Spelling suggestions: "subject:"macrophage"" "subject:"marcrophage""
641 |
Efeitos do diazepam sobre o crescimento tumoral e imunidade de animais portadores do tumor ascítico de Ehrlich / Diazepam effects on tumor growth and on immunity of Ehrlich tumor bearing miceSakai, Mônica 07 December 2004 (has links)
Benzodiazepínicos (BDZ) são fármacos amplamente utilizados devido às suas propriedades ansiolíticas e sedativas, mediadas pelo complexo GABAA no Sistema Nervoso Central (SNC). Além destes receptores centrais, os BDZ possuem afinidade por receptores do tipo periféricos (PBR) os quais estão presentes em células do sistema imune, como linfócitos e macrófagos, em células tumorais e em glândulas adrenais. O presente trabalho avaliou os efeitos do diazepam, um BDZ freqüentemente utilizado, sobre o crescimento tumoral e a imunidade de animais portadores do Tumor Ascítico de Ehrlich (TAE). Mais especificamente, este trabalho avaliou os seguintes parâmetros da resposta imune: atividade de macrófagos, populações de linfócitos B, T helper e citotóxicos esplênicos, citotoxicidade de células Natural Killer (NK). Além disso, a marcação para PBR em células do TAE e avaliação de possíveis efeitos do diazepam ou Ro5-4864 in vitro sobre o ciclo celular do TAE foram avaliadas. Os resultados mostraram os seguintes efeitos do tratamento com diazepam in vivo (3,0 mg/kg): (1) aumento do crescimento do TAE; sem modificação das fases do ciclo celular do tumor, após 7 dias, (2) diminuição do número de leucócitos da cavidade peritoneal, da produção de NO e do índice de espraiamento; mas sem interferência com a produção de peróxido de hidrogênio e o índice de fagocitose, após 2 dias (3) não modificou o peso relativo do baço e a porcentagem de linfócitos esplênicos, após 2 dias ou 7 dias (4) aumento da citotoxicidade de células NK, após 3 dias (5) diminuição da porcentagem de células do TAE marcadas para PBR, após 7 dias. O tratamento in vitro com diazepam ou Ro5-4864 mostrou um aumento da proliferação de células do TAE. Já o tratamento in vivo com diazepam em doses menores (0,3 mg/kg e 1mg/kg) não modificou o crescimento do TAE, após 7 dias. Desta forma, sugere-se que o diazepam na dose de 3,0 mg/kg tenha aumentado o crescimento do TAE e diminuído a resposta imune inata, observada por meio da diminuição da atividade dos macrófagos peritoneais. Parece-nos plausível excluir de nossos resultados a participação de linfócitos B, T helper e citotóxicos. Por outro lado, não foi possível precisar a relevância das células NK para o desenvolvimento do tumor. Além disso, pode-se afirmar que há expressão de PBRs em células do TAE e que o tratamento in vitro com diazepam ou Ro5-4684 aumentou a proliferação destas células. Desta forma, os resultados dos dois últimos experimentos sugerem que a existência de efeitos do diazepam sobre crescimento tumoral in vivo pode também ser atribuída, ao menos em parte, a uma ação direta deste fármaco sobre células do TAE / Benzodiazepines (BDZ) are drugs widely used due to their anxiolytic and sedative properties, acting on specific sites coupled to GABAA complex in the Central Nervous System (CNS). Besides these central receptors, BDZ have affinity for peripheral-type receptors (PBR), which have been found in immune cells, such as lymphocytes and macrophages, in tumor cells and in the adrenal glands. The present study evaluated the effects of diazepam, a commonly used BDZ, on tumor growth and immunity of mice bearing Ehrlich Ascitic Tumor (EAT). Specifically, this study evaluated the following parameters of the immune system: macrophage activity, populations of B, helper and cytotoxic T lymphocytes, and Natural Killer (NK) cells cytotoxicity. Furthermore, the evaluation of PBR expression in EAT cells and possible in vitro effects of diazepam or Ro5-4864 on EAT cell cycle were performed. Results showed the following diazepam