Spelling suggestions: "subject:"méthode dess eléments finis"" "subject:"méthode dess eléments dinis""
211 |
Simulation des écoulements de fluides viscoélastiques par une formulation en logarithmique du tenseur de conformationKane, Abdoulaye Sabou 16 April 2018 (has links)
L'objectif des travaux présentés dans cette thèse est d'explorer de nouvelles méthodes numériques efficaces et robustes pour la résolution par la méthode des éléments finis des problèmes d'écoulements des fluides viscoélastiques pour des nombres de Weissenberg élevés. La motivation de cette étude provient en grande partie au fait que les fluides viscoélastiques sont à la base de nombreuses applications industrielles, notamment dans l'industrie des polymères, l'industrie des pâtes de papiers, l'industrie alimentaire, etc... Ces écoulements sont régis par un système d'équations aux dérivées partielles fortement non linéaire composé des équations de Navier Stokes (ou Stokes pour les écoulements lents) et d'une équation constitutive modélisant la contribution du polymère. Les rhéologues ont mis à la disposition de la communauté scientifique plusieurs modèles. Dans ce travail, afin de pouvoir effectuer des comparaisons avec les travaux effectués par d'autres chercheurs déjà disponibles dans la vaste littérature du domaine, nos simulations numériques ont été faites pour les modèles de Oldroyd-B, PTT et Giesekus. La méthodologie utilisée est toutefois assez générale. Une des difficultés majeures rencontrées dans la simulation numérique des fluides viscoélastiques est la perte de convergence des algorithmes pour des problèmes à faibles nombres de Weissenberg. Ainsi, dans l'optique d'améliorer la convergence des schémas numériques, nous nous sommes proposés de développer et d'implémenter de nouveaux algorithmes en nous basant sur la nouvelle formulation en logarithmique du tenseur de conformation. Cette formulation a été utilisée pour la première fois dans le contexte des fluides viscoélastiques par Fattal et Kupferman et al. (21). Par la suite, en nous inspirant de Coronado et al. (35), nous avons introduit deux autres formulations logarithmiques. La première est une variante de celle proposée par Coronado et al. (35) avec un traitement spécial pour le terme convectif. La deuxième formulation permet une linéarisation complète des équations pour la résolution par la méthode de Newton. Les deux méthodes que nous proposons ont l'avantage d'être relativement simple à mettre en oeuvre. Pour tester la robustesse de ces nouvelles formulations, quelques calculs ont été effectués pour le problème d'écoulement autour d'un cylindre et l'inévitable problème de la contraction 4:1 sur des maillages non structurés anisotropes obtenus par la stratégie générale de remaillage adaptatif développée au GIREF. Nous avons ensuite jugé utile d'appliquer cette nouvelle formulation logarithmique pour la résolution de quelques problèmes de surfaces libres. Nous avons étudié la présence des écoulements secondaires et leur influence sur la morphologie des écoulements complexes des problèmes multi-couches dans une filière. En effet, nous avons montré qu'il possible de résoudre des problèmes multi-couches dans une filière tridimensionnelle en résolvant un problème bidimensionnel de surface libre instationnaire seulement sur une section. Nous avons également traité un problème de cisaillement d'une goutte dans une matrice fluide. Il s'agit ici d'un écoulement régi par la tension superficielle. Le calcul des sufaces libres est rendu possible grâce à la méthode des surfaces de niveau (level set method). Cette méthode requiert la résolution d'une équation de transport pour trouver la nouvelle position de l'interface. L'interface constitue une zone de transition de largeur 2 ? des paramètres rhéologiques des deux fluides. Ces paramètres sont régularisés à l'interface pour éviter de gérer des discontinuités. Une technique de réinitialisation a été mise en oeuvre pour remédier à d'éventuels problèmes de conservation de masse. Ces techniques sont falicitées par l'introduction de la méthode de remaillage adaptatif. Celle-ci permet de concentrer les éléments dans l'interface permettant ainsi de faire les calculs avec une meilleure précision. Pour la résolution des équations hyperboliques, notamment l'équation constitutive, de transport et de régularisation de l'interface, nous avons utilisé la méthode de stabilisation de type SUPG. Il résulte de ces développements une méthode de résolution nettement plus performante que les méthodes classiques.
