• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 151
  • 85
  • 1
  • Tagged with
  • 237
  • 237
  • 237
  • 237
  • 42
  • 40
  • 32
  • 32
  • 31
  • 28
  • 28
  • 28
  • 27
  • 27
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

A Framework for Conceptual Characterization of Ontologies and its Application in the Cybersecurity Domain

Franco Martins Souza, Beatriz 17 May 2024 (has links)
[ES] Las ontologías son artefactos computacionales con una amplia gama de aplicaciones. Estos artefactos representan el conocimiento con la mayor precisión posible y brindan a los humanos un marco para representar y aclarar el conocimiento. Además, las ontologías se pueden implementar y procesar agregando semántica a los datos que deben intercambiarse entre sistemas. En los sistemas, los datos transportan información y deben seguir los Principios FAIR para cumplir su propósito. Sin embargo, los dominios del conocimiento pueden ser vastos, complejos y sensibles, lo que hace que la interoperabilidad sea un desafío. Además, el diseño y desarrollo de ontologías no es una tarea sencilla, y debe seguir metodologías y estándares, además de cumplir una serie de requisitos. De hecho, las ontologías se han utilizado para producir FAIRness de datos debido a sus características, aplicaciones y competencias semánticas. Con la creciente necesidad de interoperar datos surgió la necesidad de interoperar ontologías para garantizar la correcta transmisión e intercambio de información. Para satisfacer esta demanda de ontologías interoperativas y, al mismo tiempo, conceptualizar dominios amplios y complejos, surgieron las Redes de Ontologías. Además, las ontologías comenzaron a presentar conceptualizaciones a través de la fragmentación del conocimiento de diferentes maneras, dependiendo de requisitos como el alcance de la ontología, su propósito, si es procesable o para uso humano, su contexto, entre otros aspectos formales, haciendo que la Ingeniería Ontológica sea también un dominio complejo. El problema es que en el Proceso de Ingeniería de Ontologías, las personas responsables toman diferentes perspectivas sobre las conceptualizaciones, provocando que las ontologías tengan sesgos a veces más ontológicos y otras más relacionados con el dominio. Estos problemas dan como resultado ontologías que carecen de fundamento o bien implementaciones de ontologías sin un modelo de referencia previo. Proponemos una (meta)ontología basada en la Ontología Fundacional Unicada (UFO, del inglés, Unified Foundational Ontology) y respaldada por estándares de clasificación ontológica reconocidos, guías y principios FAIR para resolver este problema de falta de consenso en las conceptualizaciones. La Ontología para el Análisis Ontológico (O4OA, del inglés, Ontology for Ontological Analysis) considera perspectivas, conocimientos, características y compromisos, que son necesarios para que la ontología y el dominio faciliten el proceso de Análisis Ontológico, incluyendo el análisis de las ontologías que conforman una red de ontologías. Utilizando O4OA, proponemos el Marco para la Caracterización Ontológica (F4OC, del inglés, Framework for Ontology Characterization) para proporcionar pautas y mejores prácticas a los responsables, a la luz de O4OA. F4OC proporciona un entorno estable y homogéneo para facilitar el análisis ontológico, abordando simultáneamente las perspectivas ontológicas y de dominio de los involucrados. Además, aplicamos O4OA y F4OC a varios estudios de casos en el Dominio de Ciberseguridad, el cual es complejo, extremadamente regulado y sensible, y propenso a dañar a personas y organizaciones. El principal objetivo de esta tesis doctoral es proporcionar un entorno sistemático y reproducible para ingenieros en ontologías y expertos en dominios, responsables de garantizar ontologías desarrolladas de acuerdo con los Principios FAIR. Aspiramos a que O4OA y F4OC sean contribuciones valiosas para la comunidad de modelado conceptual, así como resultados adicionales para la comunidad de ciberseguridad a través del análisis ontológico de nuestros estudios de caso. / [CA] Les ontologies són artefactes computacionals amb una àmplia gamma d'aplicacions. Aquests artefactes representen el coneixement amb la major precisió possible i brinden als humans un marc per a representar i aclarir el coneixement. A més, les ontologies es poden implementar i processar agregant semàntica a les dades que han d'intercanviar-se entre sistemes. En els sistemes, les dades transporten informació i han de seguir els Principis FAIR per a complir el seu propòsit. No obstant això, els dominis del coneixement poden ser vastos, complexos i sensibles, la qual cosa fa que la interoperabilitat siga un desafiament. A més, el disseny i desenvolupament d'ontologies no és una tasca senzilla, i ha de seguir metodologies i estàndards, a més de complir una sèrie de requisits. De fet, les ontologies s'han utilitzat per a produir FAIRness de dades a causa de les seues característiques, aplicacions i competències semàntiques. Amb la creixent necessitat de inter operar dades va sorgir la necessitat de inter operar ontologies per a garantir la correcta transmissió i intercanvi d'informació. Per a satisfer aquesta demanda d'ontologies inter operatives i, al mateix temps, conceptualitzar dominis amplis i complexos, van sorgir Xarxes d'Ontologies. A més, les ontologies van començar a presentar conceptualitzacions a través de la fragmentació del coneixement de diferents maneres, depenent de requisits com l'abast de l'ontologia, el seu propòsit, si és procesable o per a ús humà, el seu context i diversos altres aspectes formals, fent que el Enginyeria Ontològica també és un domini complex. El problema és que en Procés d'Enginyeria d'Ontologies, les persones responsables prenen diferents perspectives sobre les conceptualitzacions, provocant que les ontologies tinguen biaixos a vegades més ontològics i altres més relacionats amb el domini. Aquests problemes donen com a resultat ontologies que manquen de fonament i implementacions d'ontologies sense un model de referència previ. Proposem una (meta)ontologia basada en la Ontologia Fundacional Unificada (UFO, de le inglés, Unified Foundational Ontology) i recolzada per coneguts estàndard de classificació ontològica, guies i principis FAIR per a resoldre aquest problema de falta de consens en les conceptualitzacions. La Ontologia per a l'Anàlisi Ontològica (O4OA, de le inglés, Ontology for Ontological Analysis) considera perspectives, coneixements, característiques i compromisos, que són necessaris perquè l'ontologia i el domini faciliten el procés de Anàlisi Ontològica, incloent-hi l'anàlisi de les ontologies que conformen una xarxa d'ontologies. Utilitzant O4OA, proposem el Marco per a la Caracterització Ontològica (F4OC, de le inglés, Framework for Ontology Characterization) per a proporcionar pautes i millors pràctiques als responsables, a la llum d'O4OA. F4OC proporciona un entorn estable i homogeni per a facilitar l'anàlisi ontològica, abordant simultàniament les perspectives ontològiques i de domini dels involucrades. A més, apliquem O4OA i F4OC a diversos estudis de casos en el Domini de Seguretat Cibernètica, que és complex, extremadament regulat i sensible, i propens a danyar a persones i organitzacions. L'objectiu principal d'aquesta tesi és proporcionar un entorn sistemàtic, reproduïble i escalable per a engineers en ontologies i experts in dominis encarregats de garantir les ontologies desenvolupades d'acord amb els Principis FAIR. Aspirem a fer que O4OA i F4OC aportin valuoses contribucions a la comunitat de modelització conceptual, així com resultats addicionals per a la comunitat de ciberseguretat mitjançant l'anàlisi ontològica dels nostres estudis de cas. / [EN] Ontologies are computational artifacts with a wide range of applications. They represent knowledge as accurately as possible and provide humans with a framework for knowledge representation and clarification. Additionally, ontologies can be implemented and processed by adding semantics to data that needs to be exchanged between systems. In systems, data is the carrier of information and needs to comply with the FAIR Principles to fulfill its purpose. However, knowledge domains can be vast, complex, and sensitive, making interoperability challenging. Moreover, ontology design and development are not easy tasks; they must follow methodologies and standards and comply with a set of requirements. Indeed, ontologies have been used to provide data FAIRness due to their characteristics, applications, and semantic competencies. With the growing need to interoperate data came the need to interoperate ontologies to guarantee the correct transmission and exchange of information. To meet the need to interoperate ontologies and at the same time conceptualize complex and vast domains, Ontology Networks emerged. Moreover, ontologies began to carry out conceptualizations, fragmenting knowledge in different ways depending on requirements, such as the ontology scope, purpose, whether it is processable or for human use, its context, and several other formal aspects, making Ontology Engineering also a complex domain. The problem is that in the Ontology Engineering Process, stakeholders take different perspectives of the conceptualizations, and this causes ontologies to have biases that are sometimes more ontological and sometimes more related to the domain. These problems result in ontologies that lack grounding and ontology implementations without a previous reference model. We propose a (meta)ontology grounded over the Unified Foundational Ontology (UFO) and supported by well-known ontological classification standards, guides, and FAIR Principles to address this problem of lack of consensual conceptualization. The Ontology for Ontological Analysis (O4OA) considers ontological-related and domain-related perspectives, knowledge, characteristics, and commitment that are needed to facilitate the process of Ontological Analysis, including the analysis of ontologies composing an ontology network. Using O4OA we propose the Framework for Ontology Characterization (F4OC) to provide guidelines and best practices in the light of O4OA for stakeholders. The F4OC fosters a stable and uniform environment for ontological analysis, integrating stakeholder perspectives. Moreover, we applied O4OA and F4OC to several case studies in the Cybersecurity Domain, which is intricate, highly regulated, and sensitive to causing harm to people and organizations. The main objective of this doctoral thesis is to provide a systematic and reproducible environment for ontology engineers and domain specialists responsible for ensuring ontologies developed according to the FAIR Principles. We aspire that O4OA and F4OC be valuable contributions to the conceptual modeling community as well as the additional outcomes for the cybersecurity community through the ontological analysis in our case studies. / Franco Martins Souza, B. (2024). A Framework for Conceptual Characterization of Ontologies and its Application in the Cybersecurity Domain [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/204584
162

