPs for molecular dynamic (MD) simulations. They use Machine Learning (ML) methods to fit the potential energy surface (PES) with large reference datasets of the atomic configurations and their corresponding properties. Promising near quantum mechanical accuracy while being orders of magnitudes faster than first principle methods, ML-IAPs are the new “hot topic” in material
science research.
Unfortunately, most of the available publications require advanced knowledge about ML methods and IAPs, making them hard to understand for beginners and outsiders. This work serves as a plain introduction, providing all the required knowledge about IAPs, ML, and ML-IAPs from the beginning and giving an overview of the most relevant approaches and concepts for building those
potentials. Exemplary a gaussian approximation potential (GAP) for amorphous carbon is used to simulate the defect induced deformation of carbon nanotubes. Comparing the results with published density-functional tight-binding (DFTB) results and own Empirical IAP MD-simulations shows that publicly available ML-IAP can already be used for simulation, being indeed faster than and
nearly as accurate as first-principle methods.
For the future two main challenges appear: First, the availability of ML-IAPs needs to be improved so that they can be easily used in the established MD codes just as the Empirical IAPs. Second, an accurate characterization of the bonds represented in the reference dataset is needed to assure that a potential is suitable for a special application,
otherwise making it a 'black-box' method.:1 Introduction
2 Molecular Dynamics
2.1 Introduction to Molecular Dynamics
2.2 Interatomic Potentials
2.2.1 Development of PES
3 Machine Learning Methods
3.1 Types of Machine Learning
3.2 Building Machine Learning Models
3.2.1 Preprocessing
3.2.2 Learning
3.2.3 Evaluation
3.2.4 Prediction
4 Machine Learning for Molecular Dynamics Simulation
4.1 Definition
4.2 Machine Learning Potentials
4.2.1 Neural Network Potentials
4.2.2 Gaussian Approximation Potential
4.2.3 Spectral Neighbor Analysis Potential
4.2.4 Moment Tensor Potentials
4.3 Comparison of Machine Learning Potentials
4.4 Machine Learning Concepts
4.4.1 On the fly
4.4.2 De novo Exploration
4.4.3 PES-Learn
5 Simulation of defect induced deformation of CNTs
5.1 Methodology
5.2 Results and Discussion
6 Conclusion and Outlook
6.1 Conclusion
6.2 Outlook
|
30 |
Advanced Data Analytics Modelling for Air Quality AssessmentAbdulkadir, Nafisah Abidemi January 2023 (has links)
Air quality assessment plays a crucial role in understanding the impact of air pollution onhuman health and the environment. With the increasing demand for accurate assessment andprediction of air quality, advanced data analytics modelling techniques offer promisingsolutions. This thesis focuses on leveraging advanced data analytics to assess and analyse airpollution concentration levels in Italy over a 4km resolution using the FORAIR_IT datasetsimulated in ENEA on the CRESCO6 infrastructure, aiming to uncover valuable insights andidentifying the most appropriate AI models for predicting air pollution levels. The datacollection, understanding, and pre-processing procedures are discussed, followed by theapplication of big data training and forecasting using Apache Spark MLlib. The research alsoencompasses different phases, including descriptive and inferential analysis to understand theair pollution concentration dataset, hypothesis testing to examine the relationship betweenvarious pollutants, machine learning prediction using several regression models and anensemble machine learning approach and time series analysis on the entire dataset as well asthree major regions in Italy (Northern Italy – Lombardy, Central Italy – Lazio and SouthernItaly – Campania). The computation time for these regression models are also evaluated and acomparative analysis is done on the results obtained. The evaluation process and theexperimental setup involve the usage of the ENEAGRID/CRESCO6 HPC Infrastructure andApache Spark. This research has provided valuable insights into understanding air pollutionpatterns and improving prediction accuracy. The findings of this study have the potential todrive positive change in environmental management and decision-making processes, ultimatelyleading to healthier and more sustainable communities. As we continue to explore the vastpossibilities offered by advanced data analytics, this research serves as a foundation for futureadvancements in air quality assessment in Italy and the models are transferable to other regionsand provinces in Italy, paving the way for a cleaner and greener future.
|
Page generated in 0.0551 seconds