|
212 |
Optimisation du procédé d'étirage à froid des tubes d'aluminium 6063-T4 par la méthode des éléments finisBéland, Jean-François 16 April 2018 (has links)
Le procédé d'extrusion permet d'obtenir des tubes de section circulaire à partir d'une billette d'aluminium. Cependant, l'extrusion tubulaire de l'alliage 6063 lui confère de faibles propriétés mécaniques ainsi que des épaisseurs de paroi limitées. Elle donne aussi de mauvaises tolérances ainsi qu'un fini de surface qui laisse à désirer. L'opération d'étirage subséquente permet alors de réduire le diamètre ainsi que l'épaisseur de la paroi des tubes afin d'améliorer leurs tolérances, d'augmenter leurs propriétés mécaniques par écrouissage ainsi que d'obtenir un meilleur fini de surface. Pom atteindre la condition T832 prescrite par le client, un certain pourcentage de réduction est nécessaire afin d'écrouir les tubes suffisamment. Le pourcentage de réduction à atteindre est de 50% afin d'obtenir les bonnes propriétés mécaniques. Actuellement, ce haut pourcentage de réduction nécessite deux passes d'étirage afin d'éviter le bris des tubes. Le projet vise à optimiser les paramètres du procédé d'étirage à froid afin de permettre la réduction nécessaire en une seule passe. L'optimisation de la géométrie de l'outillage est effectuée par le biais d'un modèle éléments finis. Une loi de comportement élasto plastique déjà implémentée dans le logiciel commercial LS-DYNA a été utilisée. Le comportement aux interfaces de contact du tube avec l'outillage est modélisé par un contact surface sur surface avec un coefficient de friction de Coulomb. Les deux variables étudiées pour la géométrie des filières sont l'angle d'entrée ainsi que le rayon de courbure entre la région conique et la portée cylindrique. Des expérimentations ont été effectuées afin de valider les résultats numériques. Une bonne corrélation entre les résultats numériques et expérimentaux a été trouvée.
|
213 |
Multi-scale damage model of fiber-reinforced concrete with parameter identification / Modèle multi-échelle du béton fibré avec identification des paramètresRukavina, Tea 17 December 2018 (has links)
Dans cette thèse, plusieurs approches de modélisation de composites renforcés par des fibres sont proposées. Le matériau étudié est le béton fibré, et dans ce modèle, on tient compte de l’influence de trois constituants : le béton, les fibres, et la liaison entre eux. Le comportement du béton est analysé avec un modèle d’endommagement, les fibres d'acier sont considérées comme élastiques linéaires, et le comportement sur l'interface est décrit avec une loi de glissement avec l’extraction complète de la fibre. Une approche multi-échelle pour coupler tous les constituants est proposée, dans laquelle le calcul à l'échelle macro est effectué en utilisant la procédure de solution operator-split. Cette approche partitionnée divise le calcul en deux phases, globale et locale, dans lesquelles différents mécanismes de rupture sont traités séparément, ce qui est conforme au comportement du composite observé expérimentalement. L'identification des paramètres est effectuée en minimisant l'erreur entre les valeurs calculées et mesurées. Les modèles proposés sont validés par des exemples numériques. / In this thesis, several approaches for modeling fiber-reinforced composites are proposed. The material under consideration is fiber-reinforced concrete, which is composed of a few constituents: concrete, short steel fibers, and the interface between them. The behavior of concrete is described by a damage model with localized failure, fibers are taken to be linear elastic, and the behavior of the interface is modeled with a bond-slip pull-out law. A multi-scale approach for coupling all the constituents is proposed, where the macro-scale computation is carried out using the operator-split solution procedure. This partitioned approach divides the computation in two phases, global and local, where different failure mechanisms are treated separately, which is in accordance with the experimentally observed composite behavior. An inverse model for fiber-reinforced concrete is presented, where the stochastic caracterization of the fibers is known from their distribution inside the domain. Parameter identification is performed by minimizing the error between the computed and measured values. The proposed models are validated through numerical examples.