Enhancing Industrial Process Interaction Using Deep Learning, Semantic Layers, and Augmented Reality

Izquierdo Doménech, Juan Jesús 24 June 2024 (has links)
Tesis por compendio / [ES] La Realidad Aumentada (Augmented Reality, AR) y su capacidad para integrar contenido sintético sobre una imagen real proporciona un valor incalculable en diversos campos; no obstante, la industria es uno de estos campos que más se puede aprovechar de ello. Como tecnología clave en la evolución hacia la Industria 4.0 y 5.0, la AR no solo complementa sino que también potencia la interacción humana con los procesos industriales. En este contexto, la AR se convierte en una herramienta esencial que no sustituye al factor humano, sino que lo enriquece, ampliando sus capacidades y facilitando una colaboración más efectiva entre humanos y tecnología. Esta integración de la AR en entornos industriales no solo mejora la eficiencia y precisión de las tareas, sino que también abre nuevas posibilidades para la expansión del potencial humano. Existen numerosas formas en las que el ser humano interactúa con la tecnología, siendo la AR uno de los paradigmas más innovadores respecto a cómo los usuarios acceden a la información; sin embargo, es crucial reconocer que la AR, por sí misma, tiene limitaciones en cuanto a la interpretación del contenido que visualiza. Aunque en la actualidad podemos acceder a diferentes librerías que utilizan algoritmos para realizar una detección de imágenes, objetos, o incluso entornos, surge una pregunta fundamental: ¿hasta qué punto puede la AR comprender el contexto de lo que ve? Esta cuestión se vuelve especialmente relevante en entornos industriales. ¿Puede la AR discernir si una máquina está funcionando correctamente, o su rol se limita a la presentación de indicadores digitales superpuestos? La respuesta a estas cuestiones subrayan tanto el potencial como los límites de la AR, impulsando la búsqueda de innovaciones que permitan una mayor comprensión contextual y adaptabilidad a situaciones específicas dentro de la industria. En el núcleo de esta tesis yace el objetivo de no solo dotar a la AR de una "inteligencia semántica" capaz de interpretar y adaptarse al contexto, sino también de ampliar y enriquecer las formas en que los usuarios interactúan con esta tecnología. Este enfoque se orienta particularmente a mejorar la accesibilidad y la eficiencia de las aplicaciones de AR en entornos industriales, que son por naturaleza restringidos y complejos. La intención es ir un paso más allá de los límites tradicionales de la AR, proporcionando herramientas más intuitivas y adaptativas para los operadores en dichos entornos. La investigación se despliega a través de tres artículos de investigación, donde se ha desarrollado y evaluado una arquitectura multimodal progresiva. Esta arquitectura integra diversas modalidades de interacción usuario-tecnología, como el control por voz, la manipulación directa y el feedback visual en AR. Además, se incorporan tecnologías avanzadas basadas en modelos de aprendizaje automática (Machine Learning, ML) y aprendizaje profundo (Deep Learning, DL) para extraer y procesar información semántica del entorno. Cada artículo construye sobre el anterior, demostrando una evolución en la capacidad de la AR para interactuar de manera más inteligente y contextual con su entorno, y resaltando la aplicación práctica y los beneficios de estas innovaciones en la industria. / [CA] La Realitat Augmentada (Augmented Reality, AR) i la seua capacitat per integrar contingut sintètic sobre una imatge real ofereix un valor incalculable en diversos camps; no obstant això, la indústria és un d'aquests camps que més pot aprofitar-se'n. Com a tecnologia clau en l'evolució cap a la Indústria 4.0 i 5.0, l'AR no només complementa sinó que també potencia la interacció humana amb els processos industrials. En aquest context, l'AR es converteix en una eina essencial que no substitueix al factor humà, sinó que l'enriqueix, ampliant les seues capacitats i facilitant una col·laboració més efectiva entre humans i tecnologia. Esta integració de l'AR en entorns industrials no solament millora l'eficiència i precisió de les tasques, sinó que també obri noves possibilitats per a l'expansió del potencial humà. Existeixen nombroses formes en què l'ésser humà interactua amb la tecnologia, sent l'AR un dels paradigmes més innovadors respecte a com els usuaris accedeixen a la informació; no obstant això, és crucial reconéixer que l'AR, per si mateixa, té limitacions quant a la interpretació del contingut que visualitza. Encara que en l'actualitat podem accedir a diferents llibreries que utilitzen algoritmes per a realitzar una detecció d'imatges, objectes, o fins i tot entorns, sorgeix una pregunta fonamental: fins a quin punt pot l'AR comprendre el context d'allò veu? Esta qüestió esdevé especialment rellevant en entorns industrials. Pot l'AR discernir si una màquina està funcionant correctament, o el seu rol es limita a la presentació d'indicadors digitals superposats? La resposta a estes qüestions subratllen tant el potencial com els límits de l'AR, impulsant la recerca d'innovacions que permeten una major comprensió contextual i adaptabilitat a situacions específiques dins de la indústria. En el nucli d'esta tesi jau l'objectiu de no solament dotar a l'AR d'una "intel·ligència semàntica" capaç d'interpretar i adaptar-se al context, sinó també d'ampliar i enriquir les formes en què els usuaris interactuen amb esta tecnologia. Aquest enfocament s'orienta particularment a millorar l'accessibilitat i l'eficiència de les aplicacions d'AR en entorns industrials, que són de naturalesa restringida i complexos. La intenció és anar un pas més enllà dels límits tradicionals de l'AR, proporcionant eines més intuïtives i adaptatives per als operaris en els entorns esmentats. La recerca es desplega a través de tres articles d'investigació, on s'ha desenvolupat i avaluat una arquitectura multimodal progressiva. Esta arquitectura integra diverses modalitats d'interacció usuari-tecnologia, com el control per veu, la manipulació directa i el feedback visual en AR. A més, s'incorporen tecnologies avançades basades en models d'aprenentatge automàtic (ML) i aprenentatge profund (DL) per a extreure i processar informació semàntica de l'entorn. Cada article construeix sobre l'anterior, demostrant una evolució en la capacitat de l'AR per a interactuar de manera més intel·ligent i contextual amb el seu entorn, i ressaltant l'aplicació pràctica i els beneficis d'estes innovacions en la indústria. / [EN] Augmented Reality (AR) and its ability to integrate synthetic content over a real image provides invaluable value in various fields; however, the industry is one of these fields that can benefit most from it. As a key technology in the evolution towards Industry 4.0 and 5.0, AR not only complements but also enhances human interaction with industrial processes. In this context, AR becomes an essential tool that does not replace the human factor but enriches it, expanding its capabilities and facilitating more effective collaboration between humans and technology. This integration of AR in industrial environments not only improves the efficiency and precision of tasks but also opens new possibilities for expanding human potential. There are numerous ways in which humans interact with technology, with AR being one of the most innovative paradigms in how users access information; however, it is crucial to recognize that AR, by itself, has limitations in terms of interpreting the content it visualizes. Although today we can access different libraries that use algorithms for image, object, or even environment detection, a fundamental question arises: To what extent can AR understand the context of what it sees? This question becomes especially relevant in industrial environments. Can AR discern if a machine functions correctly, or is its role limited to presenting superimposed digital indicators? The answer to these questions underscores both the potential and the limits of AR, driving the search for innovations that allow for greater contextual understanding and adaptability to specific situations within the industry. At the core of this thesis lies the objective of not only endowing AR with "semantic intelligence" capable of interpreting and adapting to context, but also of expanding and enriching the ways users interact with this technology. This approach mainly aims to improve the accessibility and efficiency of AR applications in industrial environments, which are by nature restricted and complex. The intention is to go beyond the traditional limits of AR, providing more intuitive and adaptive tools for operators in these environments. The research unfolds through three articles, where a progressive multimodal architecture has been developed and evaluated. This architecture integrates various user-technology interaction modalities, such as voice control, direct manipulation, and visual feedback in AR. In addition, advanced technologies based on Machine Learning (ML) and Deep Learning (DL) models are incorporated to extract and process semantic information from the environment. Each article builds upon the previous one, demonstrating an evolution in AR's ability to interact more intelligently and contextually with its environment, and highlighting the practical application and benefits of these innovations in the industry. / Izquierdo Doménech, JJ. (2024). Enhancing Industrial Process Interaction Using Deep Learning, Semantic Layers, and Augmented Reality [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/205523 / Compendio
163

