• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Films anti ferroélectrique à base de PbZrO3 pour le stockage de l’énergie / PbZrO3-based antiferroelectric films for energy storage applications

Ge, Jun 15 June 2015 (has links)
Avec le développement de nouvelles sources d’énergie, les technologies dédiées à son stockage ont un rôle capital. Le zirconate de Plomb (PZ de structure Pérovskite) présente un grand intérêt pour les futures capacités rapides permettant le stockage de forte densité d’énergie. Cette propriété est associée à la transition de phase ferroélectrique – anti ferroélectrique induite par le champ électrique et qui s’accompagne d’une grande capacité de stockage. Le PZ a été déposé par pulvérisation cathodique RF sur différents types de substrats et notamment le SrTiO3, les cibles sont obtenues par mélange des poudres et pressage à froid. L’étude s’est focalisée sur les effets d’interfaces entre le film et l’électrode inférieure (LaNiO3 dans notre cas), l’orientation préférentielle des films et la réalisation de films épitaxiés de PZ. La structure, la micro structure des films ainsi que leurs épaisseurs ont un impact sur les contraintes existantes dans le film et nous avons évalué ces effets sur la capacité de stockage du PZ dans la phase anti ferroélectrique. L’optimisation des propriétés des interfaces et de l’ingénierie des contraintes permettent d’améliorer la densité d’énergie stockée dans un film anti ferroélectrique. C’est une voie sérieuse pour les supers condensateurs à base de matériaux fonctionnels de type PZ. / With the development of new energy resources, the advanced energy storage technologies are also becoming more and more important. Perovskite lead zirconate PbZrO3 is of great interest for future high-energy and fast-speed storage capacitors, due to the field-forced phase transition into the ferroelectric state accompanied by large charge storage. The material is deposited on SrTiO3 by RF magnetron sputtering from cold pressed target made in laboratory. The study focuses on the effect of interface between films and electrodes, preferred orientations, epitaxial strain and measuring conditions on the energy storage properties of PbZrO3-based antiferroelectric films. The improvement of interface properties and strain engineering enhance the energy storage density of antiferroelectric film, which may open a route to advance studies on PbZrO3-based antiferroelectric functional devices.
2

Une nouvelle génération de nano-catalyseurs à base de carbure de fer pour le stockage chimique de l'énergie / A new generation of iron carbide based nano-catalysts for the chemical storage of energy

