Spelling suggestions: "subject:"matériaux composites"" "subject:"mtériaux composites""
101 |
Comportement thermomécanique de structures intégrant des alliages à mémoire de forme : Modélisation, Simulation et Expérimentation. Application aux façades adaptatives / Thermomechanical behavior of structures integrating shape memory alloys : Modelling, Simulation and Experimentation. Application to adaptive facadesHannequart, Philippe 14 December 2018 (has links)
Les propriétés thermomécaniques étonnantes des alliages à mémoire de forme (AMF) sont mises à profit dans de nombreux domaines. Ce matériau est capable de mettre en mouvement une structure suite à un changement de température. Or les façades de bâtiments contemporains, pour s’adapter à des conditions climatiques variables, doivent réguler le passage de la lumière et de l’énergie thermique, par exemple au moyen de systèmes motorisés. Le potentiel de fils AMF pour l’actionnement de protections solaires en façade est exploré ici. La modélisation du couplage mécanique induit par l’introduction de tels matériaux dans une structure a été peu étudiée : l’AMF agit sur la structure qui en retour modifie le comportement de l’AMF. La première étape de ce travail a consisté en une contribution à la modélisation du comportement thermomécanique de ce matériau reposant sur le choix d’une énergie libre, d’un potentiel de dissipation et de plusieurs variables internes. Deux modèles unidimensionnels ont été proposés : un premier modèle monocristallin reproduit de façon simplifiée le comportement du matériau, et un second modèle polycristallin propose une description plus fidèle. En parallèle un dispositif d’essai original à température contrôlée a été développé, il a permis une caractérisation fiable de fils Nickel-Titane et l’identification des paramètres des modèles. Dans un second temps ces modèles ont permis de résoudre des cas de couplage élémentaires (fil AMF + ressort, lame élastique + fil AMF noyé) pour des chargements thermomécaniques simples, et des solutions analytiques ont été établies. Les modèles ont été implémentés numériquement via un script matériau utilisateur (UMAT) pour le logiciel éléments finis ABAQUS et au moyen d’un algorithme d’optimisation sous contraintes. Ceci permet de simuler la réponse couplée de systèmes structuraux a priori quelconques intégrant des AMF, connectés à ou noyés dans, une structure. Dans un troisième temps, divers actionneurs ont été conçus, réalisés et testés dans le cadre de l’occultation solaire des façades. Le principe est d’utiliser un cycle de température permettant à l’AMF de déformer la structure, puis à l’énergie élastique de déformation de la structure d’assurer le retour à la forme originale. Le comportement réel de ces actionneurs a été comparé aux calculs analytiques et éléments finis. Des tests cycliques ont également été réalisés / The surprising thermomechanical properties of shape memory alloys (SMA) are harnessed in many engineering fields. This material is able to set a structure in motion upon a temperature change. Today, contemporary building facades must adapt to variable climate conditions as well as to evolving building use and occupancy. In particular, they must regulate light and thermal energy passing through the facade, with motorized systems, for example. We explore the potential of SMA wires for putting in motion solar shading devices in facades. The modelling of the mechanical coupling induced by the introduction of such materials in a structure has received little attention as of now. The SMA acts on the structure which in return modifies the SMA behavior. The first step of this work is a contribution to modelling the thermomechanical behavior of this material through the choice of a free energy, a dissipation potential and internal variables. We propose two one-dimensional models: a first monocrystalline model reproduces the material behavior in a simplified way, and a second polycrystalline model offers a more accurate description of it. An original temperature-controlled testing apparatus was developed in parallel. This led to a reliable characterization of Nickel-Titanium wires and the identification of the model parameters. In a second stage, these models allowed to solve elementary coupling cases (SMA wire + Spring, Elastic plate + Embedded SMA wire) for simple thermomechanical loadings and we established analytical solutions. The models were then numerically implemented via a user-material script (UMAT) for the finite elements software ABAQUS, by using a constrained optimization algorithm. This enables the simulation of the coupled response of, in principle, any structural system including SMA wires, connected or embedded in the structure. Finally, we designed, fabricated and tested different actuators in the context of sunlight control in facades. The working principle lies in using a temperature cycle which allows the SMA to deform the structure, and then allows the elastic strain energy in the structure to ensure the return to the original shape. The real behavior of these actuators have been compared to analytical and finite element calculations. We also performed cyclic tests
|
102 |
La cellulose et le poly(ethylene 2,5-furandicarboxylate) comme précurseurs biosourcés de matériaux thermoplastiques et thermodurcissables : les transitions physiques des biopolymères et l'élaboration des composites / Cellulose and Poly(ethylene 2,5-furandicarboxylate) as biobased precursors of thermoplastic and thermoset materials : the physical transitions of the biopolymers and elaboration of compositesCodou, Amandine 16 December 2015 (has links)