Detección de opinion spam usando PU-learning

Hernández Fusilier, Donato 20 July 2016 (has links)
Tesis por compendio / [EN] Abstract The detection of false or true opinions about a product or service has become nowadays a very important problem. Recent studies show that up to 80% of people have changed their final decision on the basis of opinions checked on the web. Some of these opinions may be false, positive in order to promote a product/service or negative to discredit it. To help solving this problem in this thesis is proposed a new method for detection of false opinions, called PU-Learning*, which increases the precision by an iterative algorithm. It also solves the problem of lack of labeled opinions. To operate the method proposed only a small set of opinions labeled as positive and another large set of opinions unlabeled are needed. From this last set, missing negative opinions are extracted and used to achieve a two classes binary classification. This scenario has become a very common situation in the available corpora. As a second contribution, we propose a representation based on n-grams of characters. This representation has the advantage of capturing both the content and the writing style, allowing for improving the effectiveness of the proposed method for the detection of false opinions. The experimental evaluation of the method was carried out by conducting three experiments classification of opinions, using two different collections. The results obtained in each experiment allow seeing the effectiveness of proposed method as well as differences between the use of several types of attributes. Because the veracity or falsity of the reviews expressed by users becomes a very important parameter in decision making, the method presented here, can be used in any corpus where you have the above characteristics. / [ES] Resumen La detección de opiniones falsas o verdaderas acerca de un producto o servicio, se ha convertido en un problema muy relevante de nuestra 'época. Según estudios recientes hasta el 80% de las personas han cambiado su decisión final basados en las opiniones revisadas en la web. Algunas de estas opiniones pueden ser falsas positivas, con la finalidad de promover un producto, o falsas negativas para desacreditarlo. Para ayudar a resolver este problema se propone en esta tesis un nuevo método para la detección de opiniones falsas, llamado PU-Learning modificado. Este método aumenta la precisión mediante un algoritmo iterativo y resuelve el problema de la falta de opiniones etiquetadas. Para el funcionamiento del método propuesto se utilizan un conjunto pequeño de opiniones etiquetadas como falsas y otro conjunto grande de opiniones no etiquetadas, del cual se extraen las opiniones faltantes y así lograr una clasificación de dos clases. Este tipo de escenario se ha convertido en una situación muy común en los corpus de opiniones disponibles. Como una segunda contribución se propone una representación basada en n-gramas de caracteres. Esta representación tiene la ventaja de capturar tanto elementos de contenido como del estilo de escritura, permitiendo con ello mejorar la efectividad del método propuesto en la detección de opiniones falsas. La evaluación experimental del método se llevó a cabo mediante tres experimentos de clasificación de opiniones utilizando dos colecciones diferentes. Los resultados obtenidos en cada experimento permiten ver la efectividad del método propuesto así como también las diferencias entre la utilización de varios tipos de atributos. Dado que la falsedad o veracidad de las opiniones vertidas por los usuarios, se convierte en un parámetro muy importante en la toma de decisiones, el método que aquí se presenta, puede ser utilizado en cualquier corpus donde se tengan las características mencionadas antes. / [CA] Resum La detecció d'opinions falses o vertaderes al voltant d'un producte o servei s'ha convertit en un problema força rellevant de la nostra època. Segons estudis recents, fins el 80\% de les persones han canviat la seua decisió final en base a les opinions revisades en la web. Algunes d'aquestes opinions poden ser falses positives, amb la finalitat de promoure un producte, o falses negatives per tal de desacreditarlo. Per a ajudar a resoldre aquest problema es proposa en aquesta tesi un nou mètode de detecció d'opinions falses, anomenat PU-Learning*. Aquest mètode augmenta la precisió mitjançant un algoritme iteratiu i resol el problema de la falta d'opinions etiquetades. Per al funcionament del mètode proposat, s'utilitzen un conjunt reduït d'opinions etiquetades com a falses i un altre conjunt gran d'opinions no etiquetades, del qual se n'extrauen les opinions que faltaven i, així, aconseguir una classificació de dues classes. Aquest tipus d'escenari s'ha convertit en una situació molt comuna en els corpus d'opinions de què es disposa. Com una segona contribució es proposa una representació basada en n-gramas de caràcters. Aquesta representació té l'avantatge de capturar tant elements de contingut com a d'estil d'escriptura, permetent amb això millorar l'efectivitat del mètode proposat en la detecció d'opinions falses. L'avaluació experimental del mètode es va dur a terme mitjançant tres experiments de classificació d'opinions utilitzant dues coleccions diferents. Els resultats obtingut en cada experiment permeten veure l'efectivitat del mètode proposat, així com també les diferències entre la utilització de varis tipus d'atributs. Ja que la falsedat o veracitat de les opinions vessades pels usuaris es converteix en un paràmetre molt important en la presa de decisions, el mètode que ací es presenta pot ser utilitzat en qualsevol corpus on es troben les característiques abans esmentades. / Hernández Fusilier, D. (2016). Detección de opinion spam usando PU-learning [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/61990 / Compendio
164

