Spelling suggestions: "subject:"limit theorem"" "subject:"timit theorem""
81 |
Distribution asymptotique du nombre de diviseurs premiers distincts inférieurs ou égaux à mPersechino, Roberto 05 1900 (has links)
Le sujet principal de ce mémoire est l'étude de la distribution asymptotique de la fonction f_m qui compte le nombre de diviseurs premiers distincts parmi les nombres premiers $p_1,...,p_m$.
Au premier chapitre, nous présentons les sept résultats qui seront démontrés au chapitre 4.
Parmi ceux-ci figurent l'analogue du théorème d'Erdos-Kac et un résultat sur les grandes déviations.
Au second chapitre, nous définissons les espaces de probabilités qui serviront à calculer les probabilités asymptotiques des événements considérés, et éventuellement à calculer les densités qui leur correspondent.
Le troisième chapitre est la partie centrale du mémoire. On y définit la promenade aléatoire qui,
une fois normalisée, convergera vers le mouvement brownien. De là, découleront les résultats qui
formeront la base des démonstrations de ceux chapitre 1. / The main topic of this masters thesis is the study of the asymptotic distribution of the fonction
f_m which counts the number of distinct prime divisors among the first $m$ prime numbers, i.e. $p_1,...,p_m$.
The first chapter provides the seven main results which will later on be proved in chapter 4.
Among these we find the analogue of the Erdos-Kac central limit theorem and a result on large deviations.
In the following chapter, we define several probability spaces on which we will calculate asymptotic probabilities of specific events. These will become necessary for calculating their corresponding densities.
The third chapter is the main part of this masters thesis. In it, we introduce a random walk which, when suitably normalized, will converge to the Brownian motion. We will then obtain results which will form the basis of the proofs of those of
chapiter 1.
|
82 |
On parabolic stochastic integro-differential equations : existence, regularity and numericsLeahy, James-Michael January 2015 (has links)
In this thesis, we study the existence, uniqueness, and regularity of systems of degenerate linear stochastic integro-differential equations (SIDEs) of parabolic type with adapted coefficients in the whole space. We also investigate explicit and implicit finite difference schemes for SIDEs with non-degenerate diffusion. The class of equations we consider arise in non-linear filtering of semimartingales with jumps. In Chapter 2, we derive moment estimates and a strong limit theorem for space inverses of stochastic flows generated by Lévy driven stochastic differential equations (SDEs) with adapted coefficients in weighted Hölder norms using the Sobolev embedding theorem and the change of variable formula. As an application of some basic properties of flows of Weiner driven SDEs, we prove the existence and uniqueness of classical solutions of linear parabolic second order stochastic partial differential equations (SPDEs) by partitioning the time interval and passing to the limit. The methods we use allow us to improve on previously known results in the continuous case and to derive new ones in the jump case. Chapter 3 is dedicated to the proof of existence and uniqueness of classical solutions of degenerate SIDEs using the method of stochastic characteristics. More precisely, we use Feynman-Kac transformations, conditioning, and the interlacing of space inverses of stochastic flows generated by SDEs with jumps to construct solutions. In Chapter 4, we prove the existence and uniqueness of solutions of degenerate linear stochastic evolution equations driven by jump processes in a Hilbert scale using the variational framework of stochastic evolution equations and the method of vanishing viscosity. As an application, we establish the existence and uniqueness of solutions of degenerate linear stochastic integro-differential equations in the L2-Sobolev scale. Finite difference schemes for non-degenerate SIDEs are considered in Chapter 5. Specifically, we study the rate of convergence of an explicit and an implicit-explicit finite difference scheme for linear SIDEs and show that the rate is of order one in space and order one-half in time.