|
214 |
Méthodes de contrôle de la qualité de solutions éléments finis: applications à l'acoustiqueBouillard, Philippe 05 December 1997 (has links)
This work is dedicated to the control of the accuracy of computational simulations of sound propagation and scattering. Assuming time-harmonic behaviour, the mathematical models are given as boundary value problems for the Helmholtz equation <i>Delta u+k2u=0 </i> in <i>Oméga</i>. A distinction is made between interior, exterior and coupled problems and this work focuses mainly on interior uncoupled problems for which the Helmholtz equation becomes singular at eigenfrequencies. <p><p>As in other application fields, error control is an important issue in acoustic computations. It is clear that the numerical parameters (mesh size h and degree of approximation p) must be adapted to the physical parameter k. The well known ‘rule of the thumb’ for the h version with linear elements is to resolve the wavelength <i>lambda=2 pi k-1</i> by six elements characterising the approximability of the finite element mesh. If the numerical model is stable, the quality of the numerical solution is entirely controlled by the approximability of the finite element mesh. The situation is quite different in the presence of singularities. In that case, <i>stability</i> (or the lack thereof) is equally (sometimes more) important. In our application, the solutions are ‘rough’, i.e. highly oscillatory if the wavenumber is large. This is a singularity inherent to the differential operator rather than to the domain or the boundary conditions. This effect is called the <i>k-singularity</i>. Similarly, the discrete operator (“stiffness” matrix) becomes singular at eigenvalues of the discretised interior problem (or nearly singular at damped eigenvalues in solid-fluid interaction). This type of singularities is called the <i>lambda-singularities</i>. Both singularities are of global character. Without adaptive correction, their destabilizing effect generally leads to large error of the finite element results, even if the finite element mesh satisfies the ‘rule of the thumb’. <p><p>The k- and lambda-singularities are first extensively demonstrated by numerical examples. Then, two <i>a posteriori</i> error estimators are developed and the numerical tests show that, due to these specific phenomena of dynamo-acoustic computations, <i>error control cannot, in general, be accomplished by just ‘transplanting’ methods that worked well in static computations</i>. However, for low wavenumbers, it is necessary to also control the influence of the geometric (reentrants corners) or physical (discontinuities of the boundary conditions) singularities. An <i>h</i>-adaptive version with refinements has been implemented. These tools have been applied to two industrial examples :the GLT, a bi-mode bus from Bombardier Eurorail, and the Vertigo, a sport car from Gillet Automobiles.<p><p>As a conclusion, it is recommanded to replace the rule of the thumb by a criterion based on the control of the influence of the specific singularities of the Helmholtz operator. As this aim cannot be achieved by the <i>a posteriori</i> error estimators, it is suggested to minimize the influence of the singularities by modifying the formulation of the finite element method or by formulating a “meshless” method.<p> / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished
|
215 |
Initiation, propagation, arrêt et redémarrage de fissures sous impactGrégoire, David 24 October 2008 (has links) (PDF)
Les risques liés à la propagation de fissures sous impact sont encore très difficiles à estimer. La détermination de critères de rupture dynamique uniquement à partir de résultats expérimentaux reste délicate. Ainsi la première étape pour valider des lois de propagation de fissures sous impact passe par le développement d'outils de simulation numérique. Depuis les années 1970, de nombreux codes de calcul mécanique ont été dédiés à l'étude de la propagation de fissures, notamment dans le cas du phénomène de fatigue. La principale difficulté consiste dans la nécessité de suivre la géométrie de la fissure au cours du temps. Ces dernières années, des méthodes alternatives basées sur la partition de l'unité ont permis une description implicite des discontinuités mobiles. C'est le cas de la méthode des éléments finis étendue (X-FEM) qui paraît particulièrement adaptée à la simulation de la propagation dynamique de fissures sous chargement mixte où les trajets de fissures ne sont pas connus a priori. Si ces outils numériques permettent maintenant de représenter l'avancée dynamique d'une fissure, les résultats numériques doivent être comparés à des résultats expérimentaux pour s'assurer que les lois introduites sont physiquement fondées. Notre objectif est donc de développer conjointement des techniques expérimentales fiables et un outil de simulation numérique robuste pour l'étude des phénomènes hautement transitoires que sont l'initiation, la propagation, l'arrêt et le redémarrage de fissures sous impact.