• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 22
  • 8
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 75
  • 75
  • 31
  • 21
  • 19
  • 15
  • 14
  • 14
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Řešení problému nejmenších čtverců s maticemi o proměnlivé hustotě nenulových prvků / Least-squares problems with sparse-dense matrices

Riegerová, Ilona January 2020 (has links)
Problém nejmenších čtverc· (dále jen LS problém) je aproximační úloha řešení soustav lineárních algebraických rovnic, které jsou z nějakého d·vodu za- tíženy chybami. Existence a jednoznačnost řešení a metody řešení jsou známé pro r·zné typy matic, kterými tyto soustavy reprezentujeme. Typicky jsou ma- tice řídké a obrovských dimenzí, ale velmi často dostáváme z praxe i úlohy s maticemi o proměnlivé hustotě nenulových prvk·. Těmi se myslí řídké matice s jedním nebo více hustými řádky. Zde rozebíráme metody řešení tohoto LS pro- blému. Obvykle jsou založeny na rozdělení úlohy na hustou a řídkou část, které řeší odděleně. Tak pro řídkou část m·že přestat platit předpoklad plné sloupcové hodnosti, který je potřebný pro většinu metod. Proto se zde speciálně zabýváme postupy, které tento problém řeší. 1
62

A Numerical Investigation Of The Canonical Duality Method For Non-Convex Variational Problems

Yu, Haofeng 07 October 2011 (has links)
This thesis represents a theoretical and numerical investigation of the canonical duality theory, which has been recently proposed as an alternative to the classic and direct methods for non-convex variational problems. These non-convex variational problems arise in a wide range of scientific and engineering applications, such as phase transitions, post-buckling of large deformed beam models, nonlinear field theory, and superconductivity. The numerical discretization of these non-convex variational problems leads to global minimization problems in a finite dimensional space. The primary goal of this thesis is to apply the newly developed canonical duality theory to two non-convex variational problems: a modified version of Ericksen's bar and a problem of Landau-Ginzburg type. The canonical duality theory is investigated numerically and compared with classic methods of numerical nature. Both advantages and shortcomings of the canonical duality theory are discussed. A major component of this critical numerical investigation is a careful sensitivity study of the various approaches with respect to changes in parameters, boundary conditions and initial conditions. / Ph. D.
63

Structures linéaires dans les ensembles à faible densité

Henriot, Kevin 07 1900 (has links)
Réalisé en cotutelle avec l'Université Paris-Diderot. / Nous présentons trois résultats en combinatoire additive, un domaine récent à la croisée de la combinatoire, l'analyse harmonique et la théorie analytique des nombres. Le thème unificateur de notre thèse est la détection de structures additives dans les ensembles arithmétiques à faible densité, avec un intérêt particulier pour les aspects quantitatifs. Notre première contribution est une estimation de densité améliorée pour le problème, initié entre autres par Bourgain, de trouver une longue progression arithmétique dans un ensemble somme triple. Notre deuxième résultat consiste en une généralisation des bornes de Sanders pour le théorème de Roth, du cas d'un ensemble dense dans les entiers à celui d'un ensemble à faible croissance additive dans un groupe abélien arbitraire. Finalement, nous étendons les meilleures bornes quantitatives connues pour le théorème de Roth dans les premiers, à tous les systèmes d'équations linéaires invariants par translation et de complexité un. / We present three results in additive combinatorics, a recent field at the interface of combinatorics, harmonic analysis and analytic number theory. The unifying theme in our thesis is the detection of additive structure in arithmetic sets of low density, with an emphasis on quantitative aspects. Our first contribution is an improved density estimate for the problem, initiated by Bourgain and others, of finding a long arithmetic progression in a triple sumset. Our second result is a generalization of Sanders' bounds for Roth's theorem from the dense setting, to the setting of small doubling in an arbitrary abelian group. Finally, we extend the best known quantitative results for Roth's theorem in the primes, to all translation-invariant systems of equations of complexity one.
64