|
83 |
Estimating the quadratic covariation from asynchronous noisy high-frequency observationsBibinger, Markus 30 August 2011 (has links)
Ein nichtparametrisches Schätzverfahren für die quadratische Kovariation von hochfrequent nicht-synchron beobachteter Itô-Prozessen mit einem additiven Rauschen wird entwickelt. Für eine artverwandte Folge von statistischen Experimenten wird die lokal asymptotische Normalität (LAN) im Sinne von Le Cam bewiesen. Mit dieser lassen sich optimale Konvergenzraten und Effizienzschranken für asymptotische Varianzen ableiten. Der vorgestellte Schätzer wird auf Grundlage von zwei modernen Verfahren, für die Anwendung bei nicht-synchronen Beobachtungen zum einen, und einem additiven Rauschen zum anderen, entwickelt. Der Hayashi-Yoshida Schätzer wird in einer neuen Darstellung eingeführt, welche einen Synchronisierungsalgorithmus mit einschließt, der für die kombinierte Methode ausgelegt werden kann. Es wird eine stabiles zentrales Grenzwerttheorem bewiesen, wobei spezieller Wert auf die Analyse des Einflusses der Nicht-Synchronität auf die asymptotische Varianz gelegt wird. Nach diesen Vorbereitungen wird das kombinierte Schätzverfahren für den allgemeinsten Fall nicht-synchroner verrauschter Beobachtungen vorgestellt. Dieses beruht auf Subsampling- und Multiskalenmethoden, die auf Mykland, Zhang und Aït-Sahalia zurück gehen. Es vereint positive Eigenschaften der beiden Ursprünge. Das zentrale Resultat dieser Arbeit ist der Beweis, dass der Schätzfehler stabil in Verteilung gegen eine gemischte Normalverteilung konvergiert. Für die asymptotische Varianz wird ein konsistenter Schätzer angegeben. In einer Anwendungsstudie wird eine praktische Implementierung des Schätzverfahrens, die die Wahl von abhängigen Parametern beinhaltet, getestet und auf ihre Eigenschaften im Falle endlicher Stichprobenumfänge untersucht. Neuen fortgeschrittenen Entwicklungen auf dem Forschungsfeld von Seite anderer Autoren wird Rechnung getragen durch Vergleiche und diesbezügliche Kommentare. / A nonparametric estimation approach for the quadratic covariation of Itô processes from high-frequency observations with an additive noise is developed. It is proved that a closely related sequence of statistical experiments is locally asymptotically normal (LAN) in the Le Cam sense. By virtue of this property optimal convergence rates and efficiency bounds for asymptotic variances of estimators can be concluded. The proposed nonparametric estimator is founded on a combination of two modern estimation methods devoted to an additive observation noise on the one hand and asynchronous observation schemes on the other hand. We reinvent this Hayashi-Yoshida estimator in a new illustration that can serve as a synchronization method which is possible to adapt for the combined approach. A stable central limit theorem is proved focusing especially on the impact of non-synchronicity on the asymptotic variance. With this preparations on hand, the generalized multiscale estimator for the noisy and asynchronous setting arises. This convenient method for the general model is based on subsampling and multiscale estimation techniques that have been established by Mykland, Zhang and Aït-Sahalia. It preserves valuable features of the synchronization methodology and the estimators to cope with noise perturbation. The central result of the thesis is that the estimation error of the generalized multiscale estimator converges with optimal rate stably in law to a centred mixed normal limiting distribution on fairly general regularity assumptions. For the asymptotic variance a consistent estimator based on time transformed histograms is given making the central limit theorem feasible. In an application study a practicable estimation algorithm including a choice of tuning parameters is tested for its features and finite sample size behaviour. We take account of recent advances on the research field by other authors in comparisons and notes.