La cellulose et le poly(éthylène 2,5-furandicarboxylate) (PEF) sont les deux précurseurs polymériques biosourcés étudiés dans ce travail de thèse. Deux approches ont été envisagées ; l’une se concentrant sur les aspects fondamentaux et l’autre sur l’élaboration de composites à partir de ces polymères. D’une part, la transition vitreuse et la cristallisation non-isotherme du PEF ont été explorées. Une approche cinétique de ces transitions a mis en lumière un comportement particulier du PEF et permet ainsi de mieux appréhender sa mise forme. De plus, la transition haute température de la cellulose Iβ a été étudiée pour la première fois en corroborant des techniques d’analyse thermiques et spectroscopiques complémentaires. En deuxième lieu, l’oxydation contrôlée d’une seule source de cellulose sous l’action du periodate de sodium a permis l’élaboration de composites entièrement cellulosiques qui se démarquent par leur haute performance mécanique. Enfin, le PEF et des nanocristaux de cellulose ont été combinés ce qui a permis l’élaboration de composites thermoplastiques où les cristaux de cellulose semblent jouer le rôle d’agents nucléants. / The cellulose and the poly(ethylene 2,5-furandicarboxylate) (PEF) were the two main biobased polymeric precursors employed in this thesis work. Two complementary investigation pathways were explored which respectively focus on the fundamental aspects and on elaboration of composites from these precursors. First, the glass transition and both the melt/glass non-isothermal crystallization of PEF were investigated. A kinetic approach of these transitions revealed a peculiar behavior of PEF which is useful to better understand its processing. In addition, the high-temperature transition of cellulose Iβ was for the first time explored by means of complementary thermo-analytical and spectroscopic techniques. On the other hand, the controlled periodate oxidation of one single cellulose source was employed to generate thermoset-like “all-cellulose composites” marked by their high mechanical performances. Finally, combination of PEF and cellulose nanocrystals allows to obtain transparent thermoplastic composites in which the cellulosic entities might have nucleating effects.
|
103 |
Optimisation du procédé de tomographie X appliqué à la détection des défauts dans les matériaux composites. / Optimization of the X-ray computed tomography applied to the detection of the defects in the composites materials.Uhry, Cyril 19 September 2016 (has links)
Les matériaux composites à renfort carbone dans une matrice époxy présentent des propriétés remarquables au regard de leur poids. Cependant, ces matériaux peuvent présenter des défauts qui peuvent significativement altérer leurs propriétés. Il est donc nécessaire de disposer d'un moyen de contrôle non destructif performant, afin de vérifier la structure interne de ces matériaux. Dans ce document, la tomographie X est utilisée. La distinction des défauts dans ces matériaux est cependant compliquée à cause de la proximité chimique entre le carbone et la résine. Dans le but d'améliorer la détection de ces défauts, ce document propose l'étude des différents phénomènes physiques entrant en jeu lors du procédé de tomographie X dont l'étude des paramètres d'acquisition et les phénomènes physiques dégradant la qualité de l'image. Afin d'aider à la compréhension des différents phénomènes physiques, l'outil de la simulation est utilisé, celle-ci permettant d'étudier de manière indépendante tous ces phénomènes. Après avoir présenté dans la première section les matériaux composites et la tomographie X, la deuxième section décrit les caractéristiques du système d'acquisition tomographique utilisé. Ensuite, les caractéristiques de la simulation du système d'acquisition sont également présentées. La troisième section propose une étude des différents phénomènes physiques contribuant à l'image. En effet, la comparaison des résultats entre la simulation et l'expérimental a permis de mettre en évidence qu'un phénomène de rétrodiffusion se produit à l'intérieur du détecteur. Un protocole est présenté afin de le déterminer expérimentalement et de l'ajouter aux projections simulées. De plus, la simulation ne prenant pas en compte le bruit sur les projections, un protocole est présenté afin de le déterminer expérimentalement. La quatrième section présente l'étude de l'optimisation de la qualité de l'image par simulation. Le choix de la tension accélératrice est étudié, ainsi que l'influence du rayonnement diffusé objet. La cinquième section propose une validation expérimentale des résultats, notamment en appliquant la correction du rayonnement rétrodiffusé aux pièces composites d'intérêt. / The carbon-fiber-reinforced-polymer (CFRP) materials display excellent properties considering their weight. However, they also can display defects that can significantly decrease their properties. In order to verify the internal structure of the composite materials, non destructive control is required. In this document, the X-ray computed tomography is used. Nevertheless, the distinction of the defects is difficult because of the chemical proximity between the carbon and the resin. In order to improve the detection of the defects, this document proposes to study the different physical phenomena happening during the tomography process such as the study of the acquisition parameters and the phenomena that decrease the image quality. In order to help to understand the different phenomena, the simulation tool is used. It allows to study the different phenomena independently to the others. After the presentation of the composite materials and the x-ray computed tomography in the first part, the features of the used acquisition system are presented in the second part. The features of the simulation of the acquisition system are also presented. The third part propose a study of the different phenomena contributing to the image. The comparison of the results between the simulation and the experimental allows to highlight a backscattering phenomenon happening inside the detector. A protocol allowing to determine these phenomena experimentally and to add it on the computed projections is presented. Furthermore, the simulation does not take the noise on the projection into account. Another protocol is presented, allowing to determine it experimentally. The fourth part displays the study of the optimization of the image quality using the simulation. The choice of the accelerating voltage is studied as well as the influence of the object scatter radiation. The fifth part proposes an experimental validation of the results. Especially, a correction of the backscattering is presented and applied to the composites objects.