Bordet, Alexis 08 December 2016 (has links)
Après plusieurs décennies de consommation insouciante et inconsidérée des ressources d’origine fossile, l’humanité doit aujourd’hui faire face à une crise sans précédent concernant le réchauffement climatique global et la production et le stockage de l’énergie. Dans le double contexte de stockage des énergies renouvelables intermittentes et de valorisation du dioxyde de carbone, l’approche power-to-gas (conversion de l’énergie électrique en énergie chimique), et plus précisément la réaction de Sabatier (hydrogénation catalytique du dioxyde de carbone en méthane), apparait comme une stratégie attractive. Dans cette thèse, nous cherchons en particulier à réaliser la réaction de Sabatier en utilisant des nano-catalyseurs chauffés par induction magnétique. L’utilisation de nanoparticules magnétiques pour convertir l’énergie électromagnétique en chaleur – hyperthermie magnétique – est une approche d’intérêt grandissant dans le domaine de la catalyse, même si le domaine biomédical concentre évidemment la grande majorité des applications (hyperthermie magnétique, drug delivery, etc.). L’intérêt biomédical des nanoparticules synthétisées est d’ailleurs étudié et discuté. Dans ce contexte hautement pluridisciplinaire, nous décrivons la synthèse de nanoparticules magnétiques à base de carbure de fer dédiées à la catalyse par induction magnétique et à l’hyperthermie magnétique médicale. Nous montrons que la puissance de chauffe des nanoparticules de carbure de fer sous excitation magnétique est grandement influencée par leur teneur en carbone et leur cristallinité. En particulier, il apparait que lorsque la phase cristalline de carbure de fer Fe2.2C est largement majoritaire au sein des nanoparticules (> 80%), ces dernières possèdent des débits d’absorptions spécifiques (Specific Absorption Rate SAR) remarquablement élevés. Ces propriétés singulières nous ont permis de réaliser la réaction de Sabatier dans un réacteur à flux continu et d’obtenir des résultats extrêmement prometteurs. Nous avons ainsi été en mesure de démontrer que l’association du concept de catalyse par induction magnétique à la réaction de méthanation du CO2 représente une approche à la fois innovante et attractive dans le double contexte de stockage des énergies intermittentes et de valorisation du CO2. Pour finir, les nanoparticules de carbure de fer ont été fonctionnalisées avec des ligands dérivés de la dopamine, les rendant ainsi dispersables et stables en milieux aqueux pendant plusieurs semaines. La toxicité et l’internalisation cellulaire des systèmes [nanoparticules-ligands] ont été étudiées, et se révèlent grandement dépendantes de la nature des ligands utilisés. / After several decades of oblivious fossil resources consumption, humanity is now facing major issues regarding global warming and energy production and storage. In the double context of intermittent renewable energy storage and CO2 recovery, the power-to-gas approach, and especially the Sabatier reaction (catalytic hydrogenation of carbon dioxide to methane + water) is of special interest. The main goal of this thesis is to perform the Sabatier reaction using magnetically activated nano-catalysts. The use of magnetic nanoparticles to convert electromagnetic energy into heat is indeed an approach of growing interest in catalysis, even if the field of biomedicine obviously concentrate most of the applications (magnetic hyperthermia, drug delivery, etc.). In this respect, the interest of the synthesized nanoparticles for biomedical applications is studied and discussed. We describe herein a pathway to iron carbide nanoparticles allowing a fine tuning of their carbon content and magnetic properties. We show that the carbon content and the crystallinity of the synthesized nanoparticles greatly impact their magnetic heating efficiency. The Fe2.2C crystallographic phase especially appears to be the key to highly enhanced specific absorption rates (SARs). We took advantage of these exceptional heating properties to investigate the Sabatier reaction in a continuous flow reactor, the catalyst being activated through magnetic induction. The SAR of synthesized iron carbide nanoparticles appeared to be sufficient to reach the temperature required for the activation of the Sabatier reaction (typically > 250°C), and promising results were obtained in a continuous flow reactor. We were thus able to demonstrate that the concept of magnetically induced catalysis can be successfully applied to the CO2 methanation reaction and represents an approach of strategic interest in the double context of intermittent energy storage and CO2 valorization
3

Stockage par matériaux à changement de phase de l’énergie thermique rejetée par l’industrie à basse température / Storage by phase change materials of the thermal energy released by the industry at low temperature