|
84 |
Limit theorems for limit order booksPaulsen, Michael Christoph 21 August 2014 (has links)
Im ersten Teil der Dissertation wird ein diskretes stochastisches zustandsabhängiges Modell eines zweiseitigen Limit Orderbuchs als bestehend aus den Zustandsgrößen bester Bidpreis (Geldkurs), bester Askpreis (Briefkurs) und vorhandener Kauf- bzw. Verkaufsdichte definiert. Für eine einfache Skalierung mit zwei Zeitskalen wird ein Grenzwertsatz bewiesen. Die Veränderungen der besten Bid- und Askpreise werden im Sinne des Gesetzes der großen Zahlen skaliert und dies entspricht der langsameren Zeitskala. Das Platzieren bzw. Stornieren der Limitorder findet auf der schnelleren Zeitskala statt. Der Grenzwertsatz besagt, dass die fundamentalen Zustandsgrößen, gegeben Regularitätsbedingungen der einkommenden Order, fast sicher zu einem stetigen Limesmodell konvergieren. Im Limesmodell sind der beste Bidpreis und der beste Askpreis die eindeutigen Lösungen von zwei gekoppelten gewöhnlichen DGLen. Die Kauf- und Verkaufsdichten sind jeweils als eindeutige Lösungen von linearen hyperbolischen PDGLen, die anhand der Erwartungswerte der einkommenden Orderparameter festgelegt sind, gegeben. Die Lösungen sind in geschlossener Form erhältlich. Im zweiten Teil wird ein funktionaler zentraler Grenzwertsatz d.h. ein Invarianzprinzip für ein vereinfachtes Modell eines Limitorderbuches bewiesen. Unter einer natürlichen Skalierung konvergiert der zweidimensionale Preisprozess (Bid- und Askpreis) in Verteilung zu einer Semimartingal reflektierten Brownschen Bewegung in der zugelassenen Preismenge. Gleichzeitig konvergieren die Kauf- und Verkaufsdichten im schwachen Sinn zum Betrag einer zweiparametrischen Brownschen Bewegung. Es wird weiterhin anhand eines Beispiels gezeigt, wie man für das Modell im ersten Teil eine stochastiche PDGL, unter einer starken Stationaritätsannahme für die Orderplatzierungen und -stornierungen, herleiten kann. Im dritten Teil wird ein Mittelungs- bzw. ein Invarianzprinzip für diskrete Banach- bzw. Hilbertraumwertige stochastische Prozesse bewiesen. / In the first part of the thesis, we define a random state-dependent discrete model of a two-sided limit order book in terms of its key quantities best bid [ask] price and the standing buy [sell] volume density. For a simple scaling that introduces a slow time scaling, that is equivalent to the classical law of large numbers, for the bid/ask prices and a faster time scale for the limit volume placements/cancelations, that keeps the expected volume rate over the considered price interval invariant, we prove a limit theorem. The limit theorem states that, given regularity conditions on the random order flow, the key quantities converge in the sense of a strong law of large numbers to a tractable continuous limiting model. The limiting model is such that the best bid and ask price dynamics can be described in terms of two coupled ODE:s, while the dynamics of the relative buy and sell volume density functions are given as the unique solutions of two linear first-order hyperbolic PDE:s with variable coefficients, specified by the expectation of the order flow parameters. In the second part, we prove a functional central limit theorem i.e. an invariance principle for an order book model with block shaped volume densities close to the spread. The weak limit of the two-dimensional price process (best bid and ask price) is given by a semi-martingale reflecting Brownian motion in the set of admissible prices. Simultaneously, the relative buy and sell volume densities close to the spread converge weakly to the modulus of a two-parameter Brownian motion. We also demonstrate an example how to easily derive an SPDE for the relative volume densities in a simple case, when a strong stationarity assumption is made on the limit order placements and cancelations for the model suggested in the first part. In the third and final part of the thesis, we prove an averaging and an invariance principle for discrete processes taking values in Banach and Hilbert spaces, respectively.
|
85 |
Some problems related to the Karp-Sipser algorithm on random graphsKreacic, Eleonora January 2017 (has links)
We study certain questions related to the performance of the Karp-Sipser algorithm on the sparse Erdös-Rényi random graph. The Karp-Sipser algorithm, introduced by Karp and Sipser [34] is a greedy algorithm which aims to obtain a near-maximum matching on a given graph. The algorithm evolves through a sequence of steps. In each step, it picks an edge according to a certain rule, adds it to the matching and removes it from the remaining graph. The algorithm stops when the remining graph is empty. In [34], the performance of the Karp-Sipser algorithm on the Erdös-Rényi random graphs G(n,M = [<sup>cn</sup>/<sub>2</sub>]) and G(n, p = <sup>c</sup>/<sub>n</sub>), c > 0 is studied. It is proved there that the algorithm behaves near-optimally, in the sense that the difference between the size of a matching obtained by the algorithm and a maximum matching is at most o(n), with high probability as n → ∞. The main result of [34] is a law of large numbers for the size of a maximum matching in G(n,M = <sup>cn</sup>/<sub>2</sub>) and G(n, p = <sup>c</sup>/<sub>n</sub>), c > 0. Aronson, Frieze and Pittel [2] further refine these results. In particular, they prove that for c < e, the Karp-Sipser algorithm obtains a maximum