Spelling suggestions: "subject:"bellin"" "subject:"fellin""
11 |
A Method to Symbolically Compute Convolution IntegralsPeasgood, Richard January 2009 (has links)
This thesis presents a method for computing symbolic solutions of a certain class of improper integrals related to convolutions of Mellin transforms. Important integrals that fall into this category are integral transforms such as the Fourier, Laplace, and Hankel transforms. The method originated in a presentation by Salvy, However, many of the details of the method were absent. We present the method of Salvy in full which computes a linear homogeneous differentail equation which is satisfied by the integral in question. A theory of contour integrals is introduced that is related to the contour definition of Meijer G functions. This theory is used to prove the correctness of the method of Salvy and also gives a way to compute regions of validity for the solutions computed. We then extend the method to compute symbolic solutions of the integral along with where the solutions are valid.
|
12 |
Application of the Fourier-Mellin transform to translation-, rotation- and scale-invariant plant leaf identificationPratt, John Graham le Maistre. January 2000 (has links)
The Fourier-Mellin transform was implemented on a digital computer and applied towards the recognition and differentiation of images of plant leaves regardless of translation, rotation or scale. Translated, rotated and scaled leaf images from seven species of plants were compared: avocado ( Persea americana), trembling aspen (Populus tremuloides), lamb's-quarter (Chenopodium album), linden (Tilla americana), silver maple (Acer saccharinum), plantain (Plantago major) and sumac leaflets (Rhus typhina ). The rate of recognition was high among translated and rotated leaf images for all plant species. The rates of recognition and differentiation were poor, however, among scaled leaf images and between leaves of different species. Improvements to increase the effectiveness of the algorithm are suggested.
|
13 |
Application of the Fourier-Mellin transform to translation-, rotation- and scale-invariant plant leaf identificationPratt, John Graham le Maistre. January 2000 (has links)
No description available.
|
14 |
Transformation de Mellin faisceautique et D-modulesFabbro, Hervé 16 May 2006 (has links) (PDF)
Dans un premier temps, nous décrivons le complexe des solutions du transformé de Mellin algébrique d'un D-module M en fonction des solutions de M. Pour cela, nous définissons un foncteur de transformation de Mellin faisceautique. Nous montrons alors que le transformé de Mellin du complexe des solutions à décroissance rapide en 0 et à l'infini d'un D-module holonome régulier M est quasi-isomorphe au complexe des solutions du transformé de Mellin algébrique de M, l'hypothèse de régularité n'étant plus nécessaire à une variable.<br />Dans un second temps, nous faisons un travail analogue avec la transformation de Mellin inverse : les résultats sont plus partiels. Nous définissons une transformation de Mellin inverse faisceautique. Nous démontrons alors qu'il existe des morphismes naturels reliant le complexe des solutions du transformé de Mellin inverse algébrique d'un module aux différences avec le transformé de Mellin inverse faisceautique du complexe des solutions à croissance au plus exponentielle d'ordre 1 à l'infini dans des bandes verticales. Nous montrons ensuite que dans le cas d'un module aux différences à une variable et à une seule pente strictement positive, ces morphismes sont des isomorphismes.
|
15 |
The Rare Decay of the Neutral Pion into a DielectronGhaderi, Hazhar January 2013 (has links)
We give a rather self-contained introduction to the rare pion to dielectron decay which in nontrivial leading order is given by a QED triangle loop. We work within the dispersive framework where the imaginary part of the amplitude is obtained via the Cutkosky rules. We derive these rules in detail. Using the twofold Mellin-Barnes representation for the pion transition form factor, we derive a simple expression for the branching ratio B(π0 <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Crightarrow" /> e+e-) which we then test for various models. In particular a more recent form factor derived from a Lagrangian for light pseudoscalars and vector mesons inspired by effective field theories. Comparison with the KTeV experiment at Fermilab is made and we find that we are more than 3σ below the KTeV experiment for some of the form factors. This is in agreement with other theoretical models, such as the Vector Meson Dominance model and the quark-loop model within the constituent-quark framework. But we also find that we can be in agreement with KTeV if we explore some freedom of the form factor not fixed by the low-energy Lagrangian.
|
16 |
Conformal Bootstrap : Old and NewKaviraj, Apratim January 2017 (has links) (PDF)
Conformal Field Theories (CFT) are Quantum Field Theories characterized by enhanced (conformal) symmetries. They are interesting to Theoretical Physicists because they occur at critical points in phase transitions of various systems and also in the world sheet formulation of String Theory. CFTs allow Operator Product Expansion (OPE) in their correlators. The idea of Conformal Bootstrap is to solely use the conformal symmetries and crossing symmetry in the OPE to solve a conformal led theory and not explicitly use a lagrangian. Solving a CFT is equivalent to obtaining the anomalous dimensions and OPE coe client’s of the operators. The work presented in this thesis shows how ideas of bootstrap can be used to get analytic results for dimensions and OPE coe client’s of various operators in CFTs.
