Spelling suggestions: "subject:"mathematics teaching"" "subject:"amathematics teaching""
441 |
A matemática moderna no Brasil: as primeiras experiência e propostas de seu ensinoBorges, Rosimeire Aparecida Soares 04 November 2005 (has links)
Made available in DSpace on 2016-04-27T16:57:52Z (GMT). No. of bitstreams: 1
dissertacao_rosimeire_ap_soares_borges.pdf: 802412 bytes, checksum: 0688233c5d46836a3f79b9a1fdafceb7 (MD5)
Previous issue date: 2005-11-04 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The present work had as objective to study the Movement of the Modern Mathematics (MMM) under a new angle, the one of the teacher D Ambrosio s works, related to the Mathematics teaching in the brazilian secondary, written in 1957,1959 and 1961. Those articles compound the Personal Ubiratan D Ambrosio File APUA. As a support to the present research, some relevant works by brazilian authors were studied too referring to MMM, and as complement, there were interviews with the teacher D Ambrosio in the years of 2003, 2004 and 2005. That teacher was chosen due to his work in the secondary mathematics teaching, along the period that preceded the movement. After the analysis and comparisons, there was made the intersection of theses studies, what made it possible to investigate the pedagogical possibilities in the mathematics subjects, in the classroom environment, in that period. The theoretical support was given by authors, such as Nóvoa and Freitas, that allowed us to analyze the varied shortcuts that drew the map of the Movement, starting from the history of the teacher's life, showed in his recent interview. But that, we could infer that not only the proposals of MMM, but also the teacher D Ambrosio s ones, that had very similar initial intentions and could contribute to the teaching/learning changes in the Mathematics area. However, those ideas became quite distant to the pedagogical practice level. The necessary ways to the accomplishment of those proposals, should have been build among teachers, students and school, considering the expectations towards the Mathematics subject and the social cultural brazilian reality, in that time / O presente trabalho teve como objetivo estudar o Movimento da Matemática Moderna (MMM) sob um novo ângulo, o das obras do professor D Ambrosio relativas ao ensino de Matemática no secundário brasileiro, escritas em 1957,1959 e 1961. Esses artigos integram o Arquivo Pessoal Ubiratan D Ambrosio - APUA. Como subsídio, nessa pesquisa, foram também estudados alguns trabalhos relevantes, de autores brasileiros, referentes ao MMM. Como complemento, ainda foram realizadas várias entrevistas com o professor Ubiratan D Ambrosio nos anos de 2003, 2004 e 2005. A escolha desse professor como participante desta pesquisa se deve ao fato de ele ter exercido o magistério no ensino de Matemática secundário, no período que antecedeu o Movimento. Após análises e comparações, foi feita a intersecção desses estudos, o que propiciou-nos investigar as possibilidades pedagógicas na disciplina Matemática, no ambiente de sala de aula, nesse período. A sustentação teórica foi buscada nas idéias de autores, como Nóvoa e Freitas, que permitiram analisar os variados atalhos que desenharam o mapa desse Movimento, a partir da história de vida desse professor, delineada em suas entrevistas recentes. Isso nos permitiu inferir que tanto as propostas do MMM, como as do professor D Ambrosio tinham intenções iniciais muito próximas e poderiam contribuir com as mudanças do ensino/aprendizagem da Matemática. Entretanto, essas idéias vieram se distanciar no nível de propostas de práticas pedagógicas. Os meios necessários à realização dessas propostas dependiam de ser construídos entre professores, alunos e escola, sendo relevadas as expectativas em torno dessa disciplina e a realidade sócio-cultural brasileira, naquela época
|
442 |
The Development of Year 3 Students' Place-Value Understanding: Representations and ConceptsPrice, Peter Stanley January 2001 (has links)