CONTRIBUTIONS TO EFFICIENT AUTOMATIC TRANSCRIPTION OF VIDEO LECTURES

Agua Teba, Miguel Ángel del 04 November 2019 (has links)
Tesis por compendio / [ES] Durante los últimos años, los repositorios multimedia en línea se han convertido en fuentes clave de conocimiento gracias al auge de Internet, especialmente en el área de la educación. Instituciones educativas de todo el mundo han dedicado muchos recursos en la búsqueda de nuevos métodos de enseñanza, tanto para mejorar la asimilación de nuevos conocimientos, como para poder llegar a una audiencia más amplia. Como resultado, hoy en día disponemos de diferentes repositorios con clases grabadas que siven como herramientas complementarias en la enseñanza, o incluso pueden asentar una nueva base en la enseñanza a distancia. Sin embargo, deben cumplir con una serie de requisitos para que la experiencia sea totalmente satisfactoria y es aquí donde la transcripción de los materiales juega un papel fundamental. La transcripción posibilita una búsqueda precisa de los materiales en los que el alumno está interesado, se abre la puerta a la traducción automática, a funciones de recomendación, a la generación de resumenes de las charlas y además, el poder hacer llegar el contenido a personas con discapacidades auditivas. No obstante, la generación de estas transcripciones puede resultar muy costosa. Con todo esto en mente, la presente tesis tiene como objetivo proporcionar nuevas herramientas y técnicas que faciliten la transcripción de estos repositorios. En particular, abordamos el desarrollo de un conjunto de herramientas de reconocimiento de automático del habla, con énfasis en las técnicas de aprendizaje profundo que contribuyen a proporcionar transcripciones precisas en casos de estudio reales. Además, se presentan diferentes participaciones en competiciones internacionales donde se demuestra la competitividad del software comparada con otras soluciones. Por otra parte, en aras de mejorar los sistemas de reconocimiento, se propone una nueva técnica de adaptación de estos sistemas al interlocutor basada en el uso Medidas de Confianza. Esto además motivó el desarrollo de técnicas para la mejora en la estimación de este tipo de medidas por medio de Redes Neuronales Recurrentes. Todas las contribuciones presentadas se han probado en diferentes repositorios educativos. De hecho, el toolkit transLectures-UPV es parte de un conjunto de herramientas que sirve para generar transcripciones de clases en diferentes universidades e instituciones españolas y europeas. / [CA] Durant els últims anys, els repositoris multimèdia en línia s'han convertit en fonts clau de coneixement gràcies a l'expansió d'Internet, especialment en l'àrea de l'educació. Institucions educatives de tot el món han dedicat molts recursos en la recerca de nous mètodes d'ensenyament, tant per millorar l'assimilació de nous coneixements, com per poder arribar a una audiència més àmplia. Com a resultat, avui dia disposem de diferents repositoris amb classes gravades que serveixen com a eines complementàries en l'ensenyament, o fins i tot poden assentar una nova base a l'ensenyament a distància. No obstant això, han de complir amb una sèrie de requisits perquè la experiència siga totalment satisfactòria i és ací on la transcripció dels materials juga un paper fonamental. La transcripció possibilita una recerca precisa dels materials en els quals l'alumne està interessat, s'obri la porta a la traducció automàtica, a funcions de recomanació, a la generació de resums de les xerrades i el poder fer arribar el contingut a persones amb discapacitats auditives. No obstant, la generació d'aquestes transcripcions pot resultar molt costosa. Amb això en ment, la present tesi té com a objectiu proporcionar noves eines i tècniques que faciliten la transcripció d'aquests repositoris. En particular, abordem el desenvolupament d'un conjunt d'eines de reconeixement automàtic de la parla, amb èmfasi en les tècniques d'aprenentatge profund que contribueixen a proporcionar transcripcions precises en casos d'estudi reals. A més, es presenten diferents participacions en competicions internacionals on es demostra la competitivitat del programari comparada amb altres solucions. D'altra banda, per tal de millorar els sistemes de reconeixement, es proposa una nova tècnica d'adaptació d'aquests sistemes a l'interlocutor basada en l'ús de Mesures de Confiança. A més, això va motivar el desenvolupament de tècniques per a la millora en l'estimació d'aquest tipus de mesures per mitjà de Xarxes Neuronals Recurrents. Totes les contribucions presentades s'han provat en diferents repositoris educatius. De fet, el toolkit transLectures-UPV és part d'un conjunt d'eines que serveix per generar transcripcions de classes en diferents universitats i institucions espanyoles i europees. / [EN] During the last years, on-line multimedia repositories have become key knowledge assets thanks to the rise of Internet and especially in the area of education. Educational institutions around the world have devoted big efforts to explore different teaching methods, to improve the transmission of knowledge and to reach a wider audience. As a result, online video lecture repositories are now available and serve as complementary tools that can boost the learning experience to better assimilate new concepts. In order to guarantee the success of these repositories the transcription of each lecture plays a very important role because it constitutes the first step towards the availability of many other features. This transcription allows the searchability of learning materials, enables the translation into another languages, provides recommendation functions, gives the possibility to provide content summaries, guarantees the access to people with hearing disabilities, etc. However, the transcription of these videos is expensive in terms of time and human cost. To this purpose, this thesis aims at providing new tools and techniques that ease the transcription of these repositories. In particular, we address the development of a complete Automatic Speech Recognition Toolkit with an special focus on the Deep Learning techniques that contribute to provide accurate transcriptions in real-world scenarios. This toolkit is tested against many other in different international competitions showing comparable transcription quality. Moreover, a new technique to improve the recognition accuracy has been proposed which makes use of Confidence Measures, and constitutes the spark that motivated the proposal of new Confidence Measures techniques that helped to further improve the transcription quality. To this end, a new speaker-adapted confidence measure approach was proposed for models based on Recurrent Neural Networks. The contributions proposed herein have been tested in real-life scenarios in different educational repositories. In fact, the transLectures-UPV toolkit is part of a set of tools for providing video lecture transcriptions in many different Spanish and European universities and institutions. / Agua Teba, MÁD. (2019). CONTRIBUTIONS TO EFFICIENT AUTOMATIC TRANSCRIPTION OF VIDEO LECTURES [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/130198 / Compendio
165