matching, with high probability as n → ∞; for c > e, the difference between the size of a matching obtained by the algorithm and the size of a maximum matching of G(n,M = <sup>cn</sup>/<sub>2</sub>) is of order Θ<sub>log n</sub>(n<sup>1/5</sup>), with high probability as n → ∞. They further conjecture a central limit theorem for the size of a maximum matching of G(n,M = <sup>cn</sup>/<sub>2</sub>) and G(n, p = <sup>c</sup>/<sub>n</sub>) for all c > 0. As noted in [2], the central limit theorem for c < 1 is a consequence of the result of Pittel [45]. In this thesis, we prove a central limit theorem for the size of a maximum matching of both G(n,M = <sup>cn</sup>/<sub>2</sub>) and G(n, p = <sup>c</sup>/<sub>n</sub>) for c > e. (We do not analyse the case 1 ≤ c ≤ e). Our approach is based on the further analysis of the Karp-Sipser algorithm. We use the results from [2] and refine them. For c > e, the difference between the size of a matching obtained by the algorithm and the size of a maximum matching is of order Θ<sub>log n</sub>(n<sup>1/5</sup>), with high probability as n → ∞, and the study [2] suggests that this difference is accumulated at the very end of the process. The question how the Karp-Sipser algorithm evolves in its final stages for c > e, motivated us to consider the following problem in this thesis. We study a model for the destruction of a random network by fire. Let us assume that we have a multigraph with minimum degree at least 2 with real-valued edge-lengths. We first choose a uniform random point from along the length and set it alight. The edges burn at speed 1. If the fire reaches a node of degree 2, it is passed on to the neighbouring edge. On the other hand, a node of degree at least 3 passes the fire either to all its neighbours or none, each with probability 1/2. If the fire extinguishes before the graph is burnt, we again pick a uniform point and set it alight. We study this model in the setting of a random multigraph with N nodes of degree 3 and α(N) nodes of degree 4, where α(N)/N → 0 as N → ∞. We assume the edges to have i.i.d. standard exponential lengths. We are interested in the asymptotic behaviour of the number of fires we must set alight in order to burn the whole graph, and the number of points which are burnt from two different directions. Depending on whether α(N) » √N or not, we prove that after the suitable rescaling these quantities converge jointly in distribution to either a pair of constants or to (complicated) functionals of Brownian motion. Our analysis supports the conjecture that the difference between the size of a matching obtained by the Karp-Sipser algorithm and the size of a maximum matching of the Erdös-Rényi random graph G(n,M = <sup>cn</sup>/<sub>2</sub>) for c > e, rescaled by n<sup>1/5</sup>, converges in distribution.
|
86 |
Propriétés quantitative de récurrence en mesure infinie / Quantitative recurrence properties in infinite measureYassine, Nasab 15 November 2018 (has links)
Dans cette thèse, nous étudions les propriétés quantitatives de récurrence de certains systèmes dynamiques préservant une mesure infinie. Nous nous intéressons au premier temps de retour des orbites d'un système dynamique dans un petit voisinage de leurs points de départ. Tout d'abord, nous commençons par considérer un modèle jouet probabilistique pour éclairer la stratégie de nos preuves. On s'intéresse particulièrement au cas où la mesure est infinie, plus précisément, nous considérons les Z -extensions des sous-shift de type fini. Nous étudions le comportement asymptotique du premier temps de retour au voisinage de l'origine, et nous établissons des résultats de type de convergence presque partout, et aussi de convergence en loi par rapport à toute mesure de probabilité absolument continue par rapport à la mesure infinie. Dans ce travail, nous nous également intéressons à d'autres systèmes dynamiques. Nous considérons un flot Axiome A(gt)t sur une variété riemannienne M munie d'une mesure σ -finie μ. Nous supposerons que la mesure μ est une mesure d'équilibre pour (gt)t. Afin d'établir nos résultats, nous introduisons des notions de dynamique hyperbolique. En particulier, nous considérons la section de Markov qui a été introduite par Bowen et Ratner. / In this thesis, we study the quantitative recurrence properties of some dynamical systems preserving an infinite measure. We are interested in the first return time of the orbits of a dynamical system into a small neighborhood of their starting points. First, we start by considering a toy probabilistic model to clarify the strategy of our proofs. Our interest is when the measure is indeed infinite, more precisely we consider the Z-extensions of subshifts of finite type. We study the asymptotic behavior of the first return time near the origin, and we establish results of an almost everywhere convergence kind, and a convergence in distribution with respect to any probability measure absolutely continuous with respect to the infinite measure. In this work, we are also interested in another dynamicals systems. We consider an Axiom A flow (gt)t on a Riemannian manifold M endowed with a σ-finite measure μ. We will assume that the measure μ is an equilibrium measure for (gt)t. In order to establish our results, we introduce notions from hyperbolic dynamics. In particular, we consider the Markov section which was constructed by Bowen and Ratner.