Understanding base-ten numbers is one of the most important mathematics topics taught in the primary school, and yet also one of the most difficult to teach and to learn. Research shows that many children have inaccurate or faulty number conceptions, and use rote-learned procedures with little regard for quantities represented by mathematical symbols. Base-ten blocks are widely used to teach place-value concepts, but children often do not perceive the links between numbers, symbols, and models. Software has also been suggested as a means of improving children's development of these links but there is little research on its efficacy. Sixteen Queensland Year 3 students worked cooperatively with the researcher for 10 daily sessions, in 4 groups of 4 students of either high or low mathematical achievement level, on tasks introducing the hundreds place. Two groups used physical base-ten blocks and two used place-value software incorporating electronic base-ten blocks. Individual interviews assessed participants' place-value understanding before and after teaching sessions. Data sources were videotapes of interviews and teaching sessions, field notes, workbooks, and software audit trails, analysed using a grounded theory method. There was little difference evident in learning by students using either physical or electronic blocks. Many errors related to the "face-value" construct, counting and handling errors, and a lack of knowledge of base-ten rules were evident. Several students trusted the counting of blocks to reveal number relationships. The study failed to confirm several reported schemes describing children's conceptual structures for multidigit numbers. Many participants demonstrated a preference for grouping or counting approaches, but not stable mental models characterising their thinking about numbers generally. The independent-place construct is proposed to explain evidence in both the study and the literature that shows students making single-dimensional associations between a place, a set of number words, and a digit, rather than taking account of groups of 10. Feedback received in the two conditions differed greatly. Electronic feedback was more positive and accurate than feedback from blocks, and reduced the need for human-based feedback. Primary teachers are urged to monitor students' use of base-ten blocks closely, and to challenge faulty number conceptions by asking appropriate questions.
|
443 |
Η συνεισφορά της διδασκαλίας μέσω επίλυσης προβλήματος στην κατανόηση των ανισώσεων και στην ανάπτυξη της ικανότητας μοντελοποίησης από μαθητές της β΄ γυμνασίουΠαπακωστόπουλος, Σπυρίδων 20 October 2010 (has links)
Σκοπός της παρούσης έρευνας είναι η μελέτη της συνεισφοράς που μπορεί να έχει η διδασκαλία μέσω επίλυσης προβλήματος στην κατανόηση των ανισώσεων και στην ανάπτυξη της ικανότητας μοντελοποίησης από μαθητές της Β΄ Γυμνασίου. Σχεδιάστηκε ένα οιονεί πείραμα που αφορούσε τη διαφοροποιημένη διδασκαλία του κεφαλαίου των ανισώσεων σε δύο τμήματα 17 μαθητών (πειραματική ομάδα και ομάδα ελέγχου). Αξιολογήθηκαν η κατάκτηση του γνωστικού αντικειμένου και η ικανότητα μοντελοποίησης-επίλυσης μιας κατάστασης-προβλήματος μέσω γραπτής δοκιμασίας, ενώ διενεργήθηκαν και συνεντεύξεις. Παράλληλα σκοπός μας ήταν η διερεύνηση της ικανότητας μοντελοποίησης-επίλυσης μιας κατάστασης-προβλήματος ενός ευρύτερου δείγματος μαθητών Β΄ Γυμνασίου, σχολείων αγροτικής, ημιαστικής και αστικής περιοχής. Πραγματοποιήθηκε επισκόπηση σε ένα δείγμα 39, 48 και 53 μαθητών αντίστοιχα, οι οποίοι κλήθηκαν να αντιμετωπίσουν γραπτώς μια κατάσταση-πρόβλημα, ενώ επίσης διενεργήθηκαν συνεντεύξεις. Από την ποσοτική και ποιοτική ανάλυση των αποτελεσμάτων προκύπτει ότι οι μαθητές μεσαίας επίδοσης είναι αυτοί που κυρίως επωφελήθηκαν από την διδασκαλία μέσω επίλυσης προβλήματος. Επιβεβαιώθηκε η διάκριση τεσσάρων επιπέδων ανάπτυξης στην ικανότητα δόμησης και χρήσης μαθηματικών μοντέλων από μέρους των μαθητών, ενώ κατέστησαν εμφανείς οι μεγάλες δυσκολίες που αντιμετωπίζουν οι τελευταίοι στην ανωτέρω διαδικασία. / The purpose of this research is to study the contribution of teaching through problem solving, in understanding inequalities and in the development of modeling capacity by students of the 2nd high school. A quasi-experiment was designed on differentiated instruction of inequalities in two classes of 17 students (experimental and control group). The achievement of the knowledge object and the ability to resolve a problem situation through mathematical modeling, were assessed by means of a written test and interviews. At the same time, our aim was to investigate the modeling capacity of a larger sample of 2nd high school students, of rural, suburban and urban schools. A survey was carried out in a sample of 39, 48 and 53 students respectively, who were invited to address a problem situation in writing, while interviews were also conducted. The quantitative and qualitative analysis of the results shows that medium performance students were the ones who largely benefited from the “teaching through problem solving” approach. The identification of four levels in the development of constructing and using mathematical models was confirmed, while became apparent major problems faced by the students in the above process.
