Spelling suggestions: "subject:"eie algebra"" "subject:"iie algebra""
111 |
Quelques structures de Poisson et équations de Lax associées au réseau de Toeplitz et au réseau de Schur / Somes Poisson structures and Lax equations associated with the Toeplitz lattice and the Schur latticeLemarié, Caroline 06 November 2012 (has links)
Le réseau de Toeplitz est un système hamiltonien dont la structure de Poisson est connue. Dans cette thèse, nous donnons l'origine de cette structure de Poisson et nous en déduisons des équations de Lax associées au réseau de Toeplitz. Nous construisons tout d'abord une sous-variété de Poisson Hn de GLn(C), ce dernier étant vu comme un groupe de Lie-Poisson réel ou complexe dont la structure de Poisson provient d'un R-crochet quadratique sur gln(C) pour une R-matrice fixée. L'existence d'hamiltoniens associés au réseau de Toeplitz pour la structure de Poisson sur Hn ainsi que les propriétés du R-crochet quadratique permettent alors d'expliciter des équations de Lax du système. On en déduit alors l'intégrabilité au sens de Liouville du réseau de Toeplitz. Dans le point de vue réel, nous pouvons ensuite construire une sous-variété de Poisson Han du groupe Un qui est lui-même une sous-variété de Poisson-Dirac de GLR n(C). Nous construisons alors un hamiltonien, pour la structure de Poisson induite sur Han, correspondant à un autre système déduit du réseau de Toeplitz : le réseau de Schur modifié. Grâce aux propriétés des sous-variétés de Poisson-Dirac, nous explicitons une équation de Lax pour ce nouveau système et nous en déduisons une équation de Lax pour le réseau de Schur. On en déduit également l'intégrabilité au sens de Liouville du réseau de Schur modifié. / The Toeplitz lattice is a Hamiltonian system whose Poisson structure is known. In this thesis, we reveil the origins of this Poisson structure and we derive from it the associated Lax equations for this lattice. We first construct a Poisson subvariety Hn of GLn(C), which we view as a real or complex Poisson-Lie group whose Poisson structure comes from a quadratic R-bracket on gln(C) for a fixed R-matrix. The existence of Hamiltonians, associated to the Toeplitz lattice for the Poisson structure on Hn, combined with the properties of the quadratic R-bracket allow us to give explicit formulas for the Lax equation. Then, we derive from it the integrability in the sense of Liouville of the Toeplitz lattice. When we view the lattice as being defined over R, we can construct a Poisson subvariety Han of Un which is itself a Poisson-Dirac subvariety of GLR n(C). We then construct a Hamiltonian for the Poisson structure induced on Han, corresponding to another system which derives from the Toeplitz lattice : the modified Schur lattice. Thanks to the properties of Poisson-Dirac subvarieties, we give an explicit Lax equation for the new system and derive from it a Lax equation for the Schur lattice. We also deduce the integrability in the sense of Liouville of the modified Schur lattice.
|
112 |
Valued Graphs and the Representation Theory of Lie AlgebrasLemay, Joel January 2011 (has links)
Quivers (directed graphs) and species (a generalization of quivers) as well as their representations play a key role in many areas of mathematics including combinatorics, geometry, and algebra. Their importance is especially apparent in their applications to the representation theory of associative algebras, Lie algebras, and quantum groups. In this thesis, we discuss the most important results in the representation theory of species, such as Dlab and Ringel’s extension of Gabriel’s theorem, which classifies all species of finite and tame representation type. We also explain the link between species and K-species (where K is a field). Namely, we show that the category of K-species can be viewed as a subcategory of the category of species. Furthermore, we prove two results about the structure of the tensor ring of a species containing no oriented cycles that do not appear in the literature. Specifically, we prove that two such species have isomorphic tensor rings if and only if they are isomorphic as “crushed” species, and we show that if K is a perfect field, then the tensor algebra of a K-species tensored with the algebraic closure of K is isomorphic to, or Morita equivalent to, the path algebra of a quiver.