[en] TOWARD GPU-BASED GROUND STRUCTURES FOR LARGE SCALE TOPOLOGY OPTIMIZATION / [pt] OTIMIZAÇÃO TOPOLÓGICA DE ESTRUTURAS DE GRANDE PORTE UTILIZANDO O MÉTODO DE GROUND STRUCTURES EM GPU

ARTURO ELI CUBAS RODRIGUEZ 14 May 2019 (has links)
[pt] A otimização topológica tem como objetivo encontrar a distribuição mais eficiente de material em um domínio especificado sem violar as restrições de projeto definidas pelo usuário. Quando aplicada a estruturas contínuas, a otimização topológica é geralmente realizada por meio de métodos de densidade, conhecidos na literatura técnica. Neste trabalho, daremos ênfase à aplicação de sua formulação discreta, na qual um determinado domínio é discretizado na forma de uma estrutura base, ou seja, uma distribuição espacial finita de nós conectados entre si por meio de barras de treliça. O método de estrutura base fornece uma aproximação para as estruturas de Michell, que são compostas por um número infinito de barras, por meio de um número reduzido de elementos de treliça. O problema de determinar a estrutura final com peso mínimo, para um único caso de carregamento, considerando um comportamento linear elástico do material e restrições de tensão, pode ser formulado como um problema de programação linear. O objetivo deste trabalho é fornecer uma implementação escalável para o problema de otimização de treliças com peso mínimo, considerando domínios com geometrias arbitrárias. O método remove os elementos que são desnecessários, partindo de uma treliça cujo grau de conectividade é definido pelo usuário, mantendo-se fixos os pontos nodais. Propomos uma implementação escalável do método de estrutura base, utilizando um algoritmo de pontos interiores eficiente e robusto, em um ambiente de computação paralela (envolvendo unidades de processamento gráfico ou GPUs). Os resultados apresentados, em estruturas bi e tridimensionais com milhões de barras, ilustram a viabilidade e a eficiência computacional da implementação proposta. / [en] Topology optimization aims to find the most efficient material distribution in a specified domain without violating user-defined design constraints. When applied to continuum structures, topology optimization is usually performed by means of the well-known density methods. In this work we focus on the application of its discrete formulation where a given domain is discretized into a ground structure, i.e., a finite spatial distribution of nodes connected using truss members. The ground structure method provides an approximation to optimal Michell-type structures, composed of an infinite number of members, by using a reduced number of truss members. The optimal least weight truss for a single load case, under linear elastic conditions, subjected to stress constraints can be posed as a linear programming problem. The aim of this work is to provide a scalable implementation for the optimization of least weight trusses embedded in any domain geometry. The method removes unnecessary members from a truss that has a user-defined degree of connectivity while keeping the nodal locations fixed. We discuss in detail the scalable implementation of the ground structure method using an efficient and robust interior point algorithm within a parallel computing environment (involving Graphics Processing Units or GPUs). The capabilities of the proposed implementation is illustrated by means of large scale applications on practical problems with millions of members in both 2D and 3D structures.
65

Análise da interação solo não-homogêneo/estrutura via acoplamento MEC/MEF / Analysis of nonhomogeneous soil-structure interaction using BEM-FEM coupling

Almeida, Valério da Silva 25 April 2003 (has links)
O estudo do comportamento mecânico do complexo sistema advindo da interação entre solo/subestrutura/superestrutura é o tema do trabalho. Neste contexto, a representação do maciço é feita usando-se o método dos elementos de contorno (MEC) em abordagem 3D, de maneira que se possa simular o maciço com características mecânicas não-homogêneas, além de se considerar uma camada de apoio indeslocável a distâncias prescritas a priori e condição de aderência perfeita. A subestrutura também é representada via MEC tridimensional, a qual está imersa dentro deste meio heterogêneo. A infra e a superestrutura são modeladas empregando o método dos elementos finitos (MEF), com o uso de elementos estruturais reticulares e elementos laminares. São apresentados alguns exemplos em que se valida a formulação e outros que demonstram a potencialidade e a necessidade de se empregar a formulação para a melhor análise do complexo fenômeno em estudo. Por fim, demonstra-se a obrigatoriedade de se otimizar a formulação, empregando-se duas grandes ferramentas numéricas: o paralelismo e o emprego de um adequado método de resolução de sistemas esparsos. / The analysis of the soil-structure system interaction is a vast field of interest in the area of civil engineering. A realistic representation of its behaviour. Thus, in the present research, the soil is considered a non-homogeneous continuum supported by a rigid and adhesive interface and modelled by boundary element method via Kelvin solution in 3D space. The foundation is also modelled by this above-mentioned modelling technique. The raft foundation and the superstructure are represented by finite shell and 3D frame elements. In order to estimate the accuracy and the potentiality of the proposed numerical formulation, some examples are validated when compared to similar approaches, and others simulations are presented to stress the necessity of coupling the non-homogeneous soil-foundation-radier-superstructure system as a whole. Finally, to acquire numerical time efficiency, it is shown that it is imperative to apply parallel processing and sparse techniques for the solution of the final system.
66