<br />Des expériences de rupture dynamique ont donc été réalisées sur du Polyméthacrylate de méthyle (PMMA) durant lesquelles la mixité du chargement varie et des arrêts et redémarrages de fissures se produisent. Deux bancs d'essais différents ont été utilisé, le premier basé sur la technique des barres de Hopkinson (ou barres de Kolsky), le second mettant en jeu un vérin rapide. Le PMMA étant transparent, la position de la fissure au cours de l'essai a été acquise grâce à des caméras rapides mais aussi en utilisant un extensomètre optique (Zimmer), habituellement dédié à la mesure de déplacements macroscopiques d'un contraste noir/blanc. L'utilisation de cet extensomètre pour suivre la fissure au cours de l'essai a permis d'obtenir une localisation très précise de la pointe de la fissure en continu, permettant ainsi l'étude des phases transitoires de propagation. Afin d'étudier le même phénomène dans des matériaux opaques comme les aluminiums aéronautiques (Al 7075), des techniques de corrélation d'images numériques ont été employées en mouchetant les éprouvettes impactées. De nouveaux algorithmes ont été développés afin de traiter les images issues d'une caméra ultra-rapide (jusqu'à 400 000 images par seconde).<br />Plusieurs géométries ont été envisagées afin d'étudier différents cas de propagation dynamique : initiation en mode I pur, initiation en mode mixte, propagation, arrêt, redémarrage, interaction entre deux fissures, influence d'un trou sur le trajet d'une fissure, branchement dynamique de fissures. Ces expériences ont ensuite été reproduites numériquement afin de valider les algorithmes et les critères de rupture choisis.
|
216 |
Modélisation numérique du procédé de frittage flash / Numerical modeling of the spark plasma sintering processMondalek, Pamela 07 December 2012 (has links)
Le SPS (Spark plasma sintering) ou frittage flash est une technique innovante de compaction de poudre. Ce procédé fait intervenir le courant électrique pour chauffer l'échantillon en appliquant simultanément une pression. Grâce à la vitesse de chauffage, le procédé SPS apparaît comme étant une technologie prometteuse dans le secteur aéronautique servant à produire des matériaux denses à microstructure fine, composés par des intermétalliques difficiles à fondre, à former et à usiner avec les procédés conventionnels. Cependant, la fabrication de formes complexes est problématique à cause des hétérogénéités en densité qui peuvent apparaître lors de la compaction et qui proviennent de la distribution de la température et des contraintes dans la poudre compactée. La distribution du courant, de la température et des contraintes, ainsi que leurs différents effets, font l'objet d'une large étude, étant responsables de l'homogénéité de la microstructure. Une modélisation numérique 3D du procédé est réalisée, dans le cadre de la librairie CimLib. Elle englobe trois problèmes physiques fortement couplés : électrique, thermique et mécanique. Nous utilisons une approche monolithique qui consiste à résoudre une équation pour chaque problème sur un maillage unique représentant outils et poudre. Tout d'abord le couplage électrique-thermique est modélisé et les simulations numériques sont validées. Une loi de comportement viscoplastique compressible s'appuyant sur un modèle d'Abouaf est utilisée pour modéliser la densification de la poudre de TiAl. Ce modèle est validé par plusieurs cas tests de compaction de poudre dans un contexte lagrangien puis eulérien avant de passer à une simulation complète de couplage électrique-thermique-mécanique. Dans ce contexte monolithique, nous développons un modèle pour prendre en compte les effets du frottement entre la poudre et le moule. Enfin, la loi de comportement utilisée est identifiée pour la poudre intermétallique de TiAl. Le frittage par SPS d'échantillons de différentes tailles est simulé. Les résultats en termes de distribution de densité et déplacement sont validés grâce à une comparaison avec l'expérience. / Spark plasma sintering process (SPS) is a breakthrough technology for producing high quality sintered materials. An electric current is applied simultaneously with a vertical load to sinter the powder placed in a graphite mould. Joule effect leads to high heating rates which are favorable for enhancing the microstructure and physical properties. However, manufacturing complex shapes is problematic due to heterogeneities in density distribution that may appeari during compaction. For that reason, the development of a numerical model to predict sintering is necessary. The model should help controlling temperature and stress distributions, which are responsible for the microstructure homogeneity. A 3D numerical model is developed to ensure a predictive tool for SPS using CimLib, a code developed at CEMEF. The numerical model presents three physical problems strongly coupled: an electric problem, a thermal problem and a mechanical problem. A monolithic approach is used which consists in solving one equation for each problem using one unique mesh for tools and powder. First the electric thermal coupling is modeled and the numerical simulations are validated by comparison with commercial codes. A viscoplastic compressible law based on Abouaf model is implemented to model the densification of TiAl powder. This model is validated by comparing the numerical results of different compaction tests with analytic solutions using a Lagrangian and Eulerian framework. Then a fully coupled electric-thermal-mechanical simulation is carried out. In the monolithic framework, a model is developed to take into account friction effects between powder and mould. Finally, the parameters of the selected material law are identified for TiAl powder using our numerical model and SPS experiments. Sintering of different samples is then simulated. Results are compared with the experiments in terms of density distribution and displacement.