|
113 |
Rotation à long terme des corps célestes et application à Cérès et Vesta / Long-term rotation of celestial bodies and application to Ceres and VestaVaillant, Timothée 06 July 2018 (has links)
Le sujet de cette thèse est l'étude de la rotation à long terme des corps célestes.La première partie est consacrée à l’étude de la rotation à long terme de Cérès et Vesta, les deux corps les plus massifs de la ceinture principale d’astéroïdes. Ils sont l’objet d’étude de la sonde spatiale Dawn, qui a permis de déterminer précisément les caractéristiques physiques et de rotation nécessaires au calcul de leurs rotations. La distribution de glace sous et à la surface de Cérès dépend du mouvement de son axe de rotation par le biais de l’obliquité, inclinaison de l’équateur sur l’orbite. Les rotations de Cérès et Vesta étant rapides, l’évolution à long terme des axes de rotation de Cérès et Vesta a été obtenue à l'aide d'une intégration symplectique des équations de la rotation, où une moyenne a été réalisée sur la rotation propre rapide. La stabilité des axes de rotation de Cérès et Vesta a été étudiée en fonction des paramètres de la rotation avec un modèle séculaire semi-analytique, qui a permis de montrer que les axes de rotation ne présentaient pas de caractère chaotique.La seconde partie concerne le développement d'intégrateurs symplectiques dédiés au corps solide. L'intégration de la rotation propre d'un corps solide nécessite d’intégrer les équations issues du hamiltonien du corps solide libre. Ce hamiltonien est certes intégrable et présente une solution explicite nécessitant l’usage des fonctions elliptiques de Jacobi, cependant le coût numérique de ces fonctions est élevé. Lorsque le hamiltonien du corps solide libre est couplé avec une énergie potentielle, l’orientation du corps doit être calculée à chaque pas d’intégration, ce qui augmente le temps de calcul. Des intégrateurs symplectiques ont ainsi été précédemment proposés pour le corps solide libre. Dans ce travail, des intégrateurs spécifiques au corps solide ont été développés en utilisant les propriétés de l’algèbre de Lie du moment cinétique. / This thesis concerns the long-term rotation of celestial bodies.The first part is a study of the long-term rotation of Ceres and Vesta, the two heaviest bodies of the main asteroid belt. The spacescraft Dawn studied these two objects and determined the physical and rotational characteristics, which are necessary for the computation of their rotations. The ice distribution under and on the surface of Ceres depends on the evolution of the obliquity, which is the inclination of the equatorial plane on the orbital plane. As the rotations of Ceres and Vesta are fast, the long-term evolution of the spin axes of Ceres and Vesta was obtained by realizing a symplectic integration of the equations of the rotation averaged on the fast proper rotation. The stability of the spin axes of Ceres and Vesta was studied with respect to the parameters of the rotation with a secular and semi-analytical model, which allowed to show that the spin axes are not chaotic.The second part concerns the development of symplectic integrators dedicated to the rigid body. The integration of the proper rotation of a rigid body needs to integrate the equations given by the Hamiltonian of the free rigid body. This Hamiltonian is integrable and presents an explicit solution using the Jacobi elliptic functions. However, the numerical cost of these functions is high. When the Hamiltonian of the free rigid body is coupled to a potential energy, the orientation of the body is needed at each step, which increases the computation time. Symplectic integrators were then previously proposed for the free rigid body. In this work, symplectic integrators dedicated to the rigid body were developed using the properties of the Lie algebra of the angular momentum.
|
114 |
Simulace pohybu neholonomních mechanismů / Simulation of nonholonomic mechanisms’ motionByrtus, Roman January 2019 (has links)
Tato práce se zabývá simulacemi neholonomních mechanismů, konkrétně robotických hadů. V práci jsou uvedeny základní poznatky geometrické teorie řízení. Tyto poznatky jsou využity k odvození řídících modelů robotických systémů a následně jsou tyto modely simulovány v prostředí V-REP.
|
115 |
Geometrické struktury založené na kvaternionech. / Geometric structures based on quaternions.Floderová, Hana January 2010 (has links)
A pair (V, G) is called geometric structure, where V is a vector space and G is a subgroup GL(V), which is a set of transmission matrices. In this thesis we classify structures, which are based on properties of quaternions. Geometric structures based on quaternions are called triple structures. Triple structures are four structures with similar properties as quaternions. Quaternions are generated from real numbers and three complex units. We write quaternions in this shape a+bi+cj+dk.