|
104 |
Complex Anisotropic Panels and Fast Electromagnetic Imaging – CAP-FELIM / Panneaux complexes anisotropes et imagerie électromagnétique rapideRodeghiero, Giacomo 29 September 2015 (has links)
Le Contrôle Non Destructif (CND) de matériaux composites multicouches pour des problèmes de qualité, viabilité, sécurité et disponibilité des systèmes qui impliquent des pièces fabriquées dans les industries aéronautiques et de l’automobile est devenu une tâche essentielle aujourd’hui. L'objectif visé par cette thèse est l’imagerie électromagnétique de structures complexes multicouches anisotropes, de plus en plus utilisées dans des applications, et encore source de sérieux défis à l'étape de leur modélisation et encore plus à l'étape souvent en enfance de leur imagerie. En utilisant une vaste gamme de fréquences, qui va des courants de Foucault jusqu’aux micro-ondes, il y a un fort besoin de rendre disponibles des procédures de modélisation et d'imagerie qui sont robustes, rapides, précises et utiles à la décision des utilisateurs finaux sur des défauts potentiels, tant donc en basse fréquence (BF) (matériaux conducteurs, type fibre de carbone) qu’en haute fréquence (HF) (matériaux diélectriques, type fibre de verre). De plus, il est important d'obtenir des résultats en des temps brefs. Cependant, cela nécessite la connaissance d’une réponse précise à des sources externes aux multicouches, en considérant les couches des composites comme non endommagées ou endommagées : on parle donc de solution du problème direct, avec le cas particulier de sources élémentaires conduisant aux dyades de Green (DGF). La modélisation et la simulation numérique du problème direct sont gérés principalement via une solution au premier ordre de la formulation intégrale de contraste de source impliquant le tenseur de dépolarisation des défauts, quand ceux-ci sont assez petits vis-à-vis de l’épaisseur de peau locale (cas BF) ou de la longueur d'onde locale (cas HF). La précision des DGF doit nécessairement être assurée alors, même si les sources se situent loin de l'origine, ce qui donne un spectre de dyades qui oscille très rapidement. La technique d'interpolation-intégration dite de Padua-Domínguez est ainsi introduite dans le but d'évaluer de façon efficace des intégrales fortement oscillantes.Néanmoins, les matériaux composites peuvent souffrir de divers défauts, lors du processus de fabrication ou pendant leurs utilisations. Vides d’air, cavités remplies de liquide, fissures, etc., peuvent affecter le fonctionnement correct des structures composites. Il est donc indispensable de pouvoir détecter la présence des défauts. Ici, l’insistance est sur la méthode bien connue d’imagerie dite MUltiple SIgnal Classification (MUSIC), qui est basée sur la décomposition en valeurs singulières (SVD) des DGF ; celle-ci est développée afin de localiser les positions de multiples petits défauts volumiques en interaction faible enfouis dans des milieux anisotropes uniaxiaux. Le principal inconvénient de la méthode MUSIC est cependant sa sensibilité par rapport au bruit. Par conséquent, des méthodes MUSIC avec une résolution améliorée et la Recursively Applied and Projected (RAP) MUSIC sont introduites afin de surmonter un tel inconvénient de l'algorithme standard et de fournir des résultats de qualité avec une meilleure résolution. De nombreuses simulations numériques illustrent ces investigations. / Non-Destructive Testing/Evaluation (NdT/E) of multi-layered composite materials for problems of quality, viability, safety and availability of systems involving manufactured parts (in aeronautics and in automotive industry, as a good example) has become an interesting and challenging task nowadays. The focus of the PhD thesis is on the electromagnetic (EM) imaging of complex anisotropic multi-slab composite panels as increasingly encountered in applications, yet source of strong challenges at modeling stage and even more at often-in-infancy imaging stage. From eddy-currents to microwaves, there is a strong need to make available modeling and imaging procedures that are robust, fast, accurate and useful to potential end-users’ decision about potential defects both at low-frequency (LF) (conductive materials, carbon-fiber like) and high-frequency (HF) (dielectric materials, glass-fiber like). Moreover, it is important to get the results in close-to-real-time. However, this requires an accurate response to external sources of the multilayers, considering the layers which these composite structures are made of as undamaged or damaged. The modeling at forward stage is managed via a first-order solution involving the dyadic Green’s functions (DGF) of the layers along with the depolarization tensor of the assumed defects when they are small enough vis-à-vis the skin depth (LF case) or the wavelength (HF case). The accuracy of the DGF has to be ensured even if the sources lie far away from the origin, which yields a fast-oscillating spectrum of the dyads. The Padua-Domínguez interpolation-integration technique is introduced herein in order to evaluate in an effective fashion fast-oscillating integrals.Damages or disorders, which these composite structures may suffer from, are of many kinds. One could mention voids, fluid-filled cavities or uniaxial defects with obvious impacts on the electromagnetic and geometric parameters of the multilayers. That is, the task to make available to end-users imaging algorithms tailored to detect the presence of defects. The well-known standard MUltiple SIgnal Classification (MUSIC) algorithm, which is based on the Singular Value Decomposition (SVD) of such DGF, is here applied to localize the positions of small multiple defects with weak interaction embedded in anisotropic uniaxial media. The main drawback of MUSIC is its sensitivity with respect to the noise. Therefore, MUSIC with enhanced resolution and Recursively Applied and Projected (RAP) MUSIC are introduced to overcome such a drawback of the standard algorithm and to provide quality results with better resolution.