Strategie řešení slovních úloh v závislosti na aktuálnosti kontextu / Solving strategies of word problems depending on the context topicality

Hejdrychová, Kateřina January 2018 (has links)
1 Solving strategies of word problems depending on the context topicality ABSTRACT The thesis deals with word problems solvable by linear equations. The aim of the work is to show if the context, on which the word problem depends, influences how pupils participating in the research solve it and verify if word problem phrasing and modern language usage help pupils solve the word problem. It is accomplished by assigning pupils a set of varied word problems and assessing their solutions. More results were gained by assessing questionnaires related to the context of the word problems being calculated. The second aim of the thesis is to explain various definitions of word problems, putting the term into the context of school mathematics and a brief summary of the historical development of mathematics focusing on word problems. The work consists of three parts. In the first part, problems and word problems are defined and it is shown how word problems are included in the Framework educational programme. Word problems are put into historical context. The second part shows the conception of motion word problems, word problems on joint work and word problems on dividing a whole into parts in the present-day mathematical textbooks in the second stage of elementary schools and in the lower classes of secondary grammar...
67

Análise da interação solo não-homogêneo/estrutura via acoplamento MEC/MEF / Analysis of nonhomogeneous soil-structure interaction using BEM-FEM coupling

Valério da Silva Almeida 25 April 2003 (has links)
O estudo do comportamento mecânico do complexo sistema advindo da interação entre solo/subestrutura/superestrutura é o tema do trabalho. Neste contexto, a representação do maciço é feita usando-se o método dos elementos de contorno (MEC) em abordagem 3D, de maneira que se possa simular o maciço com características mecânicas não-homogêneas, além de se considerar uma camada de apoio indeslocável a distâncias prescritas a priori e condição de aderência perfeita. A subestrutura também é representada via MEC tridimensional, a qual está imersa dentro deste meio heterogêneo. A infra e a superestrutura são modeladas empregando o método dos elementos finitos (MEF), com o uso de elementos estruturais reticulares e elementos laminares. São apresentados alguns exemplos em que se valida a formulação e outros que demonstram a potencialidade e a necessidade de se empregar a formulação para a melhor análise do complexo fenômeno em estudo. Por fim, demonstra-se a obrigatoriedade de se otimizar a formulação, empregando-se duas grandes ferramentas numéricas: o paralelismo e o emprego de um adequado método de resolução de sistemas esparsos. / The analysis of the soil-structure system interaction is a vast field of interest in the area of civil engineering. A realistic representation of its behaviour. Thus, in the present research, the soil is considered a non-homogeneous continuum supported by a rigid and adhesive interface and modelled by boundary element method via Kelvin solution in 3D space. The foundation is also modelled by this above-mentioned modelling technique. The raft foundation and the superstructure are represented by finite shell and 3D frame elements. In order to estimate the accuracy and the potentiality of the proposed numerical formulation, some examples are validated when compared to similar approaches, and others simulations are presented to stress the necessity of coupling the non-homogeneous soil-foundation-radier-superstructure system as a whole. Finally, to acquire numerical time efficiency, it is shown that it is imperative to apply parallel processing and sparse techniques for the solution of the final system.
68