|
217 |
Sur une approche à objets généralisée pour la mécanique non linéaireSaad, Roy 05 December 2011 (has links)
Les problèmes qui se posent aujourd'hui en mécanique numérique et domaines connexes sont complexes, et impliquent de plus en plus souvent plusieurs physiques à différentes échelles de temps et d’espace. Leur traitement numérique est en général long et difficile, d’où l’intérêt d’avoir accès à des méthodes et outils facilitant l’intégration de nouveaux modèles physiques dans des outils de simulation. Ce travail se pose dans la problématique du développement de codes de calcul numérique. L’approche proposée couvre la démarche de développement du modèle numérique depuis la formulation variationnelle jusqu’à l’outil de simulation. L’approche est appliquée à la méthode des éléments finis. Nous avons développé des concepts génériques afin d’automatiser la méthode des éléments finis. Nous nous sommes appuyés sur l'analyse tensorielle dans le contexte de la méthode des éléments finis. Le formalisme mathématique est basé sur l’algèbre tensorielle appliquée à la description de la discrétisation des formes variationnelles. Ce caractère générique est conservé grâce à l'approche logicielle choisie pour l’implantation; orientée objet en Java. Nous proposons donc un cadre orienté objet, basé sur des concepts symboliques, capables de gérer de manière symbolique les développements assistés des contributions élémentaires pour la méthode éléments finis. Ces contributions sont ensuite automatiquement programmées dans un code de calcul. L'intérêt de cette approche est la généricité de la description qui peut être étendue naturellement à tout autre modèle de discrétisation (spatiale ou temporelle). Dans ce travail, les concepts sont validés dans le cadre de problèmes linéaires simples (élasticité, chaleur,...), dans le cadre du traitement de formulations variationnelles mixtes (thermomécanique, Navier-Stokes,…) et dans un cadre Lagrangien (élasticité en grandes transformations, hyperélasticité,…). / The problems occurring today in computational mechanics and related domains are complex, and may involve several physics at different time and space scales. The numerical treatment of complex problems is in general tough and time consuming. In this context, the interest to develop methods and tools to accelerate the integration of new formulations into simulation tools is obvious. This work arises on the issue of the development of computational tool. The proposed approach covers the development process of numerical models from the variational statement to the simulation tool. The approach is applied to the finite element method. We have developed generic concepts to automate the development of the finite element method. To achieve this goal, we relied on tensor analysis applied in the context of the finite element method. The mathematical formalism is based on the tensor algebra to describe the discretization of a variational formulation. The generic character of the approach is preserved through the object-oriented approach in Java. We propose a framework based on object-oriented concepts capable of handling symbolic developments of elemental contributions for finite element codes. The advantage of this approach is the generic description that can be extended naturally to any discretization model in space or time. This concept is fully validated for simple linear problems (elasticity, heat convection, ...), for the treatment of mixed variational formulations (thermo-mechanical, Navier-Stokes for incompressible flows...) and Lagrangian frameworks (elasticity in larges transformations, hyperelasticity, ...).