|
105 |
Homogénéisation périodique de plaques raidies à résonance interne / Periodic homogenization of ribbed plates with iner resonanceFossat, Pascal 20 December 2018 (has links)
Ce travail est consacré à la description macroscopique de deux types de plaques structurées contrastées dont le comportement dynamique est atypique : le premier cas correspond à une plaque raidie dans une direction par des raidisseurs régulièrement espacés, le second correspond au cas d’une plaque bi-raidie dans les deux directions par un treillis périodique de poutres. Les différents régimes de comportement sont spécifiés en fonction des paramètres mécaniques et géométriques des raidisseurs et de la plaque. Le comportement dynamique de ces plaques est établi en faisant émerger, par homogénéisation asymptotique, la description locale et globale. Le modèle est construit à partir des équations élasto-dynamiques tri-dimensionnelles du matériau combinées à des développements asymptotiques. Le travail se concentre sur des situations de résonance interne qui correspondent à des contrastes spécifiques entre les paramètres de la plaque et du raidisseur. L’analyse met clairement en évidence les cinématiques enrichies de la plaque et aboutit à un modèle analytique macroscopique qui inclut les mécanismes de torsion et de flexion. Dans le cas de la plaque mono-raidie, un modèle hybride fait intervenir des paramètres effectifs dont les expressions analytiques sont précisées. Ce modèle est analogue à un modèle de poutre et permet d’appréhender le comportement de la plaque en incluant la résonance interne. Ce modèle non conventionnel montre la coexistence de deux régimes dynamiques. Les caractéristiques de dispersion atypique associées aux ondes de flexion et de torsion proviennent de paramètres effectifs dépendants de la fréquence, comme la masse effective, l’inertie de rotation effective, et la rigidité de torsion effective associées à la plaque. Cette théorie est ensuite étendue au cas de la plaque bi-raidie, et conduit à un opérateur de type plaque non conventionnel incluant des paramètres effectifs. Ces résultats permettent d’examiner des courbes de dispersion atypiques en fonction des contrastes géométriques et mécaniques entre les différents composants. La validité des modèles et leur robustesse sont vérifiées en comparant les résultats analytiques à des simulations numériques de type éléments finis WFEM. Les comparaisons montrent que les mécanismes observables numériquement sont bien décrits par le modèle analytique proposé. Enfin, deux maquettes sont utilisées pour la validation expérimentale : une correspondant à une plaque mono-raidie comportant un contraste géométrique, et l’autre correspondant à la plaque bi-raidie impliquant des contrastes géométrique et mécanique. Les réponses mesurées par vibromètre laser sont traitées par corrélation d’onde IWC. Les mesures sont reproduites pour plusieurs conditions limites de plaques internes et différentes valeurs de masse ajoutées pour montrer la performance du modèle homogénéisé. Une très bonne corrélation apparaît entre les mesures expérimentales et les prédictions issues du modèle. Cette approche peut être utilisée pour décrire le comportement de panneaux raidis industriels et pour concevoir des structures ayant des propriétés spécifiques à certaines fréquences. / This work is devoted to the modeling of two types of contrasted structured plates that exhibit non-conventional dynamic behavior : the first one corresponds to periodic unidirectionally stiffened plates and the second one corresponds to orthogonally stiffened plates. The different regimes of behavior are specified, according to the mechanical and geometrical parameters of the beam and the plate. The dynamic behavior of such stiffened plates is established by up-scaling, through multi-scale asymptotic method, the linear local description of the plate and the stiffening beams coupled together. The behavior is derived from the three-dimensional elastodynamic laws of the materials combined with asymptotic expansions formulation. The study focuses on situations of inner resonance that corresponds to specific mechanical contrasts between the beam and plate parameters. The analysis clearly evidences the enriched kinematics of such plate and yields to a synthetic and analytic macroscopic representation that encompasses the flexural and torsional mechanisms, as well as guided waves. In the case of unidirectionally ribbed plates, an effective hybrid beam/plate model is obtained and the analytical expressions of effective parameters are specified. It results in a beam-like operator that provides a simple understanding of the behavior taking into account inner resonance. This atypical model accounts from the coexistence of two types of dynamic regimes. The unusual dispersion features of flexural and torsional waves arise from frequency dependent parameters, namely, the effective mass, the effective rotational inertia and the effective torsional spring rigidity associated with the plate. The theory is then extended to an orthogonally ribbed plate, and yields a non-conventional plate model with frequency dependent parameters. These results allow investigating the atypical dispersion equation with respect to the geometrical and mechanical contrasts of the structural components. The validity and robustness of the model are also verified by comparing theoretical predictions with finite element based computations, namely the WFEM (Wave Finite Element Method). Comparisons show that mechanisms identified numerically are correctly predicted by the proposed homogenized model. Finally, two mock-ups are considered experimentally, corresponding to uni-directionally ribbed plate with geometrical contrast and orthogonally ribbed plates involving geometrical and mechanical contrasts. The out-of-plane displacement field under random excitation is measured using a scanning laser vibrometer, then post-processed using the IWC (Inhomogeneous Wave Correlation) method. This is performed for various internal boundary conditions and added mass to highlight the ability of the homogenized model to describe different configurations. A good agreement is found between the experimental measurements and the analytical predictions. The presented approach can be used to describe the motion of ribbed panels of industrial interest and/or to design structures having specific atypical features in a given frequency range.
