• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 47
  • 47
  • 38
  • 29
  • 13
  • 13
  • 12
  • 12
  • 10
  • 10
  • 8
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Financial time series analysis with competitive neural networks

Roussakov, Maxime 08 1900 (has links)
No description available.
42

Essais en Microstructure des Marchés Financiers / Essays in Financial Market Microstructure

Dugast, Jérôme 19 July 2013 (has links)
Cette thèse est composée de trois chapitres distincts.Dans le premier chapitre, je montre que les mesures de liquidités traditionnelles, telles que la profondeur du marché, ne sont pas toujours pertinentes pour mesurer le bien-être des investisseurs. Je construis un modèle de marché conduit par les ordres et montre qu'une offre de liquidité élevée peut correspondre à de mauvaises conditions d'éxécution pour les fournisseurs de liquidité et à un bien-être relativement faible.Dans le deuxième chapitre, je modélise la vitesse des ajustements de prix à l'arrivée de nouvelles dans les marchés conduits pas les ordres, lorsque les investisseurs ont une capacité d'attention limitée.En raison de leur attention limitée, les investisseurs suivent imparfaitement l'arrivée de nouvelles. Ainsi, les prix s'ajustent aux nouvelles après un certain délai. Ce délai diminue lorsque le niveau d'attention des investisseurs augmente.Le délai d'ajustement des prix diminue également lorsque la fréquence à laquelle les nouvelles arrivent, augmente. Le troisième chapitre présente un travail écrit en collaboration avec Thierry Foucault. Nous construisons un modèle pour expliquer en quoi le trading à haute fréquence peut générer des "mini flash crashes" (un brusque changement de prix suivi d'un retour très rapide au niveau antérieur). Notre théorie est basée sur l'idée qu'il existe une tension entre la vitesse à laquelle l'information peut être acquise et la précision de cette information. Lorsque les traders à haute fréquence mettent en oeuvre des stratégies impliquant des réactions rapides à des événements de marché, ils augmentent leur risque à réagir à du bruit et génèrent ainsi des "mini flash crashes". Néanmoins, ils augmentent l'efficience informationnelle du marché. / This dissertation is made of three distinct chapters. In the first chapter, I show that traditional liquidity measures, such as market depth, are not always relevant to measure investors' welfare. I build a limit order market model and show that a high level of liquidity supply can correspond to poor execution conditions for liquidity providers and to a relatively low welfare.In the second chapter, I model the speed of price adjustments to news arrival in limit order markets when investors have limited attention.Because of limited attention, investors imperfectly monitor news arrival. Consequently prices reflect news with delay. This delay shrinks when investors' attention capacity increases. The price adjustment delay also decreases when the frequency of new arrival increases. The third chapter presents a joint work with Thierry Foucault. We build a model to explain why high frequency trading can generate mini-flash crashes (a sudden sharp change in the price of a stock followed by a very quick rversal). Our theory is based on the idea that there is a trade-off between speed and precision in the acquisition of information. When high frequency traders implement strategies involving fast reaction to market events, they increase their risk to trade on noise and thus generate mini flash crashes. Nonetheless they increase market efficiency.
43

Modélisation du carnet d’ordres, Applications Market Making / Limit order book modelling, Market Making Applications