|
218 |
Vibro-acoustics substructuring : Combining simulations and experimental identification of subdomains for low frequency vehicle acoustics / Sous-structure vibro-acoustique : Combinaison de simulations et d'identification expérimentale de sous-domaines pour l'acoustique des véhicules à basse fréquenceGrialou, Matthieu 04 December 2018 (has links)
La sonorité de l’échappement joue un rôle significatif sur le confort acoustique des occupants, ainsi que sur le caractère du véhicule. L’étude proposée porte sur la problématique industrielle suivante : « Description et quantification de la transmission du son entre la bouche d’échappement et l’intérieur du véhicule ». Physiquement la transmission sonore entre l’échappement et l’intérieur du véhicule s’effectue en trois étapes : Propagation des ondes sonores de la canule à la surface extérieure du véhicule et conversion en énergie vibratoire (1) ; Le bruit structurel se propage de la peau extérieure du véhicule à l’habillage intérieur (2) ; La surface intérieure du véhicule rayonne de l’énergie dans l’air à l’intérieur (3). Dans l’état de l’art proposé, la méthode de sous-structuration vibro-acoustique Patch Transfer Functions (PTF) est considérée comme une alternative viable à la problématique proposée. Cependant, avant d’appliquer la méthode sur un véhicule complet, la problématique suivante devait être résolue : « Caractérisation expérimentale d’un sous-système par des mesures sur un système couplé ». Ce manuscrit propose une méthode originale pour mesurer des fonctions de transfert d’un système découplé, sur la base de la réponse d’un système couplé. En raison de la nature mal posée du problème inverse, une méthode originale de régularisation a été proposée. La méthode a été validée pas des essais numériques, puis par un test physique. / Exhaust noise has a significant impact on acoustic comfort and the sound identity of a vehicle brand. The present study focuses on the: “Description and quantification of the sound transmission from the exhaust outlet into the interior of a vehicle”. Physically the noise propagation from the exhaust pipe to the cabin consists of three steps: The sound waves propagate through the air from the exhaust outlet to the external skin of the vehicle (1); the external skin vibrates and transmits its vibration to the internal skin (2); the internal skin radiates sound in the passengers’ cabin (3). The Patch Transfer Functions method, which is based on the framework of dynamic substructuring, allows for the consideration of this complex problem as simpler subproblems that consist of subsystem interactions. Yet the application of the method to a full vehicle requires addressing the problem: “Characterization of Patch Transfer Functions of a subsystem by means of measurement on a coupled system”. This dissertation presents an original inverse method for the measurement of Patch Transfer Functions. In industrial structures, this in-situ characterization is generally the only possible measurement method. Yet, due to the ill posed nature of the problem, the inversion process is difficult. An original regularization method is proposed. The method is tested through numerical simulations, and is validated with an experimental setup.
|
219 |
Stratégie de couplage expérimentation/modélisation dans les matériaux hétérogènes. Identification de propriétés mécaniques locales / Experimentation/modelisation coupling strategies in heterogeneous materials. Identification of local elastic mechanical properties.Pétureau, Louis 07 December 2018 (has links)
Le développement de méthodes d’identification de paramètres de lois de comportement de matériaux est devenu primordial pour avoir accès à la connaissance complète du comportement. En effet, les méthodes de mesure optiques, comme la Corrélation d’Images Numériques, permettent d’obtenir les quantités cinématiques de la relation de comportement sous forme de champs de vecteurs. En revanche, les contraintes ne sont généralement pas mesurables et il est nécessaire d’identifier les paramètres de la loi de comportement du matériau considéré pour y avoir accès. Plusieurs méthodes ont vu le jour et permettent de répondre à cette problématique mais la plupart d’entre elles supposent une homogénéité du matériau. Ce mémoire traite de l’application de certaines de ces méthodes, notamment la méthode de l’écart à l’équilibre (MEQ) et la méthode de recalage de modèle éléments finis (MREF), dans des matériaux hétérogènes à microstructure complexe où les propriétés mécaniques évoluent spatialement dans le volume. L’objectif est d’identifier ces propriétés mécaniques locales qui régissent la cinématique mesurée de tels matériaux dans le cadre de l’élasticité linéaire isotrope. Dans un premier temps, les deux méthodes citées sont décrites, implémentées et comparées sur des cas simulés en 2D. La MREF est préférée à la MEQ car plus robuste vis-à-vis des incertitudes de mesure. Basée sur un formalisme itératif, une parallélisation de l’algorithme a été opérée pour diminuer le coût en temps de la méthode. Des expérimentations dans le plan sur des éprouvettes en polyuréthane où les hétérogénéités sont maîtrisées ont permis de valider la méthode. Enfin, deux applications en 3D sur un matériau en mousse polyuréthane et un composite à base de fibres de bois démontrent l’intérêt d’une telle méthode pour