|
106 |
Modélisation du rayonnement électromagnétique de boîtiers de blindage par sources équivalentes : application aux matériaux composites / Modelling of shielding enclosures electromagnetic radiation by equivalent sources : application to composite materialsAbdelli, Wassim 15 June 2015 (has links)
La modélisation de matériaux composites est un domaine d’étude qui bénéficie d’un intérêt croissant. En effet, la vulgarisation de l’utilisation de tels matériaux nécessite le développement de nouveaux modèles afin de mieux comprendre leur comportement. L’industrie automobile et aéronautique s’efforce d’optimiser le choix des matériaux en fonction des spécificités de chaque application, afin de réduire la masse des équipements et de leur assurer de meilleurs caractéristiques mécaniques et thermiques. Les matériaux composites se sont aussi présentés comme une éventuelle alternative au métal pour le rôle de blindage électromagnétique. Leur généralisation dans cette optique se heurte néanmoins à une relative méconnaissance de leur comportement électromagnétique. A cet effet, il est nécessaire de disposer de méthodologies permettant d'évaluer l'efficacité de blindage de boîtiers en matériaux composites et de cerner les différents mécanismes et paramètres correspondants.Par ailleurs, le déploiement de ces matériaux alternatifs à plus grande échelle est freiné par d'autres contraintes liées essentiellement à la difficulté de l'analyse électromagnétiques 3D complète de systèmes complexes abritant des boîtiers en matériaux composites. En effet, la complexité topologique de certains composants complique considérablement leur insertion dans les outils de simulation électromagnétique existants. De plus, le rapport d'échelle entre les différents niveaux (système, boîtiers composites, cartes, circuits, composants) est trop important ; cette disparité d'échelle complexifie considérablement la discrétisation géométrique de l'ensemble. L'association de ces différentes contraintes conduisent à des difficultés réelles aux quelles les ingénieurs CEM sont confrontés. C'est pourquoi il est nécessaire de développer des modèles performants permettant de faciliter l'analyse 3D du système hôte complet. Ce travail de thèse s'est donc réparti sur deux volets :- dans un premier temps, nous présentons une méthodologie de calcul de l'efficacité de blindage des boîtiers en matériaux composites, afin d'évaluer la potentialité de ces matériaux en termes de blindage électromagnétique et de cerner les principaux facteurs qui y contribuent.- dans un second temps et dans l'objectif de fournir une approche permettant de mettre les systèmes électroniques complexes intégrant des boîtiers de blindage composites en conformité avec les exigences strictes de CEM, nous proposons une méthodologie de modélisation des rayonnements électromagnétiques. Cette modélisation (à base d’algorithmes génétiques) permet de remplacer les dispositifs ou les boîtiers rayonnants (composites notamment) par un ensemble de dipôles élémentaires. Le modèle équivalent, de type "boîte noire", est ainsi représentatif de l’ensemble de la structure en termes de rayonnement électromagnétique en hautes fréquences et est facilement intégrable dans le maillage de structures hôtes. Ce modèle multipolaire fournit des prédictions spatiales et fréquentielles du champ électrique et magnétique permettant entre autres de calculer l'efficacité de blindage du boîtier dans l'espace, donnant ainsi un moyen de quantifier son impact perturbateur sur son environnement. D'autre part, cette approche permet de simplifier l'analyse 3D d'un système complet abritant des boîtiers composites en contrôlant le comportement EM à tous les niveaux : système, boîtiers, cartes, circuits et composants. / The modeling of composite materials is a domain of study which benefits of increasingly interest. Indeed, the popularization of the use of such materials requires the development of new models in order to better understand their behavior. The automotive and aerospace industry strives to optimize material selection based on the specificities of each application in order to reduce the weight of the equipment and to provide better mechanical and thermal characteristics. Composite materials have been also presented as a potential alternative to metals for the role of electromagnetic shielding. Their generalization in this context is nevertheless hampered by a relative lack of knowledge of their electromagnetic behavior. For this purpose, it is necessary to have methodologies to evaluate the shielding effectiveness of composite enclosures and identify the different corresponding mechanisms and parameters.Moreover, the deployment of these alternative materials on a larger scale is hindered by other constraints related mainly to the difficulty of complete 3D analysis of complex systems including composite enclosures. In fact, the topological complexity of certain components greatly complicates their integration into existing electromagnetic simulation tools. Moreover, the scale ratio between the different levels (system, composite enclosures, electronic card, circuit, component) is too large ; This disparity of scale complexifies considerably the geometrical discretization of the entire system. The combination of these different constraints leads to real difficulties to which EMC engineers face. That is why it is necessary to develop efficient models to facilitate the 3D analysis of the complete host system.This work is therefore divided in two sections :- In a first time, we present a methodology to calculate shielding effectiveness of composite enclosures of electronic equipment. The goal is to evaluate the potential of these materials in terms of electromagnetic shielding and to identify the main contributing factors.