effects in vivo (3.0 mg/kg per day): (1) increased tumor growth without changes in cell cycle, after 7 days; (2) decreased the number of leucocytes in the peritoneal cavity, the production of NO and the spreading index, but did not modify the production of hydrogen peroxide and the phagocytosis index, after 2 days; (3) did not modify the relative spleen weight and the population of lymphocytes after 2 or 7 days, (4) increased NK cytotoxicity after 3 days; (5) reduced the percentage of EAT cells expressing PBR after 7 days. Experiments performed in vitro showed that diazepam or Ro5-4864 increased the proliferation of EAT cells. Diazepam treatment in vivo using lower doses (0.3 mg/kg and 1mg/kg) did not modify tumor growth. Therefore, diazepam in the dose of 3.0 mg/kg increased the growth of EAT and reduced innate immunity, probably through the decrease in the activity of peritoneal macrophages. A role of B and helper or cytotoxic T lymphocytes in our experiments seems unlikely since the population of these cells types remained unchanged. On the other hand, it was not possible to determine the relevance of NK cells cytotoxicity on tumor development. The expression of PBR in EAT cells and the increase of their proliferation induced by in vitro treatment with diazepam or Ro5-4684 were observed. The results of these two last experiments suggest that the increase on tumor growth following diazepam treatment in vivo can be attributed, at least in part, to a direct action of this drug on EAT cells
|
642 |
Role of Mitogen-activated Kinases in Cd40-mediated T Cell Activation of Monocyte/macrophage and Vascular Smooth Muscle Cell Cytokine/chemokine ProductionMilhorn, Denise M. 01 August 1999 (has links)
This dissertation represents efforts to determine the functional consequences acquired by vascular smooth muscle cells (SMC) in response to CD40 ligation by activated CD154+ T cells, and to elucidate components of the signaling pathway(s) activated in response to CD40 signaling in both monocytes and SMC. To study the consequences of CD40 stimulation, primary human monocytes and aortic SMC were treated with plasma membranes purified from CD154 + , CD4+ T cells. The results presented in this dissertation demonstrate that SMC, like monocytes/macrophages, are capable of interacting with T cells in a manner that results in reciprocal activation events. SMC were shown to present antigen to, and activate T cells. In turn T cell stimulus resulted in the activation of proinflammatory function in SMC initiated through the CD154:CD40 interaction. CD40 stimulation of SMC resulted in the production of the chemokines interleukin 8 (IL-8) and macrophage chemotactic protein-1 (MCP-1), and the upregulation of intercellular adhesion molecule (ICAM). Examination of the intracellular signaling pathways activated through CD40 signaling revealed the involvement of MAPKs in the pathway leading to induction of proinflammatory activity. Evaluation of CD40 signaling in monocytes demonstrated the activation of the MAPK family members ERK1/2, but not the MAPK family members p38 or c-jun-N-terminal kinase (JNK). In contrast, CD40 signaling in SMC was shown to result in ERK1/2 and p38 activation, and both of these kinases were shown to play a critical role in the induction of chemokine synthesis. An examination of the ability of anti-inflammatory cytokines to modulate CD40 signaling in monocytes and SMC demonstrated that the anti-inflammatory cytokines IL-4 and IL-10 abrogate CD40-mediated induction of inflammatory cytokine production by monocytes. This inhibition was shown to be a result of a negative influence of IL-4 and IL-10 on CD40 mediated ERK1/2, activation in monocytes. However, IL-4 and IL-10 did not inhibit SMC proinflammatory responses indicating a difference in the intracellular responses to these cytokines by the two cell types. (Abstract shortened by UMI.)