l’identification de propriétés mécaniques locales. La mise en évidence d’une relation entre les propriétés locales identifiées et les propriétés locales de la microstructure de ces matériaux est effectuée. / The development of identification methods of material constitutive equation parameters has become fundamental to completely know the mechanical behavior. Indeed, optical methods, such as Digital Image Correlation, allows to get kinematics quantities of the constitutive equation as vectors fields. But, stresses are usually not available experimentally and one has to identify constitutive equation parameters to compute them. Several methods have been developed and answer to that problematic but most of them suppose the materials as homogeneous. This memoir is about the application of some of these methods, such as the equilibrium gap method (EGM) and the finite element model updating method (FEMU), in the case of heterogeneous materials with complex structures where mechanical properties vary spatially in the volume. The objective is to identify these local mechanical properties which rule the measured kinematics of such materials considering the isotropic linear elasticity. Firstly, both methods are detailed, implemented and compared on 2D simulated cases. The FEMU method is preferred because it is more robust in the presence of noisy data. Based on an iterative process, a parallelisation of the algorithm is achieved in order to reduce the cost of the method. In-plane experiments on polyurethane samples where heterogeneities are controlled have validated the method. Finally, two 3D applications on a polyurethane foam material and a wood-based fibrous composite have demonstrated the interest of this approach to identify local mechanical properties. The highlighting of a relationship between identified local properties and microstructural properties of these materials is made.
|
220 |
Contribution à la simulation numérique des structures en béton armé : utilisation de fonctions de niveau pour la modélisation de la fissuration et des renforts / Contribution to the numerical simulation of reinforced concrete structures : use of level set functions to model cracking and rebarsLé, Benoît 15 November 2016 (has links)
La prédiction de l’état de fissuration est un enjeu crucial pour l’analyse des structures en béton armé, qui nécessite le recours à la modélisation et à la simulation numérique. Le calcul par éléments finis des structures en béton armé pose au moins deux problèmes majeurs :d’une part il existe peu de modèles permettant de traiter à la fois l’initiation, la propagation et l’ouverture des fissures, d’autre part le diamètre généralement faible des armatures métalliques par rapport aux dimensions des structures étudiées nécessite des maillages particulièrement fins. On propose donc des solutions à ces deux problématiques basées sur l’utilisation de fonctions de niveau (level set). L’endommagement et la fissuration du béton sont modélisés à l’aide de l’approche TLS (Thick Level Set). Cette méthode,développée en tant que méthode de régularisation des modèles d’endommagement locaux, utilise une level set afin d’introduire une longueur caractéristique. Cela permet de rendre aisée la localisation de la position des fissures, et donc d’enrichir le champ de déplacement parla méthode des éléments finis étendus (X-FEM) afin de modéliser l’ouverture des macro-fissures. Concernant la modélisation des armatures, une nouvelle approche multidimensionnelle est proposée. Une représentation volumique des armatures par la méthode X-FEM est utilisée dans les zones d’intérêt afin d’obtenir des résultats précis tout en simplifiant la procédure de maillage, tandis qu’une représentation linéique est utilisée dans le reste de la structure afin de réduire le nombre de degrés de liberté du calcul. La méthode de transition développée ici permet d’assurer la cohérence des résultats obtenus / Prediction of cracking is a key point for the analysis ofreinforced concrete structures, which requires the use of Modeling and numerical simulation. The analysis of reinforced concrete structures using the finite element method raises two issues: on one hand, few models areable to deal with the initiation, the propagation and the opening of cracks, on the other hand the diameter of thereinforcements which is usually small compared to the dimensions of the structures necessitates very fine meshes. Some solutions to these two problematics areproposed, based on the use of level set functions.Damage and cracking of concrete are modeled using theThick Level Set (TLS) approach. This method,developped as a mean to regularize local damagemodels, uses a level set to introduce a characteristic length. It makes the location of the cracks easy, whichallows to enrich the displacement field with the eXtendedFinite Element Method (X-FEM) in order to model the macro-cracks opening. Concerning the modeling of thereinforcements, a new multidimensionnal approach isproposed. A volumic representation of the reinforcements with the X-FEM method is used in the zones of interest to get accurate results while simplifying the meshing process, whereas a lineic representation isused elsewhere to decrease the number of degrees of freedom. The developed transition method insures the consistency of the results.
|
Page generated in 0.1083 seconds