Lu, Xiaofei 04 October 2018 (has links)
Cette thèse aborde différents aspects de la modélisation de la microstructure du marché et des problèmes de Market Making, avec un accent particulier du point de vue du praticien. Le carnet d’ordres, au cœur du marché financier, est un système de files d’attente complexe à haute dimension. Nous souhaitons améliorer la connaissance du LOB pour la communauté de la recherche, proposer de nouvelles idées de modélisation et développer des applications pour les Market Makers. Nous remercions en particuler l’équipe Automated Market Making d’avoir fourni la base de données haute-fréquence de très bonne qualité et une grille de calculs puissante, sans laquelle ces recherches n’auraient pas été possible. Le Chapitre 1 présente la motivation de cette recherche et reprend les principaux résultats des différents travaux. Le Chapitre 2 se concentre entièrement sur le LOB et vise à proposer un nouveau modèle qui reproduit mieux certains faits stylisés. A travers cette recherche, non seulement nous confirmons l’influence des flux d’ordres historiques sur l’arrivée de nouveaux, mais un nouveau modèle est également fourni qui réplique beaucoup mieux la dynamique du LOB, notamment la volatilité réalisée en haute et basse fréquence. Dans le Chapitre 3, l’objectif est d’étudier les stratégies de Market Making dans un contexte plus réaliste. Cette recherche contribueà deux aspects : d’une part le nouveau modèle proposé est plus réaliste mais reste simple à appliquer pour la conception de stratégies, d’autre part la stratégie pratique de Market Making est beaucoup améliorée par rapport à une stratégie naive et est prometteuse pour l’application pratique. La prédiction à haute fréquence avec la méthode d’apprentissage profond est étudiée dans le Chapitre 4. De nombreux résultats de la prédiction en 1- étape et en plusieurs étapes ont retrouvé la non-linéarité, stationarité et universalité de la relation entre les indicateurs microstructure et le changement du prix, ainsi que la limitation de cette approche en pratique. / This thesis addresses different aspects around the market microstructure modelling and market making problems, with a special accent from the practitioner’s viewpoint. The limit order book (LOB), at the heart of financial market, is a complex continuous high-dimensional queueing system. We wish to improve the knowledge of LOB for the research community, propose new modelling ideas and develop concrete applications to the interest of Market Makers. We would like to specifically thank the Automated Market Making team for providing a large high frequency database of very high quality as well as a powerful computational grid, without whom these researches would not have been possible. The first chapter introduces the incentive of this research and resumes the main results of the different works. Chapter 2 fully focuses on the LOB and aims to propose a new model that better reproduces some stylized facts. Through this research, not only do we confirm the influence of historical order flows to the arrival of new ones, but a new model is also provided that captures much better the LOB dynamic, notably the realized volatility in high and low frequency. In chapter 3, the objective is to study Market Making strategies in a more realistic context. This research contributes in two aspects : from one hand the newly proposed model is more realistic but still simple enough to be applied for strategy design, on the other hand the practical Market Making strategy is of large improvement compared to the naive one and is promising for practical use. High-frequency prediction with deep learning method is studied in chapter 4. Many results of the 1-step and multi-step prediction have found the non-linearity, stationarity and universality of the relationship between microstructural indicators and price change, as well as the limitation of this approach in practice.
44

Simulating market maker behaviour using Deep Reinforcement Learning to understand market microstructure / En simulering av aktiemarknadens mikrostruktur via självlärande finansiella agenter

Marcus, Elwin January 2018 (has links)
Market microstructure studies the process of exchanging assets underexplicit trading rules. With algorithmic trading and high-frequencytrading, modern financial markets have seen profound changes in marketmicrostructure in the last 5 to 10 years. As a result, previously establishedmethods in the field of market microstructure becomes oftenfaulty or insufficient. Machine learning and, in particular, reinforcementlearning has become more ubiquitous in both finance and otherfields today with applications in trading and optimal execution. This thesisuses reinforcement learning to understand market microstructureby simulating a stock market based on NASDAQ Nordics and trainingmarket maker agents on this stock market. Simulations are run on both a dealer market and a limit orderbook marketdifferentiating it from previous studies. Using DQN and PPO algorithmson these simulated environments, where stochastic optimal controltheory has been mainly used before. The market maker agents successfullyreproduce stylized facts in historical trade data from each simulation,such as mean reverting prices and absence of linear autocorrelationsin price changes as well as beating random policies employed on thesemarkets with a positive profit & loss of maximum 200%. Other tradingdynamics in real-world markets have also been exhibited via theagents interactions, mainly: bid-ask spread clustering, optimal inventorymanagement, declining spreads and independence of inventory and spreads, indicating that using reinforcement learning with PPO and DQN arerelevant choices when modelling market microstructure. / Marknadens mikrostruktur studerar hur utbytet av finansiella tillgångar sker enligt explicita regler. Algoritmisk och högfrekvenshandel har förändrat moderna finansmarknaders strukturer under de senaste 5 till 10 åren. Detta har även påverkat pålitligheten hos tidigare använda metoder från exempelvis ekonometri för att studera marknadens mikrostruktur. Maskininlärning och Reinforcement Learning har blivit mer populära, med många olika användningsområden både inom finans och andra fält. Inom finansfältet har dessa typer av metoder använts främst inom handel och optimal exekvering av ordrar. I denna uppsats kombineras både Reinforcement Learning och marknadens mikrostruktur, för att simulera en aktiemarknad baserad på NASDAQ i Norden. Där tränas market maker - agenter via Reinforcement Learning med målet att förstå marknadens mikrostruktur som uppstår via agenternas interaktioner. I denna uppsats utvärderas och testas agenterna på en dealer – marknad tillsammans med en limit - orderbok. Vilket särskiljer denna studie tillsammans med de två algoritmerna DQN och PPO från tidigare studier. Främst har stokastisk optimering använts för liknande problem i tidigare studier. Agenterna lyckas framgångsrikt med att återskapa egenskaper hos finansiella tidsserier som återgång till medelvärdet och avsaknad av linjär autokorrelation. Agenterna lyckas också med att vinna över slumpmässiga strategier, med maximal vinst på 200%. Slutgiltigen lyckas även agenterna med att visa annan handelsdynamik som förväntas ske på en verklig marknad. Huvudsakligen: kluster av spreads, optimal hantering av aktielager och en minskning av spreads under simuleringarna. Detta visar att Reinforcement Learning med PPO eller DQN är relevanta val vid modellering av marknadens mikrostruktur.
45