|
444 |
Mezipředmětové vztahy na úrovni plánovaného kurikula (matematický tábor pro 1. stupeň základní školy) / Interdisciplinary relationships at the level of the planned curriculum (mathematical camp for elementary school).TETOUROVÁ, Barbora January 2017 (has links)
The diploma thesis deals with interdisciplinary teaching and learning approaches at the level of a planned curriculum. The theoretical part is devoted to the issues of interdisciplinary teaching and learning approaches, description of school-age children and game-based learning. It includes the concepts of integration in teaching, numeracy, instructor, learning, motivation and game-based learning. There is also mentioned the Framework Educational Program for Primary Education, key competencies and its selected educational areas. The practical part contains a set of activities that integrate interdisciplinary teaching and learning. For each activity there is a description of its realization from the point of view of the author of the diploma thesis.
|
445 |
Multimediální podpora výuky matematiky / Multimedia support of mathematics teachingSOCHOROVÁ, Iva January 2017 (has links)
This master's thesis Multimedia support of teaching mathematics aims at supporting teachers in introducing innovations in teaching and support in their own teaching materials. It is dedicated to supporting the pupil in self-education. It also serves as an overview of selected resources to support the use of technology and software in teaching. This master's thesis includes examples of the use of mathematical programs in mathematics classes, and a proposal to engage pupils in teaching, by implementing the "Teach Your Fellow" project, which aims to create learning videos for pupils.
|
446 |
Mathematics anxiety as a variable in the constructivist approach to the teaching of secondary school mathematicsHawkey, Peter Leonard 11 1900 (has links)
Mathematics anxiety is a personal characteristic which is widespread and continuing. It has a debilitating effect on mathematics performance and contributes to perceptions and attitudes that perpetuate a dislike for mathematics and a lack of confidence when dealing with mathematical problems. An investigation of relevant literature on mathematics anxiety identifies sources and symptoms and emphasises a need for a comprehensive approach to remediation. The historical development of an appropriate measuring instrument is documented
and statistical evidence is used to create a mathematics anxiety rating scale suitable for measuring anxiety levels of secondary school pupils and student teachers. The extensive literature interest, research publications and remedial programmes emphasise the problem of mathematics anxiety and thus the need for a comprehensive approach to remediation. Mathematics teaching and curriculum design is expounded to provide the necessary direction to the alleviation of mathematics anxiety. General perspectives on curriculum design are discussed and
a cyclical systems approach is recommended. Elements of this approach are detailed and are linked to important personal characteristics to add a humanistic and socio-cultural view of curriculum design in mathematics. The didactic viability of constructivism as an approach to mathematics curriculum design is investigated. Constructivism embodies a philosophy and a methodology which addresses the critical aspects influencing mathematics anxiety. Classroom topics and activities are reviewed in terms of a constructivist approach and the
sources of mathematics anxiety are discussed from a constructivist perspective. A longitudinal case study of pupils during their five years at secondary school as well as a study involving student teachers was undertaken. Mathematics performance, perceptions, attitudes and levels of anxiety were investigated by means of tests, questionnaires, and mathematics anxiety rating scales. The statistical results of this research provide evidence to support a comprehensive approach to the remediation of mathematics anxiety. Constructivism is seen as the synthesis of critical aspects of teaching and curriculum development which will stem the perpetuation of mathematics anxiety. Constructivism provides the didactic approach to develop each individual's intellectual autonomy and mathematics power, by instilling a problem solving attitude and a self-confidence when doing mathematics. / Curriculum and Instructional Studies / D. Ed. (Didactics)
|
447 |