|
87 |
Estimation de paramètres pour des processus autorégressifs à bifurcationBlandin, Vassili 26 June 2013 (has links)
Les processus autorégressifs à bifurcation (BAR) ont été au centre de nombreux travaux de recherche ces dernières années. Ces processus, qui sont l'adaptation à un arbre binaire des processus autorégressifs, sont en effet d'intérêt en biologie puisque la structure de l'arbre binaire permet une analogie aisée avec la division cellulaire. L'objectif de cette thèse est l'estimation les paramètres de variantes de ces processus autorégressifs à bifurcation, à savoir les processus BAR à valeurs entières et les processus BAR à coefficients aléatoires. Dans un premier temps, nous nous intéressons aux processus BAR à valeurs entières. Nous établissons, via une approche martingale, la convergence presque sûre des estimateurs des moindres carrés pondérés considérés, ainsi qu'une vitesse de convergence de ces estimateurs, une loi forte quadratique et leur comportement asymptotiquement normal. Dans un second temps, on étudie les processus BAR à coefficients aléatoires. Cette étude permet d'étendre le concept de processus autorégressifs à bifurcation en généralisant le côté aléatoire de l'évolution. Nous établissons les mêmes résultats asymptotiques que pour la première étude. Enfin, nous concluons cette thèse par une autre approche des processus BAR à coefficients aléatoires où l'on ne pondère plus nos estimateurs des moindres carrés en tirant parti du théorème de Rademacher-Menchov. / Bifurcating autoregressive (BAR) processes have been widely investigated this past few years. Those processes, which are an adjustment of autoregressive processes to a binary tree structure, are indeed of interest concerning biology since the binary tree structure allows an easy analogy with cell division. The aim of this thesis is to estimate the parameters of some variations of those BAR processes, namely the integer-valued BAR processes and the random coefficients BAR processes. First, we will have a look to integer-valued BAR processes. We establish, via a martingale approach, the almost sure convergence of the weighted least squares estimators of interest, together with a rate of convergence, a quadratic strong law and their asymptotic normality. Secondly, we study the random coefficients BAR processes. The study allows to extend the principle of bifurcating autoregressive processes by enlarging the randomness of the evolution. We establish the same asymptotic results as for the first study. Finally, we conclude this thesis with an other approach of random coefficient BAR processes where we do not weight our least squares estimators any more by making good use of the Rademacher-Menchov theorem.
|
88 |
Abschätzungen der Konvergenzgeschwindigkeit zur Normalverteilung unter Voraussetzung einseitiger Momente (Teil 1)Paditz, Ludwig 27 May 2013 (has links) (PDF)
Der Beitrag unterteilt sich in zwei Teile: Teil 1 (vgl. Informationen/07; 1976,05) und Teil 2 (cp. Informationen/07; 1976,06).
Teil 1 enthält eine Einleitung und Grenzwertsätze für unabhängige und identisch verteilte Zufallsgrößen und die Übertragung der betrachteten Grenzwertsätze auf den Fall der Existenz einseitiger Momente.
Teil 2 enthält Grenzwertsätze für mittlere Abweichungen für Summen unabhängiger nichtidentisch verteilter Zufallsgrößen (Serienschema) und eine Diskussion der erhaltenen Ergebnisse und schließlich einige Literaturangaben.