Interactivity, Adaptation and Multimodality in Neural Sequence-to-sequence Learning

Peris Abril, Álvaro 07 January 2020 (has links)
[ES] El problema conocido como de secuencia a secuencia consiste en transformar una secuencia de entrada en una secuencia de salida. Bajo esta perspectiva se puede atacar una amplia cantidad de problemas, entre los cuales destacan la traducción automática o la descripción automática de objetos multimedia. La aplicación de redes neuronales profundas ha revolucionado esta disciplina, y se han logrado avances notables. Pero los sistemas automáticos todavía producen predicciones que distan mucho de ser perfectas. Para obtener predicciones de gran calidad, los sistemas automáticos se utilizan bajo la supervisión de un humano, quien corrige los errores. Esta tesis se centra principalmente en el problema de la traducción del lenguaje natural, usando modelos enteramente neuronales. Nuestro objetivo es desarrollar sistemas de traducción neuronal más eficientes. asentándonos sobre dos pilares fundamentales: cómo utilizar el sistema de una forma más eficiente y cómo aprovechar datos generados durante la fase de explotación del mismo. En el primer caso, aplicamos el marco teórico conocido como predicción interactiva a la traducción automática neuronal. Este proceso consiste en integrar usuario y sistema en un proceso de corrección cooperativo, con el objetivo de reducir el esfuerzo humano empleado en obtener traducciones de alta calidad. Desarrollamos distintos protocolos de interacción para dicha tecnología, aplicando interacción basada en prefijos y en segmentos, implementados modificando el proceso de búsqueda del sistema. Además, ideamos mecanismos para obtener una interacción con el sistema más precisa, manteniendo la velocidad de generación del mismo. Llevamos a cabo una extensa experimentación, que muestra el potencial de estas técnicas: superamos el estado del arte anterior por un gran margen y observamos que nuestros sistemas reaccionan mejor a las interacciones humanas. A continuación, estudiamos cómo mejorar un sistema neuronal mediante los datos generados como subproducto de este proceso de corrección. Para ello, nos basamos en dos paradigmas del aprendizaje automático: el aprendizaje muestra a muestra y el aprendizaje activo. En el primer caso, el sistema se actualiza inmediatamente después de que el usuario corrige una frase, aprendiendo de una manera continua a partir de correcciones, evitando cometer errores previos y especializándose en un usuario o dominio concretos. Evaluamos estos sistemas en una gran cantidad de situaciones y dominios diferentes, que demuestran el potencial que tienen los sistemas adaptativos. También llevamos a cabo una evaluación humana, con traductores profesionales. Éstos quedaron muy satisfechos con el sistema adaptativo. Además, fueron más eficientes cuando lo usaron, comparados con un sistema estático. El segundo paradigma lo aplicamos en un escenario en el que se deban traducir grandes cantidades de frases, siendo inviable la supervisión de todas. El sistema selecciona aquellas muestras que vale la pena supervisar, traduciendo el resto automáticamente. Aplicando este protocolo, redujimos de aproximadamente un cuarto el esfuerzo humano necesario para llegar a cierta calidad de traducción. Finalmente, atacamos el complejo problema de la descripción de objetos multimedia. Este problema consiste en describir en lenguaje natural un objeto visual, una imagen o un vídeo. Comenzamos con la tarea de descripción de vídeos pertenecientes a un dominio general. A continuación, nos movemos a un caso más específico: la descripción de eventos a partir de imágenes egocéntricas, capturadas a lo largo de un día. Buscamos extraer relaciones entre eventos para generar descripciones más informadas, desarrollando un sistema capaz de analizar un mayor contexto. El modelo con contexto extendido genera descripciones de mayor calidad que un modelo básico. Por último, aplicamos la predicción interactiva a estas tareas multimedia, disminuyendo el esfuerzo necesa / [CA] El problema conegut com a de seqüència a seqüència consisteix en transformar una seqüència d'entrada en una seqüència d'eixida. Seguint aquesta perspectiva, es pot atacar una àmplia quantitat de problemes, entre els quals destaquen la traducció automàtica, el reconeixement automàtic de la parla o la descripció automàtica d'objectes multimèdia. L'aplicació de xarxes neuronals profundes ha revolucionat aquesta disciplina, i s'han aconseguit progressos notables. Però els sistemes automàtics encara produeixen prediccions que disten molt de ser perfectes. Per a obtindre prediccions de gran qualitat, els sistemes automàtics són utilitzats amb la supervisió d'un humà, qui corregeix els errors. Aquesta tesi se centra principalment en el problema de la traducció de llenguatge natural, el qual s'ataca emprant models enterament neuronals. El nostre objectiu principal és desenvolupar sistemes més eficients. Per a aquesta tasca, les nostres contribucions s'assenten sobre dos pilars fonamentals: com utilitzar el sistema d'una manera més eficient i com aprofitar dades generades durant la fase d'explotació d'aquest. En el primer cas, apliquem el marc teòric conegut com a predicció interactiva a la traducció automàtica neuronal. Aquest procés consisteix en integrar usuari i sistema en un procés de correcció cooperatiu, amb l'objectiu de reduir l'esforç humà emprat per obtindre traduccions d'alta qualitat. Desenvolupem diferents protocols d'interacció per a aquesta tecnologia, aplicant interacció basada en prefixos i en segments, implementats modificant el procés de cerca del sistema. A més a més, busquem mecanismes per a obtindre una interacció amb el sistema més precisa, mantenint la velocitat de generació. Duem a terme una extensa experimentació, que mostra el potencial d'aquestes tècniques: superem l'estat de l'art anterior per un gran marge i observem que els nostres sistemes reaccionen millor a les interacciones humanes. A continuació, estudiem com millorar un sistema neuronal mitjançant les dades generades com a subproducte d'aquest procés de correcció. Per a això, ens basem en dos paradigmes de l'aprenentatge automàtic: l'aprenentatge mostra a mostra i l'aprenentatge actiu. En el primer cas, el sistema s'actualitza immediatament