|
116 |
Tangent and Cotangent Bundles, Automorphism Groups and Representations of Lie GroupsHindeleh, Firas Y. 06 September 2006 (has links)
No description available.
|
117 |
A Framework for Modeling Irreversible Processes Based on the Casimir CompanionBoldt, Frank 23 June 2014 (has links) (PDF)
Thermodynamic processes in finite time are in general irreversible. But there are chances to avoid irreversibility. For instance, there are canonical ensembles of special quantum systems with a given probability distribution describing the likelihood to find the system at time t=0 in a particular state with energy E_i(0), which can be controlled in a specific way, such that the initial probability distribution is recovered at the end of the process (t=T), but the state energies did change, hence E_i(0) is not equal to E_i(T). This allows to change thermodynamic quantities (expectation values) adiabatically, reversibly and in finite time. Such special processes are called Shortcuts to Adiabaticity. The presented thesis analyzes the origin of these shortcuts utilizing special Hamiltonian systems with dynamical algebra. Their main feature is to provide canonical invariance, which means a canonical ensemble stays canonical under Hamiltonian dynamics. This invariance carried by the dynamical algebra will be discussed using Lie group theory. In addition, the persistence of the dynamical algebra with respect to calculating expectation values will be deduced. This allows to benefit from all intrinsic symmetries within the discussion of ensemble trajectories. In consequence, these trajectories will evolve under Hamiltonian dynamics on a specific manifold given by the so-called Casimir companion. In addition, the deformation of this manifold due to non-Hamiltonian (dissipative) dynamics will be discussed, which allows to present a framework for modeling irreversible processes based on Hamiltonian systems with dynamical algebra. An application of this framework based on the parametric harmonic oscillator will be presented by determining time-optimal controls for transitions between two equilibrium as well as between non-equilibrium and equilibrium states. The latter one will lead to time-optimal equilibration strategies for a statistical ensemble of parametric harmonic oscillators. / Thermodynamische Prozesse in endlicher Zeit sind im Allgemeinen irreversibel. Es gibt jedoch Möglichkeiten, diese Irreversibilität zu umgehen. Ein kanonisches Ensemble eines speziellen quantenmechanischen Systems kann zum Beispiel auf eine ganz spezielle Art und Weise gesteuert werden, sodass nach endlicher Zeit T wieder eine kanonische Besetzungverteilung hergestellt ist, sich aber dennoch die Energie des Systems geändert hat (E(0) ungleich E(T)). Solche Prozesse erlauben das Ändern thermodynamischer Größen (Ensemblemittelwerte) der erwähnten speziellen Systeme in endlicher Zeit und auf eine adiabatische und reversible Art. Man nennt diese Art von speziellen Prozessen Shortcuts to Adiabaticity und die speziellen Systeme hamiltonsche Systeme mit dynamischer Algebra. Die vorliegende Dissertation hat zum Ziel den Ursprung dieser Shortcuts to Adiabaticity zu analysieren und eine Methodik zu entwickeln, die es erlaubt irreversible thermodynamische Prozesse adequat mittels dieser speziellen Systeme zu modellieren. Dazu wird deren besondere Eigenschaft ausgenutzt, die kanonische Invarianz, d.h. ein kanonisches Ensemble bleibt kanonisch bezüglich hamiltonscher Dynamik. Der Ursprung dieser Invarianz liegt in der dynamischen Algebra, die mit Hilfe der Theorie der Lie-Gruppen näher betrachtet wird. Dies erlaubt, eine weitere besondere Eigenschaft abzuleiten: Die Ensemblemittelwerte unterliegen ebenfalls den Symmetrien, die die dynamische Algebra widerspiegelt. Bei näherer Betrachtung befinden sich alle Trajektorien der Ensemblemittelwerte auf einer Mannigfaltigkeit, die durch den sogenannten Casimir Companion beschrieben wird. Darüber hinaus wird nicht-hamiltonsche/dissipative Dynamik betrachtet, welche zu einer Deformation der Mannigfaltigkeit führt. Abschließend wird eine Zusammenfassung der grundlegenden Methodik zur Modellierung irreversibler Prozesse mittels hamiltonscher Systeme mit dynamischer Algebra gegeben. Zum besseren Verständnis wird ein ausführliches Anwendungsbeispiel dieser Methodik präsentiert, in dem die zeitoptimale Steuerung eines Ensembles des harmonischen Oszillators zwischen zwei Gleichgewichtszuständen sowie zwischen Gleichgewichts- und Nichtgleichgewichtszuständen abgeleitet wird.