- In a second time, and in order to ensure compliance of complex electronic systems incorporating composite shielding enclosures with the stringent requirements of EMC, we propose a modeling methodology of electronic devices radiation. This modeling (based on genetic algorithms) allows to replace the radiating devices and enclosures (especially composites) by a set of elementary dipoles. The equivalent model, "black box" type, is thus representative of the entire structure in terms of high frequency electromagnetic radiation and is easily integrable in the mesh of host structures. This multipolar model provides spatial and frequency predictions of the electric and magnetic field, enabling among others to calculate the shielding effectiveness of the radiating enclosure in space, thereby giving a way to quantify its disruptive impact on its environment. Moreover, this approach allow to simplify the 3D analysis of a complete system comprising composite enclosures by controlling the EM behavior at all levels: system, enclosures, cards, circuits and components.
|
107 |
Méthode d'évaluation non-destructive de la qualité du collage des composites de renforcement pour le génie civil / Method for a nondestructive testing of the bond quality of composite reinforcement systems on concrete structuresBillon, Astrid 08 December 2016 (has links)
Dans le secteur du génie civil, le renforcement structural et la réparation des ouvrages en béton par collage de polymère renforcé de fibres de carbone (PRFC) sont des techniques désormais répandues. Les performances et la durabilité du système de renforcement sont intrinsèquement liées à la qualité du collage entre le matériau composite et le béton. Or, en pratique, les conditions environnementales et les contraintes liées au chantier ne permettent pas d’assurer l’intégrité de ce collage, dont les propriétés évoluent par ailleurs dans le temps en raison des phénomènes de vieillissement. La vérification in-situ par une méthode non-destructive de l’état du collage est donc une étape importante pour garantir les propriétés d'usage tout au long de la vie du renforcement.Une méthode d’évaluation non-destructive est développée dans le cadre de cette étude. Elle s’inspire de l’essai standard d’arrachement en traction directe bien connu sur le terrain. La méthode repose sur un essai mécanique qui caractérise le comportement en charge – déplacement de l’assemblage, et permet d’exprimer un critère d’évaluation appelé raideur d’assemblage qui dépend notamment du module d’Young de l’adhésif utilisé.La faisabilité en laboratoire de cette méthode est vérifiée sur un dispositif d’essai entièrement conçu pour les fins de l’étude. Un travail d’analyse et de dimensionnement basé sur une modélisation numérique par éléments finis permet de sélectionner des capteurs et une chaîne d’acquisition adaptés. Une formulation analytique partielle de la raideur d’assemblage est énoncée.Une campagne expérimentale sur des éprouvettes de béton renforcées par lamelles de PRFC avec trois adhésifs époxy différents est ensuite mise en œuvre. Les résultats sont interprétés en suivant une approche statistique qui prend en compte les variations de tous les paramètres d’influence. Les performances de détection de l’essai dans le cadre de notre application en laboratoire peuvent ainsi être exprimées.Des éléments contribuant à l’élaboration d’une méthodologie d’essai applicable in-situ sont enfin apportés, et les performances de l’essai sont rediscutées en vue de cette transposition sur le terrain / Over the last 30 years, repairing and strengthening techniques of concrete structures using externally bonded carbon fiber reinforced polymer (CFRP) composites have gained much popularity and are now widespread. The effectiveness of the strengthening systems highly depends on the level of adhesion between the composite material and the concrete surface. Therefore, on-site evaluation of the bond quality is crucial to assess the performance and predict the durability of the reinforcement system.It is proposed to determine the bond properties of the adhesive layer within the reinforcement system by using a nondestructive test (NDT) method derived from the standard and well-known pull-off test. This method consists in analyzing the linear load vs displacement behavior of the adhesive joint, in order to determine an assembly stiffness which can be related to the Young’s modulus of the adhesive layer.In order to investigate the feasibility of the test method, a laboratory implementation is carried out on a mechanical device fully designed for the purpose of the present study. Suitable displacement sensors and an appropriate measurement chain are chosen based on a finite element modeling and a mechanical analysis of the test. A partial analytical form of the assembly stiffness is also expressed.The test method is then applied to concrete slabs reinforced with CFRP plates using three different epoxy adhesives. A statistical assessment of all identified parameters of influence sheds light on the results. In the end, the performances of the test performed in laboratory conditions are discussed.Finally, foundations for a relevant test methodology on real field conditions are laid, and the above-mentioned performances are reviewed
|
108 |
Multigrid methods for 3D composite material simulation and crack propagation modelling based on a phase field method / Méthode multigrille pour la simulation du comportement de matériaux et la rupture quasi-fragileGu, Hanfeng 29 September 2016 (has links)