Propriétés asymptotiques des solutions à données petites du système de Vlasov-Maxwell / Asymptotic properties of the small data solutions of the Vlasov-Maxwell system

Bigorgne, Léo 25 June 2019 (has links)
L'objectif de cette thèse est de décrire le comportement asymptotique des solutions à données petites du système de Vlasov-Maxwell. En particulier, on s'attachera à étudier tant le champ électromagnétique que le champ de Vlasov par des méthodes de champs de vecteurs, nous permettant ainsi d'éviter toute contrainte de support sur les données initiales. La structure isotrope du système de Vlasov-Maxwell est d'une importance capitale pour compenser le phénomène de résonance causé par les particules approchant la vitesse de propagation du champ électromagnétique. De ce fait, plusieurs parties de ce manuscrit sont dédiées à sa description. Ajoutons également que les méthodes de champs de vecteurs sont connues pour être robustes et s'adapter relativement bien à d'autres situations telles que l'étude des solutions de l'équation des ondes sur un espace-temps courbé. Cette souplesse nous a notamment permis, contrairement aux travaux précédents sur ce sujet, de considérer des plasmas avec des particules sans masse.Notre étude débute par le cas des grandes dimensions d ≥ 4 où les effets dispersifs sont plus importants et permettent ainsi d'obtenir de meilleurs taux de décroissance sur les solutions du système et leurs dérivées. Une nouvelle inégalité de décroissance pour les solutions d'une équation de transport relativiste constitue d'ailleurs un élément central de la démonstration. Afin d'établir un résultat analogue dans le cas où les particules sont sans masse, nous avons dû imposer que le champ de Vlasov s'annule initialement pour les petites vitesses puis nous avons ensuite montré que cette hypothèse était nécessaire. Dans un second temps, nous nous intéressons au cas tridimensionnel avec des particules sans masse, où une étude plus poussée de la structure des équations sera nécessaire afin d'obtenir les taux de décroissance optimaux pour les composantes isotropes du champ électromagnétique, les moyennes en vitesse de la fonction de distribution et leurs dérivées. Nous nous concentrons ensuite sur l'étude du comportement asymptotique des solutions à données petites du système de Vlasov-Maxwell massif en dimension 3. Des difficultés spécifiques nous forcent à modifier les champs de vecteurs utilisés précédemment pour l'équation de transport dans le but de compenser les pires termes d'erreurs des équations commutées. Enfin, on considère le même problème en se restreignant à l'étude des solutions à l'extérieur d'un cône de lumière. Les fortes propriétés de décroissance vérifiées par la moyenne en vitesse de la densité de particules dans cette région nous permettent d'affaiblir les hypothèses sur les données initiales et d'avoir une démonstration considérablement plus simple. / The purpose of this thesis is to study the asymptotic properties of the small data solutions of the Vlasov-Maxwell system using vector field methods for both the electromagnetic field and the particle density. No compact support asumption is required on the initial data. Instead, we make crucial use of the null structure of the equations in order to deal with a resonant phenomenon caused by the particles approaching the speed of propagation of the Maxwell equations. Due to the robustness of vector field methods and contrary to previous works on this topic, we also study plasmas with massless particles.We start by investigating the high dimensional cases d ≥ 4 where dispersive effects allow us to derive strong decay rate on the solutions of the system and their derivatives. For that purpose, we proved a new decay estimate for solutions to massive relativistic transport equations. In order to obtain an analogous result for massless particles, we required the velocity support of the distribution function to be initially bounded away from $0$ and we then proved that this assumption is actually necessary. The second part of this thesis is devoted to the three dimensional massless case, where a stronger understanding of the null structure of the Vlasov-Maxwell system is essential in order to derive the optimal decay rate of the null components of the electromagnetic field, the velocity average of the particle density and their derivatives. We then focus on the asymptotic behavior of the small data solutions of the massive Vlasov-Maxwell system in 3d. Specific problems force us to modify the vector fields used previously to study the Vlasov field in order to compensate the worst error terms in the commuted transport equations. Finally, still for the massive system in 3d, we restrict our study of the solutions to the exterior of a light cone. The strong decay properties satisfied by the velocity average of the particle density in such a region permit us to relax the hypothesis on the initial data and lead to a much simpler proof.
69

On Methods for Solving Symmetric Systems of Linear Equations Arising in Optimization

Odland, Tove January 2015 (has links)
In this thesis we present research on mathematical properties of methods for solv- ing symmetric systems of linear equations that arise in various optimization problem formulations and in methods for solving such problems. In the first and third paper (Paper A and Paper C), we consider the connection be- tween the method of conjugate gradients and quasi-Newton methods on strictly convex quadratic optimization problems or equivalently on a symmetric system of linear equa- tions with a positive definite matrix. We state conditions on the quasi-Newton matrix and the update matrix such that the search directions generated by the corresponding quasi-Newton method and the method of conjugate gradients respectively are parallel. In paper A, we derive such conditions on the update matrix based on a sufficient condition to obtain mutually conjugate search directions. These conditions are shown to be equivalent to the one-parameter Broyden family. Further, we derive a one-to-one correspondence between the Broyden parameter and the scaling between the search directions from the method of conjugate gradients and a quasi-Newton method em- ploying some well-defined update scheme in the one-parameter Broyden family. In paper C, we give necessary and sufficient conditions on the quasi-Newton ma- trix and on the update matrix such that equivalence with the method of conjugate gra- dients hold for the corresponding quasi-Newton method. We show that the set of quasi- Newton schemes admitted by these necessary and sufficient conditions is strictly larger than the one-parameter Broyden family. In addition, we show that this set of quasi- Newton schemes includes an infinite number of symmetric rank-one update schemes. In the second paper (Paper B), we utilize an unnormalized Krylov subspace frame- work for solving symmetric systems of linear equations. These systems may be incom- patible and the matrix may be indefinite/singular. Such systems of symmetric linear equations arise in constrained optimization. In the case of an incompatible symmetric system of linear equations we give a certificate of incompatibility based on a projection on the null space of the symmetric matrix and characterize a minimum-residual solu- tion. Further we derive a minimum-residual method, give explicit recursions for the minimum-residual iterates and characterize a minimum-residual solution of minimum Euclidean norm. / I denna avhandling betraktar vi matematiska egenskaper hos metoder för att lösa symmetriska linjära ekvationssystem som uppkommer i formuleringar och metoder för en mängd olika optimeringsproblem. I första och tredje artikeln (Paper A och Paper C), undersöks kopplingen mellan konjugerade gradientmetoden och kvasi-Newtonmetoder när dessa appliceras på strikt konvexa kvadratiska optimeringsproblem utan bivillkor eller ekvivalent på ett symmet- risk linjärt ekvationssystem med en positivt definit symmetrisk matris. Vi ställer upp villkor på kvasi-Newtonmatrisen och uppdateringsmatrisen så att sökriktningen som fås från motsvarande kvasi-Newtonmetod blir parallell med den sökriktning som fås från konjugerade gradientmetoden. I den första artikeln (Paper A), härleds villkor på uppdateringsmatrisen baserade på ett tillräckligt villkor för att få ömsesidigt konjugerade sökriktningar. Dessa villkor på kvasi-Newtonmetoden visas vara ekvivalenta med att uppdateringsstrategin tillhör Broydens enparameterfamilj. Vi tar också fram en ett-till-ett överensstämmelse mellan Broydenparametern och skalningen mellan sökriktningarna från konjugerade gradient- metoden och en kvasi-Newtonmetod som använder någon väldefinierad uppdaterings- strategi från Broydens enparameterfamilj. I den tredje artikeln (Paper C), ger vi tillräckliga och nödvändiga villkor på en kvasi-Newtonmetod så att nämnda ekvivalens med konjugerade gradientmetoden er- hålls. Mängden kvasi-Newtonstrategier som uppfyller dessa villkor är strikt större än Broydens enparameterfamilj. Vi visar också att denna mängd kvasi-Newtonstrategier innehåller ett oändligt antal uppdateringsstrategier där uppdateringsmatrisen är en sym- metrisk matris av rang ett. I den andra artikeln (Paper B), används ett ramverk för icke-normaliserade Krylov- underrumsmetoder för att lösa symmetriska linjära ekvationssystem. Dessa ekvations- system kan sakna lösning och matrisen kan vara indefinit/singulär. Denna typ av sym- metriska linjära ekvationssystem uppkommer i en mängd formuleringar och metoder för optimeringsproblem med bivillkor. I fallet då det symmetriska linjära ekvations- systemet saknar lösning ger vi ett certifikat för detta baserat på en projektion på noll- rummet för den symmetriska matrisen och karaktäriserar en minimum-residuallösning. Vi härleder även en minimum-residualmetod i detta ramverk samt ger explicita rekur- sionsformler för denna metod. I fallet då det symmetriska linjära ekvationssystemet saknar lösning så karaktäriserar vi en minimum-residuallösning av minsta euklidiska norm. / <p>QC 20150519</p>
70