després que l'usuari corregeix una frase. Per tant, el sistema aprén d'una manera contínua a partir de correccions, evitant cometre errors previs i especialitzant-se en un usuari o domini concrets. Avaluem aquests sistemes en una gran quantitat de situacions i per a dominis diferents, que demostren el potencial que tenen els sistemes adaptatius. També duem a terme una avaluació amb traductors professionals, qui varen quedar molt satisfets amb el sistema adaptatiu. A més, van ser més eficients quan ho van usar, si ho comparem amb el sistema estàtic. Pel que fa al segon paradigma, l'apliquem per a l'escenari en el qual han de traduir-se grans quantitats de frases, i la supervisió de totes elles és inviable. En aquest cas, el sistema selecciona les mostres que paga la pena supervisar, traduint la resta automàticament. Aplicant aquest protocol, reduírem en aproximadament un quart l'esforç necessari per a arribar a certa qualitat de traducció. Finalment, ataquem el complex problema de la descripció d'objectes multimèdia. Aquest problema consisteix en descriure, en llenguatge natural, un objecte visual, una imatge o un vídeo. Comencem amb la tasca de descripció de vídeos d'un domini general. A continuació, ens movem a un cas més específic: la descripció d''esdeveniments a partir d'imatges egocèntriques, capturades al llarg d'un dia. Busquem extraure relacions entre ells per a generar descripcions més informades, desenvolupant un sistema capaç d'analitzar un major context. El model amb context estés genera descripcions de major qualitat que el model bàsic. Finalment, apliquem la predicció interactiva a aquestes tasques multimèdia, di / [EN] The sequence-to-sequence problem consists in transforming an input sequence into an output sequence. A variety of problems can be posed in these terms, including machine translation, speech recognition or multimedia captioning. In the last years, the application of deep neural networks has revolutionized these fields, achieving impressive advances. However and despite the improvements, the output of the automatic systems is still far to be perfect. For achieving high-quality predictions, fully-automatic systems require to be supervised by a human agent, who corrects the errors. This is a common procedure in the translation industry. This thesis is mainly framed into the machine translation problem, tackled using fully neural systems. Our main objective is to develop more efficient neural machine translation systems, that allow for a more productive usage and deployment of the technology. To this end, we base our contributions on two main cornerstones: how to better use of the system and how to better leverage the data generated along its usage. First, we apply the so-called interactive-predictive framework to neural machine translation. This embeds the human agent and the system into a cooperative correction process, that seeks to reduce the human effort spent for obtaining high-quality translations. We develop different interactive protocols for the neural machine translation technology, namely, a prefix-based and a segment-based protocols. They are implemented by modifying the search space of the model. Moreover, we introduce mechanisms for achieving a fine-grained interaction while maintaining the decoding speed of the system. We carried out a wide experimentation that shows the potential of our contributions. The previous state of the art is overcame by a large margin and the current systems are able to react better to the human interactions. Next, we study how to improve a neural system using the data generated as a byproduct of this correction process. To this end, we rely on two main learning paradigms: online and active learning. Under the first one, the system is updated on the fly, as soon as a sentence is corrected. Hence, the system is continuously learning from the corrections, avoiding previous errors and specializing towards a given user or domain. A large experimentation stressed the adaptive systems under different conditions and domains, demonstrating the capabilities of adaptive systems. Moreover, we also carried out a human evaluation of the system, involving professional users. They were very pleased with the adaptive system, and worked more efficiently using it. The second paradigm, active learning, is devised for the translation of huge amounts of data, that are infeasible to being completely supervised. In this scenario, the system selects samples that are worth to be supervised, and leaves the rest automatically translated. Applying this framework, we obtained reductions of approximately a quarter of the effort required for reaching a desired translation quality. The neural approach also obtained large improvements compared with previous translation technologies. Finally, we address another challenging problem: visual captioning. It consists in generating a description in natural language from a visual object, namely an image or a video. We follow the sequence-to-sequence framework, under a a multimodal perspective. We start by tackling the task of generating captions of videos from a general domain. Next, we move on to a more specific case: describing events from egocentric images, acquired along the day. Since these events are consecutive, we aim to extract inter-eventual relationships, for generating more informed captions. The context-aware model improved the generation quality with respect to a regular one. As final point, we apply the intractive-predictive protocol to these multimodal captioning systems, reducing the effort required for correcting the outputs. / Section 5.4 describes an user evaluation of an adaptive translation system. This was done in collaboration with Miguel Domingo and the company Pangeanic, with funding from the Spanish Center for Technological and Industrial Development (Centro para el Desarrollo Tecnológico Industrial). [...] Most of Chapter 6 is the result of a collaboration with Marc Bolaños, supervised by Prof. Petia Radeva, from Universitat de Barcelona/CVC. This collaboration was supported by the R-MIPRCV network, under grant TIN2014-54728-REDC. / Peris Abril, Á. (2019). Interactivity, Adaptation and Multimodality in Neural Sequence-to-sequence Learning [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/134058
166