|
118 |
Oktaven und Reduktionstheorie / Octonions and reduction theoryRoeseler, Karsten 07 February 2011 (has links)
No description available.
|
119 |
A new invariant of quadratic lie algebras and quadratic lie superalgebrasDuong, Minh-Thanh 06 July 2011 (has links) (PDF)
In this thesis, we defind a new invariant of quadratic Lie algebras and quadratic Lie superalgebras and give a complete study and classification of singular quadratic Lie algebras and singular quadratic Lie superalgebras, i.e. those for which the invariant does not vanish. The classification is related to adjoint orbits of Lie algebras o(m) and sp(2n). Also, we give an isomorphic characterization of 2-step nilpotent quadratic Lie algebras and quasi-singular quadratic Lie superalgebras for the purpose of completeness. We study pseudo-Euclidean Jordan algebras obtained as double extensions of a quadratic vector space by a one-dimensional algebra and 2-step nilpotent pseudo-Euclidean Jordan algebras, in the same manner as it was done for singular quadratic Lie algebras and 2-step nilpotent quadratic Lie algebras. Finally, we focus on the case of a symmetric Novikov algebra and study it up to dimension 7.
|
120 |
A new invariant of quadratic lie algebras and quadratic lie superalgebras / Un nouvel invariant des algèbres de Lie et des super-algèbres de Lie quadratiquesDuong, Minh thanh 06 July 2011 (has links)
Dans cette thèse, nous définissons un nouvel invariant des algèbres de Lie quadratiques et des superalgèbres de Lie quadratiques et donnons une étude et classification complète des algèbres de Lie quadratiques singulières et des superalgèbres de Lie quadratiques singulières, i.e. celles pour lesquelles l’invariant n’est pas nul. La classification est en relation avec les orbites adjointes des algèbres de Lie o(m) et sp(2n). Aussi, nous donnons une caractérisation isomorphe des algèbres de Lie quadratiques 2-nilpotentes et des superalgèbres de Lie quadratiques quasi-singulières pour le but d’exhaustivité. Nous étudions les algèbres de Jordan pseudoeuclidiennes qui sont obtenues des extensions doubles d’un espace vectoriel quadratique par une algèbre d’une dimension et les algèbres de Jordan pseudo-euclidienne 2-nilpotentes, de la même manière que cela a été fait pour les algèbres de Lie quadratiques singulières et des algèbres de Lie quadratiques 2-nilpotentes. Enfin, nous nous concentrons sur le cas d’une algèbre de Novikov symétrique et l’étudions à dimension 7. / In this thesis, we defind a new invariant of quadratic Lie algebras and quadratic Lie superalgebras and give a complete study and classification of singular quadratic Lie algebras and singular quadratic Lie superalgebras, i.e. those for which the invariant does not vanish. The classification is related to adjoint orbits of Lie algebras o(m) and sp(2n). Also, we give an isomorphic characterization of 2-step nilpotent quadratic Lie algebras and quasi-singular quadratic Lie superalgebras for the purpose of completeness. We study pseudo-Euclidean Jordan algebras obtained as double extensions of a quadratic vector space by a one-dimensional algebra and 2-step nilpotent pseudo-Euclidean Jordan algebras, in the same manner as it was done for singular quadratic Lie algebras and 2-step nilpotent quadratic Lie algebras. Finally, we focus on the case of a symmetric Novikov algebra and study it up to dimension 7.
|
Page generated in 0.0521 seconds