Avec le développement des techniques d’imagerie telles que la tomographie par rayons X au cours des dernières années, il est maintenant possible de prendre en compte la microstructure réelle dans les simulations des matériaux composites. Cependant, la complexité des composites tels que des fibres inclinées et brisées, les vides, exige un grand nombre des données à l’échelle microscopique pour décrire ces détails et amène ainsi des problèmes difficiles en termes de temps de calcul et de mémoire lors de l’utilisation de méthodes de simulation traditionnelles comme la méthode Eléments Finis. Ces problèmes deviennent encore plus sérieux dans la simulation de l’endommagement, comme la propagation des fissures. Par conséquent, il est nécessaire d’étudier des méthodes numériques plus efficaces pour ce genre de problèmes à grande échelle. La méthode Multigrille (MG) est une méthode qui peut être efficace parce que son coût de calcul est proportionnel au nombre d’inconnues. Dans cette thèse, un solveur de MG efficace pour ces problèmes est développé. La méthode MG est appliquée pour résoudre le problème d’élasticité statique basé sur l’équation de Lamé et aussi le problème de la propagation de fissures basé sur une méthode de champ de phase. La précision des solutions MG est validée par une solution analytique classique d’Eshelby. Ensuite, le solveur MG est développé pour étudier le processus d’homogénéisation des composites et ses solutions sont comparées avec des solutions existantes de la littérature. Après cela, le programme de calcul MG est appliqué pour simuler l’effet de bord libre dans les matériaux composites stratifiés. Une structure stratifiée réelle donnée par tomographie X est d’abord simulé. Enfin, le solveur MG est encore développé, combinant une méthode de champ de phase, pour simuler la rupture quasi-fragile. La méthode MG présente l’efficacité à la fois en temps de calcul et en mémoire pour résoudre les problèmes ci-dessus. / With the development of imaging techniques like X-Ray tomography in recent years, it is now possible to take into account the microscopic details in composite material simulations. However, the composites' complex nature such as inclined and broken fibers, voids, requires rich data to describe these details and thus brings challenging problems in terms of computational time and memory when using traditional simulation methods like the Finite Element Method. These problems become even more severe in simulating failure processes like crack propagation. Hence, it is necessary to investigate more efficient numerical methods for this kind of large scale problems. The MultiGrid (MG) method is such an efficient method, as its computational cost is proportional to the number of unknowns. In this thesis, an efficient MG solver is developed for these problems. The MG method is applied to solve the static elasticity problem based on the Lame's equation and the crack propagation problem based on a phase field method. The accuracy of the MG solutions is validated with Eshelby's classic analytic solution. Then the MG solver is developed to investigate the composite homogenization process and its solutions are compared with existing solutions in the literature. After that, the MG solver is applied to simulate the free-edge effect in laminated composites. A real laminated structure using X-Ray tomography is first simulated. At last, the MG solver is further developed, combined with a phase field method, to simulate the brittle crack propagation. The MG method demonstrates its efficiency both in time and memory dimensions for solving the above problems.
|
109 |
Matériaux pseudo-capacitifs pour supercondensateurs flexibles / Pseudo-capacitive materials for flexible supercapacitorsCoustan, Laura 30 November 2015 (has links)
Les supercondensateurs sont des dispositifs de stockage de l'énergie électrique particulièrement intéressants pour les applications de puissance. Les rendre flexibles permet de considérer de nouvelles possibilités d'intégration. Néanmoins, l'optimisation de la densité d'énergie, point faible de ces dispositifs, passe par la recherche et l'étude de nouveaux matériaux d'électrode et d'électrolytes. Dans ce but, ce travail de thèse s'est orienté vers des matériaux pseudo-capacitifs, avec l'utilisation d'électrodes à base de MnO2, et d'électrolytes à base de liquide ionique fonctionnalisé de type biredox. Afin de conserver le caractère flexible des électrodes, le dioxyde de manganèse a d'abord été synthétisé pour la formulation d'encres à pulvériser sur substrat flexible. A cette occasion, l'influence de dispersants sur les performances a été étudiée. Les performances de matériaux nanocomposites à base de fibres de carbone et de graphène décorés par MnO2 ont ensuite été évaluées. Les contributions faradiques et surfaciques à la capacité développée par MnO2 ont ensuite été déterminées par une étude électrochimique fine. Enfin, l'étude d'un nouveau liquide ionique fonctionnalisé utilisé dans un dispositif carbone/carbone a confirmé l'attractivité de ces phénomènes faradiques dans les performances électrochimiques d'un supercondensateur. / Supercapacitors are attractive electrical energy storage devices for power applications. As flexible devices new integration opportunities can be consider. Nevertheless, the optimization of the energy density, weak point of these devices, proceeds through the search and the study of new electrode materials and electrolytes. In this aim, this thesis work is turned towards so called pseudo-capacitive materials, with the use of MnO2-based electrodes, and biredox Ionic Liquid electrolytes. To preserve the flexible behavior of the electrodes, the manganese dioxide was, at first, synthesized for the formulation of an ink to be sprayed on flexible substrates. The influence of dispersing agents on the electrochemical performances was evaluated. Performances of nanocomposite materials prepared with carbon nanofibers and graphene oxide sheets were also studied. Faradaic and surface contributions to the capacity developed by MnO2 electrode material were then determined by an advanced electrochemical study. Finally, the study of a new Ionic Liquid used in a symmetrical carbon/carbon supercapacitor confirmed the attractiveness of these Faradaic phenomena for the enhancement of the supercapacitor electrochemical performances.
|
110 |
Comportement mécanique de composites oxydes : Relations procédé-microstructure-propriétés / Oxide composite mechanical behavior : Process-microstructure-properties relationsGuel, Nicolas 07 December 2018 (has links)
Cette thèse a pour objectif la compréhension fine du rôle de la microstructure sur les propriétés mécaniques de composites à matrice céramique oxydes, en vue de l’introduction de ce type de matériau dans les futurs moteurs d’aviation civile. L’influence des hétérogénéités induites par la mise en forme de ce matériau est particulièrement investiguée. Ces hétérogénéités semblent favoriser l’apparition et la propagation de mécanismes d’endommagement conduisant à la ruine du matériau. L’étude est réalisée sur trois nuances de composites oxydes à tissage bidimensionnel générées à partir de trois procédés de fabrication différents. Ces procédés conduisent à la mise en place de trois types de microstructures. Des caractérisations morphologiques par porosimétrie et par μ-tomographie sont réalisées afin d’estimer la répartition des hétérogénéités et ainsi d’établir les microstructures représentatives de chaque nuance. En se basant sur ces analyses, une étude du comportement mécanique des nuances d’étude est réalisée à plusieurs échelles. Dans un premier temps, une étude des propriétés mécaniques à l’échelle macroscopique, représentative du matériau est effectuée à l’aide d’essais de traction dans le plan de tissage. En parallèle, des essais in-situ sont mis en place afin d’observer l’évolution de l’endommagement des microstructures. Ces observations permettent d’améliorer la compréhension du rôle des hétérogénéités sur l’activation des mécanismes d’endommagement. Le suivi de l’EA (Emission Acoustique) des essais est utilisé pour analyser la cinétique d’endommagement des nuances de composites oxydes. En plus de l’analyse globale de l’activité acoustique, des classifications des signaux d’EA sont réalisées. Ces classifications se basent sur la détection de signaux d’EA à l’aide de deux types de capteurs présentant des caractéristiques différentes. Une labellisation des classes est proposée en confrontant les activités de ces classes aux mécanismes d’endommagement observés lors des essais in-situ. Le couplage de l’ensemble de ces informations permet de constituer le scénario d’endommagement de chaque nuance. Il est ainsi possible d’établir le rôle de chaque type d’hétérogénéités sur le comportement mécanique des composites oxydes. / The aim of this thesis is the fine understanding on the influence of the microstructure on oxide-based ceramic matrix composites mechanical properties. These materials are good candidate for new generation of civil aircraft engines. The aim of this work is to establish a relationship between the microstructural defects generated by the manufacturing process and the mechanical behavior of the composite. These heterogeneities seem to influence the appearance and the propagation of damage mechanisms. This study is realized on three kinds of bi-dimensional oxide composites generated from three different manufacturing processes. These processes create three kinds of microstructure. Porosimetric and μ-tomographic analyses allow estimating the distribution of microstructural defects and establish typical microstructure of each oxide composite. Based on these preliminary analyses, mechanical behavior of each kind of oxide composites is studied through several representative scales. On the one hand, mechanical tensile tests are carried out in order to estimate the mechanical properties of the studied materials in the weaving plane. On the other hand, the implementation of in-situ mechanical tests allows the visualization of damage mechanisms appearance and propagation. These observations improve the understanding of the role of microstructural defects on the activation of damage mechanisms. Damage kinetics of each mechanical test are inspected through AE (Acoustic emission) analysis. This monitoring helps to link mechanical behavior with microstructural damage. In parallel with global AE analysis, AE clustering is achieved. These classifications are based on two kinds of AE sensor with different properties. Data fusion from the two sensors is accomplished. This technique allows more robust AE clustering. Cluster labelling is proposed thanks to damage mechanisms observed during in-situ mechanical tests. Damage scenarios are set up owing to macroscopic mechanical test, in-situ analysis and AE labelling. Thus, it is possible to establish the influence of each kind of microstructural defect on oxide-based CMCs mechanical behavior.
|
Page generated in 0.0806 seconds