Rigal, Sacha 02 February 2017 (has links)
Une grande quantité d’énergie est rejetée par l’industrie à bas niveau de température, en dessous de 200 °C. Afin d’améliorer le rendement énergétique global des procédés utilisés, il est envisageable de valoriser cette chaleur perdue appelée chaleur fatale. Cependant cette valorisation est souvent rendue difficile par la présence d’un décalage temporel entre le moment où l’énergie est rejetée et le moment auquel cette énergie pourrait être de nouveau utilisée. Associant de fortes capacités de stockage ainsi qu’une possible restitution d’énergie à température constante, la solution du stockage de l’énergie thermique par des Matériaux à Changement de Phase, appelés MCP, apparaît comme particulièrement attractive. Cependant, la mise en œuvre de ces systèmes de stockage se heurte à des verrous scientifiques et technologiques tant au niveau du matériau de stockage que du système mais également de son contrôle commande et de son insertion dans les procédés industriels.L’objectif de la thèse est de mettre au point un système de stockage par MCP solide-liquide dans deux gammes de température : 70-85 °C et 120-155 °C. La première correspond aux températures des réseaux de chaleurs ou des chauffages domestiques alors que la deuxième s’applique au préchauffage des procédés industriels déjà existants. La thèse vise à démontrer la faisabilité technique du système de stockage. Le travail s’articule autour de différentes tâches allant de la sélection et la caractérisation des MCP jusqu’à leur mise en œuvre dans un organe de stockage et la simulation numérique de la solution de stockage.Les MCP recensés dans la bibliographie à ces niveaux de températures ont été caractérisés finement par calorimétrie (DSC) afin de déterminer leurs propriétés thermo-physiques sur des échantillons de grade laboratoire. L’acide stéarique pour la gamme 70-85 °C et l’acide sébacique pour la gamme 120-155 °C ont été sélectionnés. Des analyses calorimétriques plus poussées sur le grade industriel de ces matériaux ont été réalisées avec notamment des analyses de vieillissement et de compatibilité avec leur encapsulation respective au sein d’un banc expérimental. Le prototype expérimental de stockage thermique a été dimensionné et conçu pour répondre aux sollicitations simulant les rejets et les demandes d’un procédé industriel. Ce banc d’essais est composé principalement de deux organes de stockage que sont une cuve cylindrique et un échangeur multitubulaire et d’un thermorégulateur servant à simuler le fonctionnement du procédé industriel. Dans l’échangeur multitubulaire, le MCP occupe toute le volume de la calandre tandis que le fluide caloporteur circule dans les tubes. La cuve, quant à elle, contient des capsules sphériques en polyoléfines dans lesquelles le MCP est confiné. Elle est traversée par le fluide caloporteur procédant aux échanges thermiques. Ces capsules sphériques appelées nodules ne peuvent supporter plus de 100 °C et sont exclusivement réservées pour la gamme basse température. Ainsi, l’acide stéarique a été confiné dans les nodules afin de remplir la cuve de stockage. L’acide sébacique a lui été intégré dans la calandre de l’échangeur multitubulaire. Les campagnes expérimentales réalisées ont montré la faisabilité de ces types de stockage. Enfin, un modèle numérique simulant les performances du module de stockage utilisant les MCP encapsulés a été réalisé. Il constitue la première étape d’un outil de simulation complet intégrant les briques technologiques du stockage latent. / A large amount of energy is rejected by the industry at low temperature level, below a temperature of 200 °C. In order to improve the overall energy efficiency of industrial processes, it is possible to re-use this waste heat. However, this energy recovery is often made difficult because of the time difference between the process step at which the energy is lost and the process step at which this energy could be reused. Combining high energy storage capabilities and a possible energy recovery at constant temperature, thermal storage solution by phase change materials (PCM) is particularly attractive. However, this storage systems implementation faces scientific and technologic obstacles concerning both the storage material and system but also its command system and its integration into industrial processes.This thesis aims to develop a thermal energy storage system using a solid-liquid PCM technology in two temperature ranges: 70-85 °C and 120-155 °C. The first one corresponds to temperatures of heating networks or domestic heating systems, while the second one could directly preheat existing industrial processes. The thesis aims to demonstrate the technical feasibility of the storage system. The purpose is divided into different tasks such as PCMs selection and characterization, PCM implementation in a storage system but also numerical simulation of the storage solution.PCM documented in the literature at those temperature ranges were characterized by Differential Scanning Calorimetry (DSC) in order to determine thermo physical properties on laboratory grade samples. Stearic acid for the 70-85 °C temperature range and sebacic acid for the 120-155 °C temperature range were selected. Deeper differential scanning calorimetry analyses were carried out on those industrial grade materials including material ageing process analyses and their compliance with their respective encapsulation within an experimental test bench.Thermal storage experimental prototype was designed in order to meet the demands simulating the rejects and needs of industrial processes. The test bench is mainly composed of two storage systems : a cylindrical tank, a multitubular exchanger and a thermoregulator used to simulate industrial process functioning. The PCM, while in the multitubular exchanger, fills up the whole volume of the shell whereas the heat transfer fluid flows in tubes. The tank, for its part, contains polyolefin spherical capsules in which the PCM is contained. The tank is crossed by the heat transfer fluid conducting heat exchanges. Those spherical capsules called nodules cannot be exposed to temperatures exceeding 100 °C and are exclusively reserved for the low temperatures range. Thus, stearic acid was confined in nodules so as to fill the storage tank. The sebacic acid was incorporated in the multitubular exchanger shell. Experimental campaigns carried out have demonstrated the feasibility of those storage types.
4