Diálogos com professoras que ensinam matemática em início de carreira / Dialogos with math teachers in career homeKronbauer, Cíntia Fogliatto 28 September 2016 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This work is the product of an investigation that is part of the LP1: Research, Training, Knowledge and Professional Development Line of the Graduate Program in Education of the Federal University of Santa Maria / RS, focused on broadening the discussions in The initial training of teachers of mathematics and their first years of teaching. The aim of this research is to identify the constituent elements of the initial formation of teachers of mathematics that contribute to the first years of teaching, verifying the approximation and distances of the initial formation course and the reality experienced in the schools, through the gaze of the beginning teacher who teaches mathematics. The research theme came from the experience of the researcher as a teacher who teaches mathematics in her early years of teaching, given the emergence of problems, challenges, uncertainties and difficulties to be faced in the classroom, and that often the beginner teacher Is not prepared to face them. The theoretical references that base this writing that refer to the initial formation are Charlot (2000), Tardif (2002), Mizukami (2006), Imbérnon (2011), Vaillant; Garcia (2012), in the initial formation of teachers of mathematics are Ponte (1998), Moura (2001, 2002), Libâneo (2004), Lorenzato (2010), among others. In relation to the first years of teaching, the main references were Huberman (1992), Garcia (2009), Vaillant and Tardif (2002). For that, the investigation was carried out with teachers who teach mathematics in the state public network of the municipality of Ijuí / RS, the dialogue was recorded and occurred through semistructured interviews with seven teachers. Through their narratives we have been able to know them from the choice of the mathematics course, the first ones counted with the teaching in the initial formation and the entrance in the teaching career. With the transcribed dialogue the interpretation and understanding of the data was based on the narrative analysis of Galvão (2005) with the contribution of the hermeneutic experience, for understanding to happen, Gadamer (1997) argues that the interpreter moves from a projected meaning of the whole to the parts, and then returns to the whole, Called by the author of the hermeneutic circle, in this way the knowledge of the completeness of the text allows the interpreter to question between what is not familiar and what is being shared. The results allow us to share that the teachers understand that initial training is a necessary support for future practices, motivating and encouraging future teachers to think about mathematics teaching, however, during the training, there were difficult situations in the stages that marked The identity of these teachers. They concluded that the entry into the career was a moment of expectation but that feelings of insecurity, uncertainty, fears were greater and emphasized that the main deficiency in this initial period was in the organization of pedagogical practice and that the lack of support is Remarkable, end up resorting to experienced teachers. We conclude that the initial training course left some gaps strongly felt by the teachers at the beginning of the career, so they understand that the training course needs to provide more classroom practices, believe that they learn in practice, and could thus face with greater Clarity in classroom situations. / Este trabalho é produto de uma investigação que insere-se na LP1: Linha de Pesquisa Formação, Saberes e Desenvolvimento Profissional, do Programa de Pós-graduação em Educação da Universidade Federal de Santa Maria/RS, tem seu foco voltado a ampliação das discussões no âmbito da formação inicial de professores que ensinam matemática e seus primeiros anos de atuação docente. O objetivo desta pesquisa é identificar elementos constituintes da formação inicial de professores que ensinam matemática que contribuem para os primeiros anos da docência, verificando a aproximação e os distanciamentos do curso de formação inicial e a realidade vivenciada nas escolas, através do olhar do professor iniciante que ensina matemática. A temática da investigação surgiu a partir da vivência da pesquisadora como professora que ensina matemática em seus primeiros anos de atuação docente, visto o surgimento de problemas, desafios, incertezas e dificuldades a serem enfrentadas em sala de aula, e que muitas vezes o professor principiante não está preparado para enfrentá-los. O referenciais teóricos que embasaram esta escrita que referem-se a formação inicial são Charlot (2000), Tardif (2002), Mizukami (2006), Imbérnon (2011), Vaillant; Garcia (2012), na formação inicial de professores que ensinam matemática são Ponte (1998), Moura (2001; 2002), Libâneo (2004), Lorenzato (2010), dentre outros. Em relação aos primeiros anos de atuação docente os principais referenciais foram Huberman (1992), Garcia (2009), Vaillant e Tardif (2002). Para tanto, a investigação foi realizada com professores que ensinam matemática na rede pública estadual do município de Ijuí/RS, o diálogo foi gravado e ocorreu através de entrevistas semiestruturadas com sete professoras. Através das suas narrativas pudemos conhecê-las desde a escolha pelo curso de matemática, os primeiros contados com a docência na formação inicial e a entrada na carreira docente. Com o diálogo transcrito a interpretação e compreensão dos dados baseou-se na análise narrativa de Galvão (2005) com a contribuição da experiência hermenêutica, para que a compreensão aconteça, Gadamer (1997) argumenta que o intérprete se move de um significado projetado do todo para as partes, e então volta para o todo, denominado pelo autor de círculo hermenêutico, dessa forma o conhecimento da completude do texto permite que o intérprete questione entre aquilo que não lhe é familiar e o que está sendo compartilhado. Os resultados nos permitem compartilhar que as professoras entendem que a formação inicial é um suporte necessário para as futuras práticas, motivando e incentivando os futuros professores a pensar o ensino de matemática, no entanto, durante a formação, nos estágios houveram situações difíceis o que marcou a identidade dessas professoras. Completam que a entrada na carreira, foi um momento de expectativas, mas que os sentimentos de insegurança, incertezas, medos, foram maiores e enfatizaram que a principal deficiência, nesse período inicial, foi na organização da prática pedagógica e que a falta de apoio é notável, acabam recorrendo aos professores experientes. Concluímos que o curso de formação inicial deixou algumas lacunas fortemente sentidas pelas professoras na entrada na carreira, assim, elas entendem que o curso de formação precisa fornecer mais práticas em sala de aula, acreditam que aprendem na prática, sendo assim, poderiam enfrentar com maior clareza as situações em sala de aula.
|
448 |
Diseño, implementación y análisis de diferentes metodologías activas en el proceso de enseñanza-aprendizaje de matemáticasJiménez Hernández, Cristina 20 April 2024 (has links)
[ES] La presente tesis doctoral se enmarca en un conjunto de investigaciones centradas en el empleo de metodologías activas en el ámbito de las matemáticas, con el propósito de incrementar tanto los logros de aprendizaje como la motivación de los estudiantes en los niveles de educación secundaria y universitaria. En un contexto en el que se observa una disminución en el interés de los alumnos hacia las matemáticas, disciplina que perciben como desafiante y abstracta, se reconoce la necesidad apremiante de que los docentes proporcionen herramientas innovadoras y adopten enfoques pedagógicos que revitalicen el interés de los estudiantes en esta materia.
La profunda comprensión de los conceptos matemáticos se revela como un componente crucial para un aprendizaje significativo y requiere de una diversidad de enfoques y estrategias educativas que puedan aplicarse para fortalecer la formación de los alumnos, promoviendo el desarrollo integrado de competencias matemáticas y tecnológicas. A través de metodologías activas, como flipped classroom, aprendizaje cooperativo, aprendizaje basado en juegos o gamificación, que poseen un gran potencial didáctico, los alumnos tienen la oportunidad de alcanzar un aprendizaje efectivo, lo que implica que pueden comprender de manera efectiva y eficiente los conceptos matemáticos, al mismo tiempo que se mejora el potencial del grupo clase
Las experiencias recopiladas en esta investigación, que incluyen la implementación de la metodología flip, el uso de vídeos didácticos enriquecidos, la gamificación, materiales manipulativos, herramientas tecnológicas y la promoción del pensamiento computacional, entre otras, abarcan tanto la educación preuniversitaria, que engloba secundaria y bachillerato, como la universitaria.
La metodología de investigación se fundamenta en un enfoque exploratorio, pre-experimental y cuasi-experimental de naturaleza transversal. En todos los casos, se incorporan fundamentos teóricos que respaldan las experiencias realizadas, así como análisis cuantitativos y cualitativos de los datos recopilados. Los resultados obtenidos en estos estudios reflejan un notorio aumento en los logros de aprendizaje y la motivación de los estudiantes como consecuencia de la implementación de estas metodologías.
En resumen, esta tesis doctoral se erige como un compendio de investigaciones que subrayan la importancia de las metodologías activas en la enseñanza de las matemáticas en los niveles de educación secundaria y universitaria. Los hallazgos respaldan la efectividad de estas metodologías para reavivar el interés de los estudiantes en las matemáticas y promover un aprendizaje más profundo y motivador en estas áreas. Con ello, se sientan las bases para una mejora continua en la enseñanza de las matemáticas en todos los niveles educativos. / [CA] La present tesi doctoral s'emmarca en un conjunt d'investigacions centrades en l'ús de metodologies actives en l'àmbit de les matemàtiques, amb el propòsit d'incrementar tant els assoliments d'aprenentatge com la motivació dels estudiants en els nivells d'educació secundària i universitària. En un context en el qual s'observa una disminució en l'interés dels alumnes cap a les matemàtiques, disciplina que perceben com a desafiadora i abstracta, es reconeix la necessitat urgent que els docents proporcionen eines innovadores i adopten enfocaments pedagògics que revitalitzen l'interés dels estudiants en esta matèria.
La profunda comprensió dels conceptes matemàtics es revela com un component crucial per a un aprenentatge significatiu i requereix d'una diversitat d'enfocaments i estratègies educatives que puguen aplicar-se per a enfortir la formació dels alumnes, promovent el desenvolupament integrat de competències matemàtiques i tecnològiques. A través de metodologies actives, com flipped classroom, aprenentatge cooperatiu, aprenentatge basat en jocs o ludificació, que posseeixen un gran potencial didàctic, els alumnes tenen l'oportunitat d'aconseguir un aprenentatge efectiu, la qual cosa implica que poden comprendre de manera efectiva i eficient els conceptes matemàtics, al mateix temps que es millora el potencial del grup classe
Les experiències recopilades en esta investigació, que inclouen la implementació de la metodologia flip, l'ús de vídeos didàctics enriquits, la ludificació, materials manipulatius, eines tecnològiques i la promoció del pensament computacional, entre altres, abasten tant l'educació preuniversitària, que engloba secundària i batxillerat, com la universitària.
La metodologia d'investigació es fonamenta en un enfocament exploratori, pre-experimental i quasiexperimental de naturalesa transversal. En tots els casos, s'incorporen fonaments teòrics que recolzen les experiències realitzades, així com anàlisis quantitatives i qualitatives de les dades recopilades. Els resultats obtinguts en estos estudis reflecteixen un notori augment en els assoliments d'aprenentatge i la motivació dels estudiants a conseqüència de la implementació d'estes metodologies.
En resum, esta tesi doctoral s'erigeix com un compendi d'investigacions que subratllen la importància de les metodologies actives en l'ensenyament de les matemàtiques en els nivells d'educació secundària i universitària. Les troballes recolzen l'efectivitat d'estes metodologies per a reavivar l'interés dels estudiants en les matemàtiques i promoure un aprenentatge més profund i motivador en estes àrees. Amb això, s'estableixen les bases per a una millora contínua en l'ensenyament de les matemàtiques en tots els nivells educatius. / [EN] This doctoral thesis is part of a set of research projects focused on the use of active methodologies in the field of mathematics, with the aim of increasing both learning achievements and student motivation in secondary and university levels. In a context where there is a decline in students' interest in mathematics, a discipline perceived as challenging and abstract, it is recognized the pressing need for teachers to provide innovative tools and adopt pedagogical approaches that revitalise students' interest in this subject.
A deep understanding of mathematical concepts emerges as a crucial component for meaningful learning and requires a diversity of approaches and educational strategies that can be applied to strengthen students' education, promoting the integrated development of mathematical and technological competencies. Through active methodologies such as flipped classroom, cooperative learning, game-based learning, or gamification, which have great didactic potential, students can achieve effective learning, implying that they can understand mathematical concepts effectively and efficiently while enhancing the potential of the class group.
The experiences gathered in this research, including the implementation of the flip methodology, the use of enriched educational videos, gamification, manipulative materials, technological tools, and the promotion of computational thinking, among others, span both pre-university education, including secondary and high school, and university education.
The research methodology is based on an exploratory, pre-experimental, and quasi-experimental cross-sectional approach. In all cases, theoretical foundations supporting the experiences are incorporated, along with quantitative and qualitative analysis of the collected data. The results obtained in these studies reflect a noticeable increase in learning achievements and student motivation because of the implementation of these methodologies.
In summary, this doctoral thesis stands as a compendium of research highlighting the importance of active methodologies in the teaching of mathematics at the secondary and university levels. The findings support the effectiveness of these methodologies in reigniting students' interest in mathematics and promoting deeper and more motivating learning in these areas. With this, it lays the groundwork for continuous improvement in the teaching of mathematics at all educational levels. / Jiménez Hernández, C. (2024). Diseño, implementación y análisis de diferentes metodologías activas en el proceso de enseñanza-aprendizaje de matemáticas [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/203650
|
449 |
Determining Aspects of Excellence in Teaching Undergraduate Mathematics: Unpacking Practicing Educators' Specialized KnowledgeJosiah M Banks (19173649) 18 July 2024 (has links)
<p dir="ltr">This dissertation explores the intricate dynamics between the self-perceptions of undergraduate mathematics (UM) educators and their conceptions of excellent teaching practices conducive to student learning. Employing a sequential mixed methods approach, the study addresses two primary research questions. First, it investigates educators' self-perceptions within the realm of UM teaching, examining potential variances based on educators' Professional Status and Educational Institution (PSEI) affiliations and experience levels. Second, it delves into educators' perspectives on aspects of excellent UM teaching, scrutinizing potential disparities rooted in PSEI affiliations and experience levels, while also exploring the manifestations of Mathematics Teachers' Specialized Knowledge (MTSK) and teaching self-concept within these descriptors.</p><p dir="ltr">Drawing upon Shavelson's self-concept (1976) framework and Carrillo and colleagues' (2018) MTSK framework, data collection involved a Likert-style questionnaire augmented by open-ended inquiries, followed by qualitative case studies featuring eight participants from diverse Carnegie classifications. Findings demonstrate educators' overall confidence in their teaching abilities, with notable discrepancies observed among educators from associate's colleges and doctoral universities. Through thematic analysis, key dimensions of excellent teaching emerged, including active learning, student engagement, problem-solving, and positive learning environments.</p><p dir="ltr">This study yields implications for educational practice and institutional policy. Educators can leverage identified themes to inform professional development initiatives tailored to enhance UM teaching effectiveness. Furthermore, the validated instrument offers institutions a means to assess educators' confidence levels, facilitating targeted support within mathematics departments.</p><p dir="ltr">In conclusion, this dissertation contributes valuable insights into the multifaceted interplay between educators' self-perceptions, teaching practices, and student learning outcomes within the context of UM instruction.</p>
|
Page generated in 0.0897 seconds