In the conventional bootstrap program, the OPE in the direct (s-) channel is compared with the OPE of a crossed (t-) channel. This requirement of crossing symmetry is called the bootstrap equation. The flow of logic is somewhat reversed in the \new" idea that is formulated in this thesis. The trick is to expand a CFT correlator in terms of Witten diagrams, in all channels. This is a manifestly crossing symmetric description, and is in contrast to the usual expansion in terms of conformal blocks, which is in only one channel. For convenience we work with the Mellin transforms of Witten diagrams. For consistency of the Witten diagrams expansion with the conformal block expansion in a certain channel, we require the satisfaction of some equations, which we call the bootstrap equations in Mellin space. This scheme was rest chalked out by Polyakov in 1973, where he proposed the use of \unitary amplitudes" to expand a correlator. The unitary amplitudes had similar symmetry and analytic properties as the Witten diagrams. Even though he did not take his idea forward, replacing unitary amplitudes with Witten diagrams seems to work very well for obtaining analytic results.
The working of bootstrap equations in Mellin space is demonstrated for the 4 Wilson-Fisher fixed point in d = 4 , O(N) theory at Wilson-Fisher point (in d = 4 ), as well as with large N (in general d), and large spin operators in strongly coupled and weakly coupled theories. For the case of global symmetry we have also analysed the somewhat unexplored case of cubic anisotropy. The results are obtained as perturbative series in , 1=N, or 1=` as applicable, and they are consistent with known results in literature. We also obtain various new results, for instance the OPE coe client’s of general higher spin operators. These results are otherwise very di cult to end from Feynman diagrams, but in this approach they come out very simply, essentially by solving some algebraic equations. We also show the use of the conventional bootstrap strategy, for analytically obtaining anomalous dimensions of large spin operators having higher twists, in a O(N) theory, by working in the light cone limit.
One can question the validity of the proposal of using Witten diagrams to expand a correlator. One such issue is convergence of the sum over Witten diagrams. Convergence can be shown to hold for the operator spectrum we have worked with. Also there are operators that might upset convergence under some conditions. Resolutions of such cases, and ways to improve convergence have also been discussed.
The conventional bootstrap method has been very successful in giving numerical results in nonpertur-bative CFTs, like the 3 dimensional Ising model. Numerical analysis can also be made possible with the new bootstrap in Mellin space approach. Having a convergent basis of expansion improves the prospect of numeric. The goal is to formulate a bootstrap scheme that, under a single framework, can make most of all the CFT properties. It should be systematic, so that one can obtain anomalous dimensions and OPE coe client’s of all operators up to any desired order, and works for all strongly/weakly coupled and perturbative/nonpertur-bative CFTS, both analytically and numerically. Finally, the use of Witten diagrams also indicates the possibility of Ising CFT or weakly coupled CFTs having connections with AdS/CFT, and hence String Theory. It does seem we have a right direction towards achieving our goal.
|
17 |
Moments des fonctions thêta / Moments of theta functionsMunsch, Marc 12 December 2013 (has links)
On s’intéresse dans cette thèse à l’étude des fonctions thêta intervenant dans la preuve de l’équation fonctionnelle des fonctions L de Dirichlet. En particulier, on adapte certains résultats obtenus dans le cadre des fonctions L au cas des fonctions thêta. S. Chowla a conjecturé que les fonctions L de Dirichlet associées à des caractères χ primitifs ne doivent pas s’annuler au point central de leur équation fonctionnelle. De façon analogue, il est conjecturé que les fonctions thêta ne s'annulent pas au point 1. Dans le but de prouver cette conjecture pour beaucoup de caractères, on étudie les moments de fonctions thêta dans plusieurs familles. On se focalise sur deux familles importantes. La première considérée est l’ensemble des caractères de Dirichlet modulo p où p est un nombre premier. On prouve des formules asymptotiques pour les moments d'ordre 2 et 4 en se ramenant à des problèmes de nature diophantienne. La seconde famille considérée est celle des caractères primitifs et quadratiques associés à des discriminants fondamentaux d inférieurs à une certaine borne fixