Spelling suggestions: "subject:"mean curvature"" "subject:"mean urvature""
41 |
Symplectic Topology and Geometric Quantum MechanicsJanuary 2011 (has links)
abstract: The theory of geometric quantum mechanics describes a quantum system as a Hamiltonian dynamical system, with a projective Hilbert space regarded as the phase space. This thesis extends the theory by including some aspects of the symplectic topology of the quantum phase space. It is shown that the quantum mechanical uncertainty principle is a special case of an inequality from J-holomorphic map theory, that is, J-holomorphic curves minimize the difference between the quantum covariance matrix determinant and a symplectic area. An immediate consequence is that a minimal determinant is a topological invariant, within a fixed homology class of the curve. Various choices of quantum operators are studied with reference to the implications of the J-holomorphic condition. The mean curvature vector field and Maslov class are calculated for a lagrangian torus of an integrable quantum system. The mean curvature one-form is simply related to the canonical connection which determines the geometric phases and polarization linear response. Adiabatic deformations of a quantum system are analyzed in terms of vector bundle classifying maps and related to the mean curvature flow of quantum states. The dielectric response function for a periodic solid is calculated to be the curvature of a connection on a vector bundle. / Dissertation/Thesis / Ph.D. Mathematics 2011 Read more
|
42 |
Caracterizações da esfera em formas espaciais / Characterizations of the sphere in space forms.Pinto, Victor Gomes 06 July 2017 (has links)
PINTO, V. G. Caracterizações da esfera em formas espaciais. 2017. 79 f. Dissertação (Mestrado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2017. / Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-07-20T20:40:07Z
No. of bitstreams: 1
2017_dis_vgpinto.pdf: 1180135 bytes, checksum: f3aa196ed8b0d38c5a2a33642fdb7d0b (MD5) / Rejected by Rocilda Sales (rocilda@ufc.br), reason: Bom dia Andrea,
Favor informar ao aluno os motivos da rejeição.
Faltou a conclusão (item obrigatório) E as referências não estão normalizadas.
Seguem os modelos
ARTIGOS DE PERIÓDICOS: ALENCAR, H. ; COLARES, A. G. - Integral formulas for the r-mean curvature linearized operator of a hypersurface. Annals of Global Analysis and Geometry, v. 16, p. 203-220, 1998.
OBS: o TÍTULO DO PERIÓDICO DEVE FICAR EM NEGRITO OU ITÁLICO.
LIVROS: CARMO, M. P. do. Geometria riemanniana. Rio de Janeiro : IMPA, 2008.( Projeto Euclides)
OBS: O TÍTULO DO LIVRO DEVE FICAR EM NEGRITO OU ITÁLICO
DISSERTAÇÕES: PINHEIRO, N. R. Hipersuperfíıcies com curvatura média constante e hiperplanos. Ano. Nº de folhas. Dissertação ( Mestrado) em nome do curso, local, ano.
OBS: o TÍTULO DA DISSERTAÇÃO DEVE FICAR EM NEGRITO OU ITÁLICO
Rocilda on 2017-07-21T11:38:59Z (GMT) / Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-07-21T18:48:58Z
No. of bitstreams: 1
2017_dis_vgpinto.pdf: 1184804 bytes, checksum: 357d2ee050e65edb2839093ba455b0db (MD5) / Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-07-24T15:34:13Z (GMT) No. of bitstreams: 1
2017_dis_vgpinto.pdf: 1184804 bytes, checksum: 357d2ee050e65edb2839093ba455b0db (MD5) / Made available in DSpace on 2017-07-24T15:34:13Z (GMT). No. of bitstreams: 1
2017_dis_vgpinto.pdf: 1184804 bytes, checksum: 357d2ee050e65edb2839093ba455b0db (MD5)
Previous issue date: 2017-07-06 / In this work we present three characterizations of the sphere. Initially, it will be shown that given a compact and oriented hypersurface Mn e x: M → Q^(n+1)_c a isometric immersion, x(M) is a geodesic sphere in Q^n+1_c if, and only if, Hr+1 is a nonzero constant and the set of points that are omitted in Qn+1 c by the totally geodesic hypersurfaces (Q^n_c)p tangent to x(M) is non-empty. As a second result, let M be an orientable compact and connected hypersurface with non-negative support function of the Euclidean space Rn+1 and Minkowski's integrand . We prove that the mean curvature function of the hypersurface M is the solution of the Poisson equation = if, and only if, M is isometric to the n-sphere Sn(c) of constant curvature c. similar characterization is proved for a hypersurface with the scalar curvature satisfying the same equation. For the third result we consider an isometric immersion x : M ! Qn+1, where M is a compact hypersurface such that x(M) is convex, and it will be proved that if any r-mean curvature is such that Hr 6= 0 and there are nonnegative constants C1;C2; :::;Cr1 such that Hr = Pr1 i=1 CiHi; then x(M) is a geodesic sphere, where Qn+1 is Rn+1, Hn+1 or Sn+1 + . / Neste trabalho serão apresentadas três caracterizações da esfera. Primeiramente, será mostrado que dada uma hipersuperfície compacta e orientada Mn e x: M → Q^(n+1)_c uma imersão isométrica, onde Q^n+1_c é uma forma espacial simplesmente conexa, isto é, uma variedade Riemanniana de curvatura seccional constante c, x(M) é uma esfera geodésica em Q^n+1_c se, e somente se, a (r + 1)-ésima curvatura média Hr+1 é uma constante não nula e o conjunto dos pontos que são omitidos em Q^n+1_c pelas hipersuperfícies totalmente geodésicas (Q^n_c)p tangentes a x(M) é não vazio. Como segundo resultado, seja uma hipersuperfície compacta, conexa e orientável M do espaço euclidiano R^(n+1), com função suporte não negativa e integrando de Minkowski σ. Será provado que a função curvatura média α da hipersuperfície é solução da equação de Poisson Δϕ = σ se, e somente se, M é isométrica à n-esfera S^n(c) de curvatura média c. Uma caracterização similar é provada para uma hipersuperfície com a curvatura escalar satisfazendo a mesma equação. Para o terceiro resultado é considerado uma imersão isométrica x: M → Q^(n+1), onde M é uma hipersuperfície compacta tal que x(M) é convexa, e será provado que, se alguma curvatura r-média é tal que Hr ≠ 0 e existem constantes não negativas C1, C2, ..., Cr-1 tais que Hr =∑_(i=1)^(r-1)▒〖C_i H_i 〗 ; então x(M) é uma esfera geodésica, onde Q^(n+1) é R^(n+1), H^(n+1) ou S^(n+1)_+ . Read more
|
43 |
Construction de solutions pour les équations de contraintes en relativité générale et remarques sur le théorème de la masse positive / Construction of solutions to the Einstein constrainit equations in general relativity and comments on the positive mass theoremNguyen, The-Cang 11 December 2015 (has links)
Dans cette thèse nous étudions deux problèmes issus de la relativité générale : la construction de données initiales pour le problème de Cauchy des équations d’Einstein et le théorème de la masse positive. Nous construisons tout d’abord des données initiales en utilisant la méthode dite conforme introduite par Lichnerowicz [Lichnerowicz, 1944], Y. Choquet-Bruhat–J. York [Choquet-Bruhat et York, 1980] et Y. Choquet-Bruhat–J. Isenberg– D. Pollack [Choquet-Bruhat et al., 2007a]. Plus particulièrement, nous étudions les équations –de contrainte conforme– qui apparaissent dans cette méthode sur des variétés riemanniennes compactes de dimension n > 3. Dans cette thèse, nous donnons une preuve simplifiée du résultat de [Dahl et al., 2012], puis nous étendons et nous généralisons les théorèmes de M. Holst–G. Nagy–G. Tsogtgerel [Holst et al., 2009] et de D. Maxwell [Maxwell, 2009] dans le cas de données initiales à courbure moyenne fortement nonconstante. Nous donnons au passage un point de vue unifié sur ces résultats. En parallèle, nous donnons des résultats de non-existence et de non-unicité pour les équations de la méthode conforme sous certaines hypothèses. / The aim of this thesis is the study of two topical issues arising from general relativity: finding initial data for the Cauchy problem with respect to the Einstein equations and the positive mass theorem. For the first issue, in the context of the conformal method introduced by Lichnerowicz [Lichnerowicz, 1944], Y. Choquet-Bruhat–J. York [Choquet-Bruhat et York, 1980] and Y. Choquet-Bruhat–J. Isenberg–D. Pollack [Choquet-Bruhat et al., 2007a], we consider the conformal constraint equations on compact Riemannian manifolds of dimension n > 3. In this thesis, we simplify the proof of [Dahl et al., 2012, Theorem 1.1], extend and sharpen the far-from CMC result proven by Holst– Nagy–Tsogtgerel [Holst et al., 2009], Maxwell [Maxwell, 2009] and give an unifying viewpoint of these results. Besides discussing the solvability of the conformal constraint equations, we will also show nonexistence and nonuniqueness results for solutions to the conformal constraint equations under certain assumptions. Read more
|
44 |
Problema exterior de Dirichlet para a equação das superfícies de curvatura média constante no espaço hiperbólicoNunes, Adilson da Silva January 2017 (has links)
Neste trabalho mostramos que dado um domínio exterior de classe C0 contido em uma superfície umb lica de H3; com curvatura média constante H 2 [0; 1); existe uma família de gracos de Killing com curvatura média constante H: O bordo de cada um destes gracos está contido nesta superfície umbílica e a norma do gradiente da função no bordo pode ser prescrita por um certo valor s 0. / In this paper we show that given an exterior domain of class C0 contained in an umbilical surface of H3; with constant mean curvature H 2 [0; 1); there exists a family of Killing graphs with constant mean curvature H: The boundary of each of these graphs is contained in this umbilical surface and the norm of the gradient of the function in the boundary can be prescribed by a certain value s 0:
|
45 |
Teoremas de semiespaço para superfícies mínimasSilva, Sylvia Ferreira da 20 March 2017 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-09-01T13:15:28Z
No. of bitstreams: 1
arquivototal.pdf: 612605 bytes, checksum: 21376fa219dbfadac44b0c5d02d91cd3 (MD5) / Approved for entry into archive by Viviane Lima da Cunha (viviane@biblioteca.ufpb.br) on 2017-09-01T15:55:26Z (GMT) No. of bitstreams: 1
arquivototal.pdf: 612605 bytes, checksum: 21376fa219dbfadac44b0c5d02d91cd3 (MD5) / Made available in DSpace on 2017-09-01T15:55:26Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 612605 bytes, checksum: 21376fa219dbfadac44b0c5d02d91cd3 (MD5)
Previous issue date: 2017-03-20 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / In this work we detail the results submitted by Ho man and Meeks in \The strong
half-space theorem for minimal surfaces". The rst results are half-space theorems for
minimal surfaces in R3 which have been generalized for other ambients, as have been
done by Daniel, B./ Hauswirth, L., e Daniel, B./ Meeks, W. H. III. The third and last
one result, caracterize convex hull in n- dimensional Euclidean spaces. / Neste trabalho detalhamos os resultados apresentados por William H. Meeks e
David A. Ho man em \The strong half-space theorem for minimal surfaces", . Os
primeiros resultados s~ao teoremas de semiespa co para superf cies m nimas no R3, os
quais tem sido generalizados para outros ambientes como foi feito por Daniel, B./
Hauswirth, L., e Daniel, B./ Meeks, W. H. III. O terceiro e ultimo resultado, caracteriza
fechos convexos no espa co euclidiano n-dimensional. Read more
|
46 |
Problema exterior de Dirichlet para a equação das superfícies de curvatura média constante no espaço hiperbólicoNunes, Adilson da Silva January 2017 (has links)
Neste trabalho mostramos que dado um domínio exterior de classe C0 contido em uma superfície umb lica de H3; com curvatura média constante H 2 [0; 1); existe uma família de gracos de Killing com curvatura média constante H: O bordo de cada um destes gracos está contido nesta superfície umbílica e a norma do gradiente da função no bordo pode ser prescrita por um certo valor s 0. / In this paper we show that given an exterior domain of class C0 contained in an umbilical surface of H3; with constant mean curvature H 2 [0; 1); there exists a family of Killing graphs with constant mean curvature H: The boundary of each of these graphs is contained in this umbilical surface and the norm of the gradient of the function in the boundary can be prescribed by a certain value s 0:
|
47 |
Estabilidade de hipersuperfícies com curvatura média constantePaim, Tatiana Sousa January 2018 (has links)
Orientador: Prof. Dr. Márcio Fabiano da Silva / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Matemática , Santo André, 2018. / Seja x : M = Rn+1 uma imersão de uma variedaden-dimensional orientável M no espaço
euclidiano Rn+1. A condição que x tem curvatura média constante não-nula H =H0 é conhecida ser equivalente ao fato que x é um ponto crítico de um problema variacional. Um procedimento padrão de encontrar pontos críticos de tais problemas é, análogo ao método dos multiplicadores de Lagrange, olhar para os pontos críticos de um certo operador definido em termos dos funcionais variacionais. Resulta dessas considerações que a definição de estabilidade para imersões com curvatura média constante não-nula deve exigir que a segunda variação para tal operador seja não-negativa, para variações com suporte compacto que satisfaçam a condição de média nula. Assim, o objetivo desse trabalho é estudar as imersões estáveis compactas com curvatura média constante não-nula ¿ resultado apresentado como o Teorema de Barbosa¿Carmo. / Let x : M = Rn+1 be an immersion of an orientablen-dimensional manifoldM into the euclidian space Rn+1. The condition thatx has nonzero constant mean curvature H =H0 is known to be equivalent to the fact thatx is a critical point of a variational problem. A standard proceduce of ?nding the critical points of such a problem is, in analogy to the Lagrange multipliers method, to look for the critical of points of an operator defined in terms of variational functionals. It follows from the above considerations that the definition of stability for immersions with nonzero constant mean curvature should require that such operator be nonnegative, for compactly supported variations that satisfy the zero mean condition. Thus, the objective of this work is to study the compact stable immersions with nonzero constant mean curvature ¿ result presented as the Barbosa and Carmo¿s theorem. Read more
|
48 |
Funcionais paramÃtricos elÃpticos em variedades riemannianas / Elliptic parametric functional in manifolds riemannianMarcelo Ferreira de Melo 07 August 2009 (has links)
CoordenaÃÃo de AperfeiÃoamento de NÃvel Superior / Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / Neste trabalho, consideramos funcionais paramÃtricos elÃpticos como generalizaÃÃes naturais para o clÃssico funcional Ãrea. Calculamos a primeira variaÃÃo de tais funcionais e, a partir da equaÃÃo de Euler-Lagrange, definimos a curvatura mÃdia anisotrÃpica de uma hipersuperfÃcie imersa em uma variedade Riemanniana como generalizaÃÃo natural
da curvatura mÃdia usual. Em seguida, estabelecemos a fÃrmula da segunda variaÃÃo e classificamos as hipersuperfÃcies rotacionalmente simÃtricas que possuem curvatura mÃdia anisotrÃpica constante. A fim de compreender a estabilidade dos exemplo rotacionais,deduzimos a primeira e a segunda fÃrmulas de Minkowski. AlÃm disso, no contexto anisotrÃpico, apresentamos as equaÃÃes fundamentais de Weingarten, Codazzi e Gauss e, por fim, estudamos a harmonicidade da aplicaÃÃo de Gauss. / It is stated that critical points of a parametric elliptic functional in a Riemannian manifold are hypersurfaces with prescrebed anisotropic mean curvature. We prove that the
anisotropic Gauss map of surfaces immersed in Euclidean space with constant anisotropic mean curvature is a harmonic map. In the case of rotatioally invariat functionals in some homogeneous three-dimensional ambients, we present a abridged version of a existence
result for constant anisotropic mean curvature surfaces as cylinders, spheres, tori and annuli corresponding to the anisotropic analogs of onduloids and nodoids.