|
643 |
Fibrosis development requires mitochondrial Cu,Zn-superoxide dismutase-mediated macrophage polarizationHe, Chao 01 May 2014 (has links)
H2O2 generated by alveolar macrophages has been linked to the development pulmonary fibrosis, but little is known about its source, mechanism of production and exact role upon alveolar macrophage activation. In this study, we found that alveolar macrophages from asbestosis patients spontaneously produce high levels of H2O2 and have high expression of Cu,Zn-SOD. Cu,Zn-SOD localized to the mitochondrial intermembrane space (IMS) in asbestosis patients and asbestos induced translocation of Cu,Zn-SOD to the IMS. This process was unique to macrophages and dependent on functional mitochondrial respiration. The presence of at least one of the conserved cysteines was required for disulfide bond formation and mitochondrial translocation. These conserved cysteine residues were also necessary for enzyme activation and H2O2 generation. Cu,Zn-SOD-mediated H2O2 generation was inhibited by knockdown of the iron-sulfur protein, Rieske, in complex III. The role of Cu,Zn-SOD was biologically relevant as Cu,Zn-SOD-/- mice generated significantly less H2O2, had less oxidative stress, and were protected from developing pulmonary fibrosis. This protective mechanism is closely related to the alveolar macrophage activation and polarization in Cu,Zn-SOD-/- mice, as they had a dominant pro-inflammatory phenotype. Macrophages not only initiate and accentuate inflammation after tissue injury, but they are also involved in resolution and repair. The pro-inflammatory M1 macrophages have microbicidal and tumoricidal activity, whereas the M2 macrophages are involved in tumor progression and tissue remodeling, and can be pro-fibrotic in certain settings. We demonstrate that overexpression of Cu,Zn-SOD promoted macrophages polarization into an M2 phenotype. Furthermore, overexpression of Cu,Zn-SOD in mice resulted in a pro-fibrotic environment and accelerated the development of pulmonary fibrosis. The mechanism which Cu,Zn-SOD-mediated H2O2 utilizes to modulate macrophage M2 polarization is through redox regulation of a critical cysteine in STAT6. The polarization process, at least partially, was regulated by epigenetic modulation. We show that STAT6 was indispensable for Cu,Zn-SOD-mediated M2 polarization. STAT6 upregulated Jmjd3, a histone H3 lysine 27 demethylase, and initiated M2 gene transcriptional activation. Targeting STAT6 with leflunomide, which can reduce cellular ROS production and inhibit STAT6 phosphorylation, abolished M2 polarization and ameliorated the fibrotic development.
Taken together, these observations provide a novel mechanism for the pathogenesis of pulmonary fibrosis whereby the antioxidant enzyme Cu,Zn-SOD plays a paradoxical role. The study highlights the importance of mitochondrial Cu,Zn-SOD and redox signals in macrophage polarization and fibrosis development. These observations demonstrate that the Cu,Zn-SOD-STAT6-Jmjd3 pathway is a novel regulatory mechanism for M2 polarization and that leflunomide is a potential therapeutic agent in the treatment of pulmonary fibrosis.
|
644 |
Efeito dos componentes salivares de Aedes aegypti em infecções por parasitos do gênero Leishmania. / Effect of Aedes aegypti salivary components in the infection by parasites of Leishmania genus.Garcia, Mariana Hayashi 19 June 2017 (has links)
Aedes aegypti é importante vetor de patógeno causador de doença como dengue, febre amarela, febre Chikungunya e Zika. A fêmea realiza repasto sanguíneo a fim de adquirir nutriente para o desenvolvimento dos ovos. Neste contexto, a saliva possui papel fundamental, representando o elo entre o artrópode hematófago, seu hospedeiro vertebrado e o potencial patógeno a ser transmitido. Nessa saliva encontra-se um coquetel farmacológico com diversas atividades biológicas, como a presença de peptídeos antimicrobianos e moléculas com funções imunomoduladoras sobre células do hospedeiro vertebrado, com especial atenção aos macrófagos. Como os macrófagos também estão envolvidos nos mecanismos efetores da resposta contra protozoários do gênero Leishmania e a leishmaniose apresenta-se como uma doença de caráter zoonótico de grande relevância em saúde pública, o objetivo deste trabalho foi de avaliar o efeito do extrato de glândula salivar (EGS) de A. aegypti em infecções por Leishmania. Nossos resultados mostraram aumento da infecção in vivo e in vitro na presença do EGS, sugerindo fortemente que o EGS de A. aegypti é capaz de aumentar a infecção por Leishmania. / Aedes aegypti is an important vector of disease-causing pathogens such as dengue, yellow fever, Chikungunya and Zika fever. The mosquito female takes a blood meal in order to develop the eggs. In this context, a saliva plays a key role, representing the link between the hematophagous arthropod, its vertebrate host and the potential pathogen to be transmitted. During the evolutionary process, these insects developed a salivary cocktail with an arsenal of molecules presenting several immunomodulatory properties in host cells, such as macrophages. As macrophages are also involved in the mechanisms of response against protozoa of the genus Leishmania and leishmaniasis is a zoonotic disease of great relevance in public health, the aim of this work is to evaluate the effect of salivary gland extract (SGE) of A. aegypti in Leishmania infections. Our results showed increased infection, in vivo and in vitro, in the presence of SGE, strongly suggesting that A. aegypti EGS is able to increase infection by Leishmania.
|
645 |
RUNX1/AML1 functions and mechanisms regulating granulocyte-macrophage colony-stimulating factor transcriptionLiu, Hebin January 2005 (has links)
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a multipotent cytokine involved in the production and function of hematopoietic cells, and GM-CSF plays in particular a major role in responses to infection and physiological and pathological inflammatory processes. GM-CSF is produced in many cell types, and increases in the intracellular Ca2+ concentration are, like in many other systems, of major importance in the intracellular signaling that determines GM-CSF expression after receptor stimulation of the cells. Previous studies have shown that the Ca2+/calmodulin-dependent phosphatase calcineurin (CN) mediates stimulation of GM-CSF transcription in response to Ca2+. This thesis shows that Ca2+ signaling also regulates GM-CSF transcription negatively through Ca2+/calmodulin-dependent kinase II (CaMK II) phosphorylation of serines in the autoinhibitory domain for DNA binding of the transcription factor Ets1. Mutation of the CaMK II target serines increased transactivation of the GM-CSF promoter/enhancer and decreased the sensitivity to inhibition by increased Ca2+ or constitutively active CaMK II. The Ca2+-dependent phosphorylation of Ets1 was also shown to reduce the binding of Ets1 to the GM-CSF promoter in vivo. RUNX1, also known as acute myeloid leukemia 1 (AML1), is one of three mammalian RUNX transcription factors and has many essential functions in hematopoiesis. RUNX1 has also many important roles in the immune system, and RUNX1 is the most frequent target for chromosomal translocation of genes in acute human leukemias. This thesis shows that RUNX1 directly interacts with both subunits of CN and that the strongest interaction is localised to the regulatory CN subunit and the DNA binding domain of the RUNX protein. Constitutively active CN was shown to activate the promoter/enhancer of GM-CSF synergistically with RUNX1, RUNX2 or RUNX3, and the Ets1 binding site of the promoter was shown to be essential for the synergy between RUNX1 and CN in Jurkat T cells. The analysis suggests that Ets1 phosphorylated by the protein kinase glycogen synthase kinase-3β is the target of RUNX1-recruited CN phosphatase at the GM-CSF promoter. Transforming growth factor-β (TGF-β) is another multipotent cytokine that often has a role opposite to that of GM-CSF in inflammatory responses since it is a potent suppressor of immune cells and therefore is anti-inflammatory. This thesis shows that TGF-β can decrease transcription from a GM-CSF promoter/enhancer. Certain constitutively active TGF-β receptors and the TGF-β activated transcription factor Smad3 could also repress GM-CSF transcription, whereas several other Smad proteins did not have this inhibitory effect. The inhibition required intact DNA binding ability of Smad3, and the 125 bp upstream of the transcription initiation site, which was sufficient for the inhibition, contains several weak Smad binding sites near the TATA box next to an Ets1 site of the promoter. Smad3 was able to bind to the promoter DNA together with Ets1 and could also be in complex with Ets1 in the absence of DNA. Surface plasmon resonance analysis revealed that Ets1 interacted with the DNA binding domain of Smad3, and the binding constant of this interaction was about 1 µM. The results identify a negative regulation of the GM-CSF promoter by TGF-β signaling through direct Smad3 binding and indicate that the mechanism is by Smad3 interaction with Ets1 and perhaps other proteins around the TATA box of the promoter. This thesis also identifies a novel transactivation domain in the N-terminal of RUNX1 including the N-terminal α-helix in the DNA binding domain. The domain was also required for RUNX2 and RUNX3 transactivation. Despite this, the N-terminal domain of RUNX1 was not essential for RUNX1 function in megakaryocytopoiesis in vitro from mouse embryonic stem cells.
|
646 |
The Role of Scavenger Receptor-A in Heat Shock Protein 27-mediated Atheroprotection: Mechanistic Insights into a Novel Anti-atherogenic TherapyRaizman, Joshua E. 03 May 2012 (has links)
Heat shock protein (HSP)27 is traditionally described as an intracellular chaperone and signaling molecule, but growing evidence suggests it is released from immune cells where it plays an anti-inflammatory role during atherogenesis. Previously, the O’Brien lab found that overexpression of HSP27 led to augmented HSP27 serum levels in female apolipoprotein E knockout (ApoE-/-) mice, attenuated atherogenesis, and inhibited macrophage foam cell formation via physical binding with scavenger receptor (SR)-A. However, the precise mechanism of atheroprotection remained elusive. This thesis sought to ascertain the mechanism(s) by which HSP27 prevents foam cell formation, and determine if SR-A, a key receptor involved in the uptake of lipid into macrophages, plays an important role in HSP27-mediated atheroprotection. Pre-treatment of human macrophages with recombinant HSP27 (rHSP27) inhibited acytelated low density lipoprotein (acLDL) binding and uptake independent from receptor competition effect. Reduction in uptake was associated with attenuation of expression of SR-A mRNA, total protein, and cell surface expression. To explore the signaling mechanism by which HSP27 modulated SR-A expression it was hypothesized that nuclear factor-kappa B (NF-kB), a major regulator of many atherosclerosis gene programs, is altered by extracellular HSP27. Indeed, rHSP27 markedly activated NF-kB signaling in macrophages. Using an inhibitor of NF-kBsignaling there was an attenuation of rHSP27-induced inhibition of SR-A gene and protein expression, as well as lipid uptake, suggesting that SR-A expression is regulated by NF-kB activation. Lastly, to investigate if SR-A is required for HSP27-mediated atheroprotection in vivo, ApoE-/- and ApoE-/-SR-A-/- mice fed a high fat diet were treated with rHSP25, the mouse orthologue of HSP27, or PBS for 3 weeks. While rHSP25 therapy equally reduced serum cholesterol levels in the mouse cohorts, aortic atherogenesis, assessed using en face and sinus cross-sectional analyses, was attenuated in ApoE-/- mice but not ApoE-/-SR-A-/- mice. In conclusion, rHSP27 inhibits foam cell formation by downregulating SR-A expression. This effect may be associated with NF-kB activation. Reductions in atherosclerotic burden by rHSP27 require SR-A, and are independent of changes in serum cholesterol levels, highlighting the importance of macrophage lipid uptake in atherogenesis. Results presented in this thesis demonstrate that SR-A is a major target for HSP27 atheroprotection in the vessel wall, and provide an impetus for further studies that investigate the potential therapeutic value of HSP27.
|
647 |
The Effects of HIV on the Regulation of IL-12 Family Cytokines, IL-12, IL-23, and IL-27 Production in Human Monocyte-derived MacrophagesO'Hara, Shifawn R.K. 29 August 2012 (has links)
IL-12 family cytokines IL-23 and IL-27 play an important role linking innate and adaptive immunity, and regulating T-cell responses. The production of IL-12, a structurally similar cytokine, is decreased in chronic HIV infection; therefore IL-23 and IL-27 may also be influenced by HIV infection. I hypothesized that HIV inhibits LPS-induced IL-23 and IL-27 production in human MDMs by suppressing the activation of signalling pathways regulating their expression. In vitro HIV-infection of MDMs did not have any effect on basal secretion of IL-23 or IL-27; however, HIV inhibited LPS-induced production of IL-12/23 p40 and IL-23 p19, and IL-27 EBI3 and IL-27 p28 mRNA expression, and IL-23, IL-12/23 p40 and IL-27 secretion. In order to evaluate the molecular mechanisms by which HIV inhibits IL-23 and IL-27 in LPS-stimulated MDMs, the signalling pathways regulating their expression were evaluated. The PI3K, p38 MAPK, and JNK MAPK pathways were found to positively regulate LPS-induced IL-27 secretion. Interestingly, in vitro HIV infection inhibited LPS-induced p38 and JNK MAPK activation in MDMs. In summary, I have shown that HIV inhibits IL-23 and IL-27 production in LPS-stimulated MDMs and that HIV may inhibit LPS-induced IL-27 production through the inhibition of p38 and JNK MAPK activation. It is currently unknown whether PKCs regulate LPS-induced IL-23 or IL-27 in human monocytes/macrophages. I demonstrated that classical PKCs differentially regulate LPS-induced IL-23 and IL-27 secretion within THP-1 cells, primary monocytes, and MDMs. Classical PKCs were found to positively regulate LPS-induced IL-12/23 p40 and IL-27 p28 mRNA expression and IL-12/23 p40, IL-23, and IL-27 secretion in primary human monocytes. Similarly, the classical PKCs were found to positively regulate IL-27 p28 mRNA expression and IL-27 secretion in THP-1 cells. However, classical PKCs did not regulate LPS-induced IL-27 production in MDMs, or LPS-induced IL-23 production in THP-1 cells. Overall, this demonstrates that classical PKCs differentially regulate LPS-induced IL-23 and IL-27 production in different myeloid cells.
|
648 |
Cryptococcus Neoformans Interactions with Surfactant Proteins: Implications for Innate Pulmonary ImmunityGeunes-Boyer, Scarlett Gabriel Thoreau January 2009 (has links)
<p>Concurrent with the global escalation of the AIDS pandemic, cryptococcal infections are increasing and are of significant medical importance. Although improvements in antifungal therapy have advanced the treatment of cryptococcosis, the mortality rate is approximately 12% in medically advanced countries, and approaches 50% in less developed regions. Additionally, <italic>C. neoformans</italic> can cause infection in seemingly healthy individuals, elevating its status as a primary human pathogen. Although numerous studies have examined virulence properties, less is understood regarding host immune factors in the lungs during early stages of fungal infection. In the present thesis studies, I examined the roles played by pulmonary surfactant proteins in response to <italic>C. neoformans in vitro</italic> and <italic>in vivo</italic>. We demonstrate that SP-D, but not SP-A, binds to the yeast and increases phagocytosis of poorly encapsulated yeast cells by macrophages, yet concomitantly protects the pathogenic microbes from macrophage-mediated defense mechanisms. Furthermore, we show that SP-D functions as risk factor in vivo</italic> by protecting the yeast cells against oxidant species and thus facilitating disease progression. The results of these studies provide a new paradigm on the role played by surfactant protein D during host responses to <italic>C. neoformans</italic> and, consequently, impart insight into potential future treatment strategies for cryptococcosis.</p> / Dissertation
|
649 |
Host responses to microgel-based biomaterial interfacesBridges, Amanda Walls 25 August 2008 (has links)
Although medical devices and biomaterial implants are used clinically in a variety of applications, the process of implanting them damages local tissue and initiates a localized non-specific inflammatory response that is detrimental to device performance. Extensive research efforts have focused on developing material surface treatments and systems to deliver anti-inflammatory agents to abrogate such biomaterial-mediated inflammation, yet long-term use of these traditional materials in vivo is limited due to continued inflammation and fibrous encapsulation. This work aims to address these limitations by developing a versatile implant coating with non-fouling properties using a system based on hydrogel microparticles (i.e. microgels). The overall objective of this project was to evaluate host responses to these microgel coatings.
Microgel particles were synthesized from poly(N-isopropyl acrylamide) cross-linked with poly(ethylene glycol)-diacrylate and were successfully deposited onto polymeric substrates using a simple and reproducible spin coating technique. We determined that microgel-coated samples adsorbed significantly lower levels of human fibrinogen than controls. Further characterization using an in vitro culture system demonstrated that microgel coatings significantly reduced the adhesion and spreading of murine macrophages and primary human blood-derived monocytes compared to controls.
Materials were then evaluated for early cellular responses following implantation in the intraperitoneal cavity of mice to model acute inflammation. Analyses of explanted biomaterials using immunofluorescence staining techniques revealed that microgel-coated samples significantly reduced the density of surface-adherent cells. Additional analysis using flow cytometry revealed that microgel-coated samples exhibited significantly lower levels of pro-inflammatory cytokines in adherent leukocytes compared to controls, indicating that these coatings modulate cellular pro-inflammatory activities.
Finally, we implanted samples subcutaneously in rats to determine the efficacy of microgel coatings at longer time points using an established model of chronic inflammation. Explants were processed histologically and stained for various markers. Importantly, staining demonstrated that the microgel coatings significantly reduced fibrous capsule thickness, the capsules appeared less compact and structurally ordered than controls, and also contained significantly fewer cells. Collectively, these results demonstrate that microgel particles can be applied as polymeric coatings to modulate inflammation and achieve more desirable host responses in vivo, with the potential to extend implant lifetime.
|
650 |
Assessing the Relationship of Monocytes with Primary and Secondary Dengue Infection among Hospitalized Dengue Patients in Malaysia, 2010: A Cross-Sectional StudyKlekamp, Benjamin Glenn 01 January 2011 (has links)
Dengue, a group of four similar viruses transmitted through the bite of a mosquito, is estimated to infect upwards of 100 million annually in over 100 nations throughout the global equatorial belt. Distribution of global dengue is highly skewed as Southeast Asian and Western Pacific regions endure 75% of the global dengue burden. Similar to other regional countries, Malaysia has been rapidly urbanizing, which has supported a hyperendemic dengue state.
The biological pathway by which dengue infection causes a wide range of clinical manifestations, spanning asymptomatic to life-threatening severe complications, is not comprehensively understood. Historically, severe dengue complications have primarily occurred in children. Consequentially, the majority of the dengue biological pathway research has been conducted on children; however, extrapolation of research findings to adults may be inappropriate as dengue manifestations have differed between age groups. As developing countries undergo epidemiologic transitions and dengue continues to spread geographically to non-endemic regions, youth and adult populations have been subjected to more of the severe dengue burden.
Epidemiology and laboratory-based evidence has supported both memory T-cell and antibody independent enhancement hypotheses to explain the biological pathway of severe dengue. Both hypotheses employ the central idea that a primary infection alters immune components so that during a secondary heterotypic dengue infection, an individual is more at risk for severe complications.
Monocytes, immune cells that are pivotal in both hypotheses, have been highly examined through in vivo and in vitro experimentation; however, epidemiological evidence for monocyte involvement is incomplete. The primary objective of the study was to examine if a difference in absolute monocyte count, considering independent risk factors, is present in individuals with primary and secondary dengue infections.
A secondary dengue infection was found to raise absolute monocyte count during the defervescence phase of dengue illness in individuals aged 15 years and older 0.71 ± 0.15 (x10^9) compared to those experiencing primary dengue infection. Gender and distance of study participants' residences from Hospital Ampang were found to be risk factors for the relationship of interest; whereas, age and race were not found to be significant risk factors.
The study helps expand current knowledge of the severe dengue biological pathway with respect to immunological differences between primary and secondary dengue infections. Further research is needed to confirm and expand the findings of this initial study, specifically to include infecting dengue serotype, education, and socioeconomic status which are known dengue risk factors.
|
Page generated in 0.0483 seconds