Matériaux pseudo-capacitifs pour supercondensateurs flexibles / Pseudo-capacitive materials for flexible supercapacitors

Coustan, Laura 30 November 2015 (has links)
Les supercondensateurs sont des dispositifs de stockage de l'énergie électrique particulièrement intéressants pour les applications de puissance. Les rendre flexibles permet de considérer de nouvelles possibilités d'intégration. Néanmoins, l'optimisation de la densité d'énergie, point faible de ces dispositifs, passe par la recherche et l'étude de nouveaux matériaux d'électrode et d'électrolytes. Dans ce but, ce travail de thèse s'est orienté vers des matériaux pseudo-capacitifs, avec l'utilisation d'électrodes à base de MnO2, et d'électrolytes à base de liquide ionique fonctionnalisé de type biredox. Afin de conserver le caractère flexible des électrodes, le dioxyde de manganèse a d'abord été synthétisé pour la formulation d'encres à pulvériser sur substrat flexible. A cette occasion, l'influence de dispersants sur les performances a été étudiée. Les performances de matériaux nanocomposites à base de fibres de carbone et de graphène décorés par MnO2 ont ensuite été évaluées. Les contributions faradiques et surfaciques à la capacité développée par MnO2 ont ensuite été déterminées par une étude électrochimique fine. Enfin, l'étude d'un nouveau liquide ionique fonctionnalisé utilisé dans un dispositif carbone/carbone a confirmé l'attractivité de ces phénomènes faradiques dans les performances électrochimiques d'un supercondensateur. / Supercapacitors are attractive electrical energy storage devices for power applications. As flexible devices new integration opportunities can be consider. Nevertheless, the optimization of the energy density, weak point of these devices, proceeds through the search and the study of new electrode materials and electrolytes. In this aim, this thesis work is turned towards so called pseudo-capacitive materials, with the use of MnO2-based electrodes, and biredox Ionic Liquid electrolytes. To preserve the flexible behavior of the electrodes, the manganese dioxide was, at first, synthesized for the formulation of an ink to be sprayed on flexible substrates. The influence of dispersing agents on the electrochemical performances was evaluated. Performances of nanocomposite materials prepared with carbon nanofibers and graphene oxide sheets were also studied. Faradaic and surface contributions to the capacity developed by MnO2 electrode material were then determined by an advanced electrochemical study. Finally, the study of a new Ionic Liquid used in a symmetrical carbon/carbon supercapacitor confirmed the attractiveness of these Faradaic phenomena for the enhancement of the supercapacitor electrochemical performances.
5

De la chimie moléculaire,supramoléculaire, et macromoléculaire des liquides ioniques vers les dispositifs de stockage de l’énergie électrochimique. / Molecular and supramolecular chemistry of ionic liquids to electrochemical energy storage devices.