Econometric Measures of Financial Risk in High Dimensions

Chen, Shi 09 January 2018 (has links)
Das moderne Finanzsystem ist komplex, dynamisch, hochdimensional und oftmals nicht stationär. All diese Faktoren stellen große Herausforderungen beim Messen des zugrundeliegenden Finanzrisikos dar, das speziell für Marktteilnehmer von oberster Priorität ist. Hochdimensionalität, die aus der ansteigenden Vielfalt an Finanzprodukten entsteht, ist ein wichtiges Thema für Ökonometriker. Ein Standardansatz, um mit hoher Dimensionalität umzugehen, ist es, Schlüsselvariablen auszuwählen und kleine Koeffizientenen auf null zu setzen, wie etwa Lasso. In der Finanzmarktanalyse kann eine solche geringe Annahme helfen, die führenden Risikofaktoren aus dem extrem großen Portfolio, das letztendlich das robuste Maß für finanzielles Risiko darstellt, hervorzuheben. In dieser Arbeit nutzen wir penalisierte Verfahren, um die ökonometrischen Maße für das finanzielle Risiko in hoher Dimension zu schätzen, sowohl mit nieder-, als auch hochfrequenten Daten. Mit Fokus auf dem Finanzmarkt, können wir das Risikonetzwerk des ganzen Systems konstruieren, das die Identifizierung individualspezifischen Risikos erlaubt. / Modern financial system is complex, dynamic, high-dimensional and often possibly non-stationary. All these factors pose great challenges in measuring the underlying financial risk, which is of top priority especially for market participants. High-dimensionality, which arises from the increasing variety of the financial products, is an important issue among econometricians. A standard approach dealing with high dimensionality is to select key variables and set small coefficient to zero, such as lasso. In financial market analysis, such sparsity assumption can help highlight the leading risk factors from the extremely large portfolio, which constitutes the robust measure for financial risk in the end. In this paper we use penalized techniques to estimate the econometric measures of financial risk in high dimensional, with both low-frequency and high-frequency data. With focus on financial market, we could construct the risk network of the whole system which allows for identification of individual-specific risk.
46

Reinforcement Learning for Market Making / Förstärkningsinlärningsbaserad likviditetsgarantering

Carlsson, Simon, Regnell, August January 2022 (has links)
Market making – the process of simultaneously and continuously providing buy and sell prices in a financial asset – is rather complicated to optimize. Applying reinforcement learning (RL) to infer optimal market making strategies is a relatively uncharted and novel research area. Most published articles in the field are notably opaque concerning most aspects, including precise methods, parameters, and results. This thesis attempts to explore and shed some light on the techniques, problem formulations, algorithms, and hyperparameters used to construct RL-derived strategies for market making. First, a simple probabilistic model of a limit order book is used to compare analytical and RL-derived strategies. Second, a market making agent is trained on a more complex Markov chain model of a limit order book using tabular Q-learning and deep reinforcement learning with double deep Q-learning. Results and strategies are analyzed, compared, and discussed. Finally, we propose some exciting extensions and directions for future work in this research field. / Likviditetsgarantering (eng. ”market making”) – processen att simultant och kontinuerligt kvotera köp- och säljpriser i en finansiell tillgång – är förhållandevis komplicerat att optimera. Att använda förstärkningsinlärning (eng. ”reinforcement learning”) för att härleda optimala strategier för likviditetsgarantering är ett relativt outrett och nytt forskningsområde. De flesta publicerade artiklarna inom området är anmärkningsvärt återhållsamma gällande detaljer om de tekniker, problemformuleringar, algoritmer och hyperparametrar som används för att framställa förstärkningsinlärningsbaserade strategier. I detta examensarbete så gör vi ett försök på att utforska och bringa klarhet över dessa punkter. Först används en rudimentär probabilistisk modell av en limitorderbok som underlag för att jämföra analytiska och förstärkningsinlärda strategier. Därefter brukas en mer sofistikerad Markovkedjemodell av en limitorderbok för att jämföra tabulära och djupa inlärningsmetoder. Till sist presenteras även spännande utökningar och direktiv för framtida arbeten inom området.
47