Entwurf einer fehlerüberwachten Modellreduktion basierend auf Krylov-Unterraumverfahren und Anwendung auf ein strukturmechanisches Modell / Implementation of an error-controlled model reduction based on Krylov-subspace methods and application to a mechanical model

Bernstein, David 17 October 2014 (has links) (PDF)
Die FEM-MKS-Kopplung erfordert Modellordnungsreduktions-Verfahren, die mit kleiner reduzierter Systemdimension das Übertragungsverhalten mechanischer Strukturen abbilden. Rationale Krylov-Unterraum-Verfahren, basierend auf dem Arnoldi-Algorithmen, ermöglichen solche Abbildungen in frei wählbaren, breiten Frequenzbereichen. Ziel ist der Entwurf einer fehlerüberwachten Modelreduktion auf Basis von Krylov-Unterraumverfahren und Anwendung auf ein strukturmechanisches Model. Auf Grundlage der Software MORPACK wird eine Arnoldi-Funktion erster Ordnung um interpolativen Startvektor, Eliminierung der Starrkörperbewegung und Reorthogonalisierung erweitert. Diese Operationen beinhaltend, wird ein rationales, interpolatives SOAR-Verfahren entwickelt. Ein rationales Block-SOAR-Verfahren erweist sich im Vergleich als unterlegen. Es wird interpolative Gleichwichtung verwendet. Das Arnoldi-Verfahren zeichnet kleiner Berechnungsaufwand aus. Das rationale, interpolative SOAR liefert kleinere reduzierte Systemdimensionen für gleichen abgebildeten Frequenzbereich. Die Funktionen werden auf Rahmen-, Getriebegehäuse- und Treibsatzwellen-Modelle angewendet. Zur Fehlerbewertung wird eigenfrequenzbasiert ein H2-Integrationsbereich festgelegt und der übertragungsfunktionsbasierte, relative H2-Fehler berechnet. Es werden zur Lösung linearer Gleichungssysteme mit Matlab entsprechende Löser-Funktionen, auf Permutation und Faktorisierung basierend, implementiert. / FEM-MKS-coupling requires model order reduction methods to simulate the frequency response of mechanical structures using a smaller reduced representation of the original system. Most of the rational Krylov-subspace methods are based on Arnoldi-algorithms. They allow to represent the frequency response in freely selectable, wide frequency ranges. Subject of this thesis is the implementation of an error-controlled model order reduction based on Krylov-subspace methods and the application to a mechanical model. Based on the MORPACK software, a first-order-Arnoldi function is extended by an interpolative start vector, the elimination of rigid body motion and a reorthogonalization. Containing these functions, a rational, interpolative Second Order Arnoldi (SOAR) method is designed that works well compared to a rational Block-SOAR-method. Interpolative equal weighting is used. The first-order-Arnoldi method requires less computational effort compared to the rational, interpolative SOAR that is able to compute a smaller reduction size for same frequency range of interest. The methods are applied to the models of a frame, a gear case and a drive shaft. Error-control is realized by eigenfrequency-based H2-integration-limit and relative H2-error based on the frequency response function. For solving linear systems of equations in Matlab, solver functions based on permutation and factorization are implemented.

Page generated in 0.1115 seconds