Mourad, Eléonore 18 July 2016 (has links)
Le concept central de cette thèse est de mettre en avant trois grandes propriétés du liquide ionique, c'est à dire ses propriétés structurées et structurantes qui sont complémentaires à leurs propriétés usuelles (conductivité ionique, stabilité thermique, stabilité électrochimique), mais il ne s’agit là que d’une facette du travail. En effet, la synthèse des liquides ioniques rédox est l’un des ancrages fort de ce travail : ainsi des liquides ioniques biredox (porteur de groupements redox à la fois sur l’anion et le cation) ont pu être synthétisés pour la première fois. Cette électro-activité apporte un éclairage nouveau dans le développement d'électrolytes pour les supercondensateurs dont nos capacités spécifiques sont deux à cinq fois plus grandes que les valeurs de la littérature dans le domaine. Parallèlement, des liquides ioniques redox ont été associés à des nanotubes de carbone; les composites obtenus (nommé bucky Gel redox) ont été mis en œuvre avec succès comme matériaux d’électrode pour l’étude des dynamiques des cascades de transferts électroniques et ioniques. Outre l’obtention de ces résultats électrochimiques, les liquides ioniques ont été structurés par synthèse supramoléculaire. Ainsi des liquides ioniques polymérisés ont été obtenus et mis en forme par électrofilage puis testés en tant qu’électrolyte solide dans un dispositif supercondensateur. Les propriétés électrochimiques de l’ensemble de ces objets liquides ioniques ont fait l’objet d’études approfondies par voltammétrie cyclique, spectroscopie d’impédance électrochimique, cyclages galvanostatiques et microscopie électrochimique à balayage. Les résultats obtenus valident totalement le concept de départ dans le fait jouer sur les chimies moléculaire, supramoléculaire et macromoléculaire des liquides ioniques pour améliorer les dispositifs de stockage électrochimique de l’énergie. / The central concept of this project is to highlight three major ionic liquid properties. It lies on the control of the structured and structuring properties that are considered as complementary to the usual ionic liquids properties (ionic conductivity, thermal stability, electrochemical stability). However, this is a relatively small part of this work. The strong key point is the synthesis of redox ionic liquids. In this work a new biredox ionic liquids (contaning redox moieties both on the anion and the cation constituting the ionic liquid) have been successfully synthesized for the first time. This electro-activity opens the development of electrolytes for supercapacitors whose the specitific capacity is between two and five times larger than the values found in the literature. Meanwhile, redox ionic liquids have been associated with carbon nanotubes; the obtained composites were implemented as electrode materials for the study of dynamic electron transfer and ionic transfer. Besides these results, ionic liquids have been structured by supramolecular chemistry. Polymerized ionic liquids were obtained, shaped by electrospinning and tested as a solid electrolyte in a supercapacitor system. The electrochemical properties of these components (electrolyte materials or electrode materials) have been extensively studied by cyclic voltammetry, electrochemical impedance spectroscopy, galvanostatic cycling and scanning electrochemical microscopy. The results completely validate the original concept to take advantage of molecular, supramolecular and macromolecular chemistries of ionic liquids to improve electrochemical energy storage devices.
6

Stockage d’énergie thermique par matériaux à changements de phase adapté aux centrales solaires thermodynamiques / Thermal energy storage with phase change materials for concentrated solar power plants