Stochastic Modeling of Intraday Electricity Markets

Milbradt, Cassandra 29 November 2023 (has links)
Limit-Orderbücher sind das Standardinstrument der Preisbildung in modernen Finanzmärkten. Während Strom traditionell in Auktionen gehandelt wird, gibt es Intraday Strommärkte wie beispielsweise den SIDC-Markt, in welchem Käufer und Verkäufer über Limit-Orderbücher zusammentreffen. In dieser Arbeit werden wir stochastische Modelle von Limit-Orderbüchern auf der Grundlage der zugrundeliegenden Marktmikrostruktur entwickeln. Einen besonderen Schwerpunkt legen wir dabei auf die Berücksichtigung besonderer Merkmale der Intraday-Strommärkte, die sich zum Teil deutlich von denen der Finanzmärkte unterscheiden. Die in dieser Arbeit entwickelten Modelle beginnen mit einer realistischen und mikroskopischen Beschreibung der Marktdynamik. Große Preisänderungen über kurze Zeiträume werden ebenso berücksichtigt wie begrenzte grenzüberschreitende Aktivitäten. Diese mikroskopischen Modelle sind im Allgemeinen zu rechenintensiv für praktische Anwendungen. Das Hauptziel dieser Arbeit ist es daher, geeignete Approximationen dieser mikroskopischen Modelle durch sogenannte Skalierungsgrenzprozesse herzuleiten. Zu diesem Zweck werden sorgfältig Skalierungsannahmen formuliert und in die mikroskopischen Modelle eingebaut. Diese Annahmen ermöglichen es uns, ihr Hochfrequenzverhalten zu untersuchen, vorausgesetzt, dass die Größe eines einzelnen Auftrags gegen Null konvergiert, während die Auftragseingangsrate gegen unendlich tendiert. Die Kalibrierung mathematischer Modelle ist aus Anwendersicht eines der Hauptanliegen. Dabei ist bekannt, dass Änderungspunkte (abrupte Schwankungen) in hochfrequenten Finanzdaten vorhanden sind. Falls sie durch endogene Effekte verursacht wurden, muss bei der Schätzung solcher Änderungspunkte die Abhängigkeit von den zugrundeliegenden Daten berücksichtigt werden. Daher erweitern wir im letzten Teil dieser Arbeit die bestehende Literatur zur Erkennung von Änderungspunkten, so dass auch zufällige, von den Daten abhängige Änderungspunkte gehandhabt werden können. / Limit order books are the standard instrument for price formation in modern financial markets. While electricity has traditionally been traded through auctions, there are intraday electricity markets, such as the SIDC market, in which buyers and sellers meet via limit order books. In this thesis, stochastic models of limit order books are developed based on the underlying market microstructure. A particular focus is set on incorporating unique characteristics of intraday electricity markets, some of which are quite different from those of financial markets. The developed models in this thesis start with a realistic and microscopic description of the market dynamics. Large price changes over short time periods are considered, as well as limited cross-border activities. These microscopic models are generally computationally too intensive for practical applications. The main goal of this thesis is therefore to derive suitable approximations of these microscopic models by so-called scaling limits. For this purpose, appropriate scaling assumptions are carefully formulated and incorporated into the microscopic models which allow us to study their high-frequency behavior when the size of an individual order converges to zero while the order arrival rate tends to infinity. Calibration of mathematical models is one of the main concerns from a practitioner’s point of view. It is well known that change points (abrupt variations) are present in high-frequency financial data. If they are caused by endogenous effects, the dependence on the underlying data must be considered when estimating such change points. In the final part of this thesis, we extend the existing literature on change point detection so that random change points depending on the data can also be handled.

Page generated in 0.0686 seconds