In the Euclidean case M = R3, examples of stable critical points are provided by the Wulff shapes associated to functional F. Paralleling the case of constant curvature mean spheres, a characterization of Wulff shapes is provided, which answers affirmatively a
question posed by M. Koiso and B. Parmer in [13]. Read more
|
49 |
[en] A PRIORI GRADIENT ESTIMATES, EXISTENCE AND NON-EXISTENCE FOR A MEAN CURVATURE EQUATION IN HYPERBOLIC SPACE / [pt] ESTIMATIVAS A PRIORI DO GRADIENTE, EXISTÊNCIA E NÃO-EXISTÊNCIA, PARA UMA EQUAÇÃO DA CURVATURA MÉDIA NO ESPAÇO HIPERBÓLICOELIAS MARION GUIO 07 August 2003 (has links)
[pt] Um resultado clássico no âmbito de equações diferenciais
parciais e de geometria diferencial é o seguinte: Dada uma
constante a existe uma condição da fronteira do domínio
(Omega) de maneira que o problema de Dirichlet para a
equação da curvatura média a no espaço Euclidiano é sempre
solúvel. Este é um teorema devido a Serrin (1969). Além
disso, se a condição de Serrin não for satisfeita, há um
resultado de não-existência. A partir disso foi perguntado
se um resultado similar valeria no espaço Hiperbólico. A
finalidade desta tese é dar uma resposta afirmativa a esta
pergunta, exibindo uma condição tipo Serrin. De maneira que
obtém-se existência de superfícies cujo gráfico tenha
curvatura média hiperbólica pré-determinada H(x) no espaço
hiperbólico. O resultado é sharp no sentido que se tal
condição for negada então não-existência pode ser
estabelecida. O ponto central é uma estimativa a priori do
gradiente de uma tal solução. / [en] A classical result in Partial Differential Equations and
Differential Geometrydue to Serrin (1969) is the following:
Given a constant (alfa) there exists a condition on the
boundary of the domain (omega)such that the Dirichlet
problem for the mean equation (alfa)is solvable. Besides,
if Serrin's condition fails there is a non-existence
result. Taking into account this classical result one may
ask if a similar theorem holds in hyperbolic space. The
goal of this thesis is to give a positive answer to this
question establishing a certain Serrin type condition. Thus
we obtain existence of surfaces whose graphs has prescribed
mean curvature H(x) in hyperbolic space. This result is
sharp because if the condition is not satisfied then a non-
existence result can be inferred. The main point of the
argument is some a priori gradient estimate and degree
theory. Read more
|
50 |
Problema exterior de Dirichlet para a equação das superfícies de curvatura média constante no espaço hiperbólicoNunes, Adilson da Silva January 2017 (has links)
Neste trabalho mostramos que dado um domínio exterior de classe C0 contido em uma superfície umb lica de H3; com curvatura média constante H 2 [0; 1); existe uma família de gracos de Killing com curvatura média constante H: O bordo de cada um destes gracos está contido nesta superfície umbílica e a norma do gradiente da função no bordo pode ser prescrita por um certo valor s 0. / In this paper we show that given an exterior domain of class C0 contained in an umbilical surface of H3; with constant mean curvature H 2 [0; 1); there exists a family of Killing graphs with constant mean curvature H: The boundary of each of these graphs is contained in this umbilical surface and the norm of the gradient of the function in the boundary can be prescribed by a certain value s 0:
|
Page generated in 0.104 seconds