Sei F_n(x) die Verteilungsfunktion der Summe X_1+X_2+...+X_n, wobei X_1, X_2, ...,X_n unabhängige und identisch verteilte Zufallsgrößen mit Erwartungswert 0 und Streuung 1 und endlichen absoluten Momenten c_m, m>2, sind, und sei Phi die standardisierte Normalverteilungsfunktion. Es werden absolute Konstanten L_i derart berechnet, dass wir Fehlerabschätzungen im unleichmäßigen zentralen Grenzwertsätzen in verschiedenen Fällen angeben können, wobei sich der Index i in L_i auf folgende fünf Fälle bezieht: kleine x, mittlere Abweichungen für x, große Abweichungen für x, kleine n und große n.
Im Fall der Existenz einseitiger Momente werden obere Schanken für 1-F_n(x) angegeben für x>D_m*n^(1/2)*ln(n) bzw. x>D_m*n^(1/2)*(ln(n))^(1/2), womit Ergebnisse von S.V.NAGAEV(1965) präzisiert werden. / The paper is divided in two parts: part 1 (cp. Informationen/07; 1976,05) and part 2 (cp. Informationen/07; 1976,06).
Part 1 contains an introduction and limit theorems for iid random variables and the transfer of the considered limit theorems to the case of the existence of onesided moments.
Part 2 contains limit theorems of moderate deviations for sums of series of non iid random variables and a discussion of all obtained results in part 1 and 2 and finally some references.
Let F_n(x) be the cdf of X_1+X_2+...+X_n, where X_1, X_2, ...,X_n are iid random variables with mean 0 and variance 1 and with m-th absolute moment c_m, m>2, and Phi the cdf of the unit normal law. Explicit universal constants L_i are computed such that we have an error estimate in the nonuniform central limit theorem with the L_i, where i corresponds to the five cases considered: small x, moderate deviations for x, large deviations for x, small n , large n.
Additional upper bounds for 1-F_n(x) are obtained if the one-sided moments of order m, m>2, are finite and if x>D_m*n^(1/2)*ln(n) and x>D_m*n^(1/2)*(ln(n))^(1/2) respectively improving results by S.V.NAGAEV (1965).
|
89 |
Abschätzungen der Konvergenzgeschwindigkeit zur Normalverteilung unter Voraussetzung einseitiger Momente (Teil 2)Paditz, Ludwig 27 May 2013 (has links) (PDF)
Der Beitrag unterteilt sich in zwei Teile: Teil 1 (vgl. Informationen/07; 1976,05) und Teil 2 (cp. Informationen/07; 1976,06).
Teil 1 enthält eine Einleitung und Grenzwertsätze für unabhängige und identisch verteilte Zufallsgrößen und die Übertragung der betrachteten Grenzwertsätze auf den Fall der Existenz einseitiger Momente.
Teil 2 enthält Grenzwertsätze für mittlere Abweichungen für Summen unabhängiger nichtidentisch verteilter Zufallsgrößen (Serienschema) und eine Diskussion der erhaltenen Ergebnisse und schließlich einige Literaturangaben.
Sei F_n(x) die Verteilungsfunktion der Summe X_1+X_2+...+X_n, wobei X_1, X_2, ...,X_n unabhängige und identisch verteilte Zufallsgrößen mit Erwartungswert 0 und Streuung 1 und endlichen absoluten Momenten c_m, m>2, sind, und sei Phi die standardisierte Normalverteilungsfunktion. Es werden absolute Konstanten L_i derart berechnet, dass wir Fehlerabschätzungen im unleichmäßigen zentralen Grenzwertsätzen in verschiedenen Fällen angeben können, wobei sich der Index i in L_i auf folgende fünf Fälle bezieht: kleine x, mittlere Abweichungen für x, große Abweichungen für x, kleine n und große n.
Im Fall der Existenz einseitiger Momente werden obere Schanken für 1-F_n(x) angegeben für x>D_m*n^(1/2)*ln(n) bzw. x>D_m*n^(1/2)*(ln(n))^(1/2), womit Ergebnisse von S.V.NAGAEV(1965) präzisiert werden.
Der Beitrag unterteilt sich in zwei Teile: Teil 1 (vgl. Informationen/07; 1976,05) und Teil 2 (cp. Informationen/07; 1976,06).
Teil 1 enthält eine Einleitung und Grenzwertsätze für unabhängige und identisch verteilte Zufallsgrößen und die Übertragung der betrachteten Grenzwertsätze auf den Fall der Existenz einseitiger Momente.