Analysis Techniques for Software Maintenance

Pérez Rubio, Sergio 05 May 2023 (has links)
[ES] Vivimos en una sociedad donde la digitalización está presente en nuestro día a día. Nos despertamos con la alarma de nuestro teléfono móvil, apuntamos nuestras reuniones en nuestro calendario digital, guardamos nuestros archivos en el almacenamiento en la nube, y entramos a las redes sociales prácticamente a diario. Cada una de estas acciones se ejecuta sobre un sistema software que asegura su correcto funcionamiento. Esta digitalización masiva ha hecho que el desarrollo de software se dispare en los últimos años. Durante el ciclo de vida de un sistema software, la etapa de mantenimiento supone un gasto de billones de dólares anuales. La razón detrás de este gasto es la aparición de bugs o errores que no fueron detectados durante la fase de producción del software, y que se traducen en un mal funcionamiento del sistema. Por este motivo, las técnicas de detección y localización de errores como el testeo, la verificación o la depuración son un factor clave para asegurar la calidad del software. Aunque son muchas las técnicas que se utilizan para la depuración, testeo y verificación de sistemas software, esta tesis se centra solo en algunas de ellas. En concreto, esta tesis presenta mejoras en la técnica de fragmentación de programas (depuración), una nueva metodología para hacer testeo de regresión (testeo) y una nueva implementación del modelo de verificación de diseño-por-contrato para el lenguaje de programación Erlang (verificación). Las mejoras propuestas para la técnica de fragmentación de programas incluyen diversas propuestas aplicables a diferentes escenarios: (i) mejoras en la representación y fragmentación de programas orientados a objetos, (ii) mejoras en la representación y fragmentación de estructuras de datos complejas (objetos, vectores, listas, tuplas, registros, etc.), (iii) un nuevo modelo de grafo basado en una representación más detallada de programas, aumentando la expresividad del grafo y generando fragmentos de código más precisos como resultado, y (iv) una nueva técnica para calcular fragmentos mínimos de un programa dado un conjunto específico de posibles valores de entrada. Por otro lado, la nueva metodología para hacer testeo de regresión se denomina testeo de punto de interés, e introduce la posibilidad de comparar automáticamente el comportamiento de un punto cualquiera del código dadas dos versiones del mismo sistema software. Por último, la tesis contiene la nueva implementación del modelo de verificación de programas diseño-por-contrato para el lenguaje de programación Erlang, donde se explican en detalle los nuevos tipos de contratos diseñados para las partes secuencial y concurrente de Erlang. Todos los análisis presentados en esta tesis han sido formalmente definidos y su corrección ha sido probada, asegurando de esta manera que los resultados tendrán el grado de fiabilidad necesario para ser aplicados a sistemas reales. Otra contribución de esta tesis es la implementación de dos herramientas de fragmentación de programas para dos lenguajes de programación diferentes (Java y Erlang), una herramienta para realizar testeo de punto de interés para el lenguaje de programación Erlang y un sistema para ejecutar verificación de diseño-por-contrato en Erlang. Es de destacar que todas las herramientas implementadas a lo largo del desarrollo de esta tesis son herramientas de código abierto y públicamente accesibles, de manera que pueden ser usadas o extendidas por cualquier investigador interesado en este area. / [CA] Vivim en una societat on la digitalització està present al nostre dia a dia. Ens alcem amb l'alarma del nostre telèfon mòbil, apuntem les nostres reunions al nostre calendari digital, guardem els nostres arxius al emmagatzematge al núvol, i entrem a las xarxes socials pràcticament a diari. Cadascuna d'aquestes accions s'executa sobre un sistema programari que assegura el seu correcte funcionament. Aquesta digitalizació massiva ha fet que el desenvolupament de programari es dispare en els últims anys. Durant el cicle de vida de un sistema programari, l'etapa de manteniment suposa una despesa de bilions de dòlars anuals. La raó darrere d'aquesta despesa és l'aparició de bugs o errors que no van ser detectats durant la fase de producció del programari, i que es traduïxen en un mal funcionament del sistema Per este motiu, les tècniques de detecció i localització d'errors com el testeig, la verificació o la depuració són un factor clau per a assegurar la qualitat del programari. Encara que són moltes les tècniques utilitzades per a la depuració, testeig i verificació de sistemes programari, esta tesi es centra només en algunes d'elles. En concret, esta tesi presenta millores en la tècnica de fragmentació de programes (depuració), una nova metodologia per a fer testeig de regressió (testeig) i una nova implementació del model de verificació de disseny-per-contracte per al llenguatge de programació Erlang (verificació). Les millores proposades per a la tècnica de fragmentació de programes inclouen diverses propostes aplicables a diferents escenaris: (i) millores en la representació i fragmentació de programes orientats a objectes, (ii) millores en la representació i fragmentació d'estructures de dades complexes (objectes, vectors, llistes, tuples, registres, etc.), (iii) un nou model de graf basat en una representació més detallada de programes, augmentant l'expressivitat del graf i generant fragments de codi més precisos com a resultat, i (iv) una nova tècnica per a calcular fragments mínims d'un programa donat un conjunt específic de possibles valors d'entrada. D'altra banda, la nova metodologia per a fer testeig de regressió es denomina testeig de punt d'interés, i introduïx la possibilitat de comparar automàticament el comportament d'un punt qualsevol del codi donades dos versions del mateix sistema programari. Finalment, la tesi conté la nova implementació del model de verificació de programes disseny-per-contracte per al llenguatge de programació Erlang, on s'expliquen en detall els nous tipus de contractes dissenyats per a les parts seqüencial i concurrent d'Erlang. Totes les anàlisis presentades en aquesta tesi han sigut formalment definides i la seua correcció ha sigut provada, assegurant d'aquesta manera que els resultats tindran el grau de fiabilitat necessari per a ser aplicats a sistemes reals. Una altra contribució d'aquesta tesi és la implementació de dos ferramentes de fragmentació de programes per a dos llenguatges de programació diferents (Java i Erlang), una ferramenta per a realitzar testeig the punt d'interés per al llenguatge de programació Erlang i un sistema per a executar verificació de disseny-per-contracte a Erlang. Cal destacar que totes les ferramentes implementades al llarg del desenvolupament d'aquesta tesi són ferramentes de codi obert i públicament accessibles, de manera que poden ser usades o esteses per qualsevol investigador interessat en el tema. / [EN] We live in a society where digitalisation is present in our everyday life. We wake up with the alarm of our mobile phone, book our meetings in our digital calendar, save all our media in the cloud storage, and spend time in social networks almost daily. Every one of these tasks is run over a software system that ensures its correct functionality. This massive digitalisation has made software development to shoot up in the last years. During the lifetime of software systems, the maintenance process entails a waste of billions of dollars every year. The cause of this waste is the occurrence of bugs or errors undetected during the software production, which result in a malfunction of the system. For this reason, error detection and localisation techniques, such as testing, verification, or debugging, are a key factor to ensure software quality. Although many different techniques are used for the debugging, testing, and verification of software systems, this thesis focus on only some of them. In particular, this thesis presents improvements in the program slicing technique (debugging field), a new approach for regression testing (testing field), and a new implementation of the design-by-contract verification model for the Erlang programming language (verification field). The improvements proposed for the program slicing technique include several enhancements applicable to different scenarios: (i) improvements in the representation and slicing of object-oriented programs, (ii) enhancements in the representation and slicing of (possibly recursive) complex data structures (objects, arrays, lists, tuples, records, etc.), (iii) a new graph model based on a fine-grained representation of programs that augments the expressivity of the graph and provides more accurate slicing results, and (iv) a new technique to compute minimal slices for a program given a set of specific program inputs. On the other side, the new approach for regression testing is called point of interest testing, and it introduces the possibility of automatically comparing the behaviour of any arbitrary point in the code given two versions of the same software system. Finally, the thesis presents a new implementation of the design-by-contract verification model for the Erlang programming language, where new types of contracts are explained in detail for both the sequential and concurrent parts of Erlang. All the analyses presented here have been formally defined and their correctness have been proved, ensuring that the results will have the reliability degree needed for real-life systems. Another contribution of this thesis is the implementation of two program slicers for two different programming languages (Java and Erlang), a tool to perform point of interest testing for the Erlang programming language, and a system to run design-by-contract verification in Erlang. It is worth mentioning that all the tools implemented in this thesis are open source and publicly available, so they can be used or extended by any interested researcher. / Pérez Rubio, S. (2023). Analysis Techniques for Software Maintenance [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/193146
167

Aportaciones al diagnóstico de cáncer asistido por ordenador

Llobet Azpitarte, Rafael 06 May 2008 (has links)
Para diagnosticar un cáncer se realiza, entre otras pruebas, algún test de imagen, como puede ser una radiografía, ecografía o resonancia magnética. Mediante estos tests pueden detectarse zonas con alta sospecha tumoral, cuyo diagnóstico debe confirmase finalmente mediante la realización de una biopsia. Este tipo de imágenes, sin embargo, no son fáciles de interpretar, lo que provoca que el profesional encargado de analizarlas, a pesar de su experiencia, no sea capaz de detectar en ellas un porcentaje importante de tumores (falsos negativos). Una posibilidad para mejorar el diagnóstico y disminuir el número de falsos negativos consiste en utilizar sistemas de diagnóstico asistido por ordenador o computer-aided diagnosis (CAD). Un sistema de CAD analiza la imagen médica y trata de detectar zonas sospechosas de contener alguna anomalía. Estas zonas son marcadas sobre la propia imagen con un doble objetivo: llamar la atención del profesional encargado de analizarla hacia la zona sospechosa y aportar una segunda opinión respecto al diagnóstico. En esta tesis se presentan y evaluan diversas técnicas de visión por computador y reconocimiento de formas orientadas a la detección de tumores en imágenes médicas, con el objetivo de diseñar sistemas de CAD que permitan un mejor diagnóstico. El trabajo se ha centrado en el diagnóstico de cáncer de próstata a partir de imágenes de ecografía, y en el diagnóstico de cáncer de mama a partir de imágenes de radiografía. Se han evaluado diversos métodos de extracción de características basados en la intensidad, frecuencia, texturas o en gradientes. En la etapa de clasificación se ha utilizado un clasificador no paramétrico basado en distancias (k-vecinos más cercanos) y otro paramétrico basado en modelos de Markov. A lo largo del trabajo se evidencian las distintas problemáticas que surgen en este tipode tareas y se proponen soluciones a cada una de ellas. El diagnóstico de cáncer de próstata asistido por ordenador es una tarea extrema / Llobet Azpitarte, R. (2006). Aportaciones al diagnóstico de cáncer asistido por ordenador [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1862
168