Lomonaco, Adrien 22 September 2015 (has links)
Le travail présenté dans ce manuscrit concerne le développement d’un système de stockage thermique par chaleur latente pour les centrales solaires à concentration utilisant la génération directe de vapeur, et s’attache plus particulièrement la sélection et l’étude du matériau à changement de phase (MCP). Cette thèse a été réalisée dans le cadre du projet Stockage Thermique Appliqué à l’extension de pRoduction d’énergie Solaire thermodynamique (STARS) porté par le consortium composé d’AREVA Renouvelables, la société Hamon d’Hondt, l’institut CEA liten et les laboratoires IPNO, LPCS et LaTEP. Ce projet est accompagné par l’ADEME dans le cadre du programme énergies décarbonnées des investissements d’avenir.Le premier chapitre de ce manuscrit situe le contexte de l’étude en dressant un état de l’art des différents systèmes solaires à concentration existants et des différents moyens de stocker l’énergie pour ce type de technologie. Le projet STARS est ensuite présenté. Ce chapitre se termine par un descriptif des objectifs du travail de thèse. L’intégralité du processus de sélection du MCP, incluant le recensement des matériaux dans la littérature, la définition des critères de sélection et la caractérisation par calorimétrie différentielle à balayage des candidats les plus pertinents, est détaillée dans le chapitre II. À l’issue de ce travail, le choix du consortium se porte sur le nitrate de sodium, un sel inorganique possédant une température de fusion adaptée à la technologie d’AREVA et une densité de stockage importante. La poursuite de l’étude, concernant la stabilité thermique du MCP durant son utilisation en conditions industrielles, fait l’objet du chapitre III. Cette étude comporte une partie bibliographique permettant de mettre en évidence les problématiques liées à la dégradation thermique du matériau et à son comportement vis-à-vis des matériaux métalliques avec lesquels il sera amené à être en contact (échangeur de chaleur, cuve de stockage). La principale conséquence des phénomènes mis en évidence étant la réduction du nitrate de sodium en nitrite de sodium, l’étude de l’impact du taux de nitrite de sodium sur les propriétés thermiques du MCP a été réalisée. Les résultats de cette campagne expérimentale ont montré une diminution significative de la température de fusion et de la chaleur latente du MCP lorsque la proportion de nitrite de sodium croît. Afin d’étudier l’évolution de composition du MCP dans des conditions réelles de fonctionnement, un dispositif a été conçu spécifiquement pour reproduire des conditions de cyclage thermique en présence de métaux. L’étude menée à l’aide de ce dispositif a permis d’analyser la cinétique de réduction du nitrate de sodium en nitrite de sodium. Les résultats montrent que l’évolution de composition du MCP dans les conditions opératoires du projet est négligeable, garantissant la stabilité des propriétés thermiques de celui-ci au cours de son utilisation.Enfin, le dernier chapitre est consacré à l’étude de l’amélioration des transferts thermiques au sein du MCP. En effet, le nitrate de sodium possède une conductivité thermique faible, pouvant limiter la puissance des échanges de chaleur dans le système de stockage. En premier lieu, un état de l’art des solutions d’intensification des transferts dans le domaine du stockage par chaleur latente est dressé. Ce travail a permis de mettre en évidence que l’utilisation de composites à base de mousses métalliques constitue une voie pertinente d’amélioration des transferts. Ainsi une campagne expérimentale visant à évaluer les performances de tels composites a permis de mettre en évidence le potentiel de ce type de configuration. / The work presented in this manuscript concerns the development of a latent heat thermal energy storage system adapted to concentrated solar power plant using direct steam generation, and more particularly on the selection and the study of the Phase Change Material (PCM) used in this system. This thesis was performed within the framework of the STARS project (Stockage Thermique Appliqué à l’extension de pRoduction d’énergie Solaire thermodynamique) carried by the consortium of AREVA Renouvelables, Hamon d’Hondt company, CEA institute liten and laboratories IPNO, LPCS and LaTEP. This project is accompanied by ADEME under the énergies décarbonnées des investissements d’avenir program. The first chapter of this manuscript sets up the context of this study by drawing a state of art of different existing CSP technologies and various ways to store energy for this kind of systems. The STARS project is then described. This chapter ends with a description of the thesis objectives. The entire PCM selection process, including identification of materials in literature, definition of various criteria and thermal characterization by differential scanning calorimetry (DSC) of the most relevant candidates, is detailed in chapter II. This work leads to the selection of sodium nitrate by the consortium, an inorganic salt with a suitable melting temperature considering AREVA’s technology and a large storage density. The following work, concerning the thermal stability of the PCM under thermal cycling, is then presented in chapter III. This part includes a bibliographic study allowing to highlight issues related to thermal degradation of the PCM and its behavior regarding to metallic material with which it will have to be in contact (heat exchanger, storage tank). The main consequence of these phenomena is the reduction of sodium nitrate into sodium nitrite, and thus the impact of sodium nitrite fraction on the thermal properties of the PCM was studied. The results of this experimental work shows a significant reduction of the melting temperature and the latent heat as the fraction in sodium nitrite increases. To study the evolution of the PCM composition under real operating situation, a specific device was designed to replicate thermal cycling conditions in the presence of metals. This device was used to analyze the kinetics of reducing sodium nitrate into sodium nitrite. The results show that the changes in composition of the PCM in the project’s operating conditions are negligible, ensuring the stability of its thermal properties during its lifetime. The last chapter is devoted to the improvement of heat transfers within the PCM. Indeed, sodium nitrate has a low thermal conductivity which may limit the power of the heat exchange in the storage system. A state of art of available solutions for the intensification of thermal transfers concerning latent heat storage was done. This study highlighted that the use of composites based on metallic foams constitutes an effective way of improvement. Thus an experimental campaign was conducted to evaluate the performances of such composites, allowing to show the potential of this kind of configuration.

Page generated in 0.0769 seconds