Teil 2 enthält Grenzwertsätze für mittlere Abweichungen für Summen unabhängiger nichtidentisch verteilter Zufallsgrößen (Serienschema) und eine Diskussion der erhaltenen Ergebnisse und schließlich einige Literaturangaben.
Sei F_n(x) die Verteilungsfunktion der Summe X_1+X_2+...+X_n, wobei X_1, X_2, ...,X_n unabhängige und identisch verteilte Zufallsgrößen mit Erwartungswert 0 und Streuung 1 und endlichen absoluten Momenten c_m, m>2, sind, und sei Phi die standardisierte Normalverteilungsfunktion. Es werden absolute Konstanten L_i derart berechnet, dass wir Fehlerabschätzungen im unleichmäßigen zentralen Grenzwertsätzen in verschiedenen Fällen angeben können, wobei sich der Index i in L_i auf folgende fünf Fälle bezieht: kleine x, mittlere Abweichungen für x, große Abweichungen für x, kleine n und große n.
Im Fall der Existenz einseitiger Momente werden obere Schanken für 1-F_n(x) angegeben für x>D_m*n^(1/2)*ln(n) bzw. x>D_m*n^(1/2)*(ln(n))^(1/2), womit Ergebnisse von S.V.NAGAEV(1965) präzisiert werden. / The paper is divided in two parts: part 1 (cp. Informationen/07; 1976,05) and part 2 (cp. Informationen/07; 1976,06).
Part 1 contains an introduction and limit theorems for iid random variables and the transfer of the considered limit theorems to the case of the existence of onesided moments.
Part 2 contains limit theorems of moderate deviations for sums of series of non iid random variables and a discussion of all obtained results in part 1 and 2 and finally some references.
Let F_n(x) be the cdf of X_1+X_2+...+X_n, where X_1, X_2, ...,X_n are iid random variables with mean 0 and variance 1 and with m-th absolute moment c_m, m>2, and Phi the cdf of the unit normal law. Explicit universal constants L_i are computed such that we have an error estimate in the nonuniform central limit theorem with the L_i, where i corresponds to the five cases considered: small x, moderate deviations for x, large deviations for x, small n , large n.
Additional upper bounds for 1-F_n(x) are obtained if the one-sided moments of order m, m>2, are finite and if x>D_m*n^(1/2)*ln(n) and x>D_m*n^(1/2)*(ln(n))^(1/2) respectively improving results by S.V.NAGAEV (1965).
|
90 |
Abschätzungen der Konvergenzgeschwindigkeit im zentralen GrenzwertsatzPaditz, Ludwig 27 May 2013 (has links) (PDF)
Der Beitrag stellt eine Verallgemeinerung der Ergebnisse dar, die in den Informationen/07; 1976,05 veröffentlicht wurden.
Sei F_n(x) die Verteilungsfunktion der Summe X_1+X_2+...+X_n, wobei X_1, X_2, ...,X_n unabhängige und nicht notwendig identisch verteilte Zufallsgrößen mit endlichen absoluten Momenten c_m, m>2, sind, und sei Phi die standardisierte Normalverteilungsfunktion. Es werden absolute Konstanten L_m derart berechnet, dass wir Fehlerabschätzungen im unleichmäßigen zentralen Grenzwertsatz explizit angeben können. Als Spezialfall ergibt sich die ungleichmäßige Fehlerschranke von A.BIKELIS (1966) im Fall der Existenz dritter absoluter Momente.
Weiterhin werden Grenzwertsätze unter Voraussetzung einseitiger Momente betrachtet. Es werden einige Literaturhinweise angegeben. / The paper is a generalization of the results, published by the author in Informationen/07; 1976,05.
Let F_n(x) be the cdf of X_1+X_2+...+X_n, where X_1, X_2, ...,X_n are non iid random variables with m-th absolute moment c_m, m>2, and Phi the cdf of the unit normal law. Explicit universal constants L_m are computed such that we have some error estimates in the nonuniform central limit theorem. A special case is the nonuniform error bound by A.BIKELIS (1966) in the case of existence of third absolute moments. Furthermore limit theorems with assumption of onesided moments are considered. Some references are given.
|
Page generated in 0.0497 seconds