Protocolos de pertenencia a grupos para entornos dinámicos

Bañuls Polo, María del Carmen 06 May 2008 (has links)
Los sistemas distribuidos gozan hoy de fundamental importancia entre los sistemas de información, debido a sus potenciales capacidades de tolerancia a fallos y escalabilidad, que permiten su adecuación a las aplicaciones actuales, crecientemente exigentes. Por otra parte, el desarrollo de aplicaciones distribuidas presenta también dificultades específicas, precisamente para poder ofrecer la escalabilidad, tolerancia a fallos y alta disponibilidad que constituyen sus ventajas. Por eso es de gran utilidad contar con componentes distribuidas específicamente diseñadas para proporcionar, a más bajo nivel, un conjunto de servicios bien definidos, sobre los cuales las aplicaciones de más alto nivel puedan construir su propia semántica más fácilmente. Es el caso de los servicios orientados a grupos, de uso muy extendido por las aplicaciones distribuidas, a las que permiten abstraerse de los detalles de las comunicaciones. Tales servicios proporcionan primitivas básicas para la comunicación entre dos miembros del grupo o, sobre todo, las transmisiones de mensajes a todo el grupo, con garantías concretas. Un caso particular de servicio orientado a grupos lo constituyen los servicios de pertenencia a grupos, en los cuales se centra esta tesis. Los servicios de pertenencia a grupos proporcionan a sus usuarios una imagen del conjunto de procesos o máquinas del sistema que permanecen simultáneamente conectados y correctos. Es más, los diversos participantes reciben esta información con garantías concretas de consistencia. Así pues, los servicios de pertenencia constituyen una componente fundamental para el desarrollo de sistemas de comunicación a grupos y otras aplicaciones distribuidas. El problema de pertenencia a grupos ha sido ampliamente tratado en la literatura tanto desde un punto de vista teórico como práctico, y existen múltiples realizaciones de servicios de pertenencia utilizables. A pesar de ello, la definición del problema no es única. Por el contrario, dependien / Bañuls Polo, MDC. (2006). Protocolos de pertenencia a grupos para entornos dinámicos [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1886
169

Una aproximación offline a la evaluación parcial dirigida por narrowing

Ramos Díaz, J. Guadalupe 06 May 2008 (has links)
La evaluación parcial dirigida por narrowing (NPE: Narrowing-driven Partial Evaluation) es una técnica potente para la especialización de sistemas de reescritura, i.e., para el componente de primer orden de muchos lenguajes declarativos (lógico) funcionales como Haskell, Curry o Toy. Los evaluadores parciales se clasifican en dos grandes categorías: online y offline, de acuerdo al momento temporal en que se consideran los aspectos de terminación del proceso de especialización. Los evaluadores parciales online son usualmente más precisos ya que tienen más información disponible. Los evaluadores parciales offline proceden comúnmente en dos etapas; la primera etapa procesa un programa (e.g., para identificar aquellas llamadas a función que se pueden desplegar sin riesgo de no terminación) e incluye anotaciones para guiar las computaciones parciales; entonces, una segunda etapa, la de evaluación parcial propiamente dicha, sólo tiene que obedecer las anotaciones y por tanto el especializador es mucho más rápido que en la aproximación online. En esta tesis se presenta un nuevo esquema de evaluación parcial dirigido por narrowing, más eficiente y que asegura la terminación siguiendo el estilo offline. Para ello, identificamos una caracterización de programas cuasi-terminantes a los que llamamos "no crecientes". En tales programas, las computaciones por narrowing necesario presentan sólo un conjunto finito de términos diferentes (módulo renombramiento de variables). La propiedad de la cuasi-terminación es importante toda vez que su presencia es regularmente una condición suficiente para la terminación del proceso de especialización. Sin embargo, la clase de programas cuasi-terminantes es muy restrictiva, por lo que introducimos un algoritmo que acepta programas inductivamente secuenciales---una clase mucho más amplia sobre la que está definido el narrowing necesario---y anota aquellas partes que violan la caracterización de programas no crecientes. Para procesar de mane / Ramos Díaz, JG. (2007). Una aproximación offline a la evaluación parcial dirigida por narrowing [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1888
170

Sistemas de diálogo basados en modelos estocásticos

Torres Goterris, Francisco 06 May 2008 (has links)
En la presente tesis, titulada Sistemas de diálogo basados en modelos estocásticos , se expone el estado del arte en el área de los sistemas de diálogo y se presenta el trabajo realizado en el diseño e implementación de los módulos de un sistema de diálogo determinado. La tesis se centra en el estudio de la gestión de diálogo desde una aproximación estadística. La tesis aporta el desarrollo de un sistema de diálogo completo (con entrada y salida de texto, en lengua española, y para una tarea de dominio semántico restringido, la definida en el proyecto de investigación BASURDE). Dicho sistema está constituido por los módulos de comprensión del lenguaje natural, de gestión del diálogo y de generación de respuestas en lenguaje natural. Dado el objetivo central de la tesis, el desarrollo del módulo gestor de diálogo ha sido el principal trabajo y, en consecuencia, es expuesto con la máxima amplitud en la presente memoria. El limitado tamaño del corpus de diálogos de la tarea BASURDE ha supuesto una severa dificultad en el desarrollo de un gestor de diálogo basado exclusivamente en modelos estadísticos. El módulo gestor de diálogo finalmente implementado determina su estrategia de diálogo mediante la combinación de varias fuentes de conocimiento: unas de carácter estocástico, los modelos aprendidos a partir del corpus; otras de arácter heurístico, reglas que incorporan conocimiento pragmático y semántico, ya sea genérico o específico de la tarea. Por último, se ha considerado la simulación de los usuarios como una técnica lternativa para fines como la evaluación del comportamiento del sistema de diálogo, la ampliación del corpus mediante diálogos sintéticos, o el aprendizaje dinámico de los modelos estocásticos de diálogo. Se han diseñado e implementado los correspondientes módulos simuladores de usuario, estudiándose las posibilidades de esta técnica.objetivo central de la tesis, el desarrollo del módulo gestor de diálogo ha sido el principal trabajo y, en onsecuencia / Torres Goterris, F. (2006). Sistemas de diálogo basados en modelos estocásticos [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1901

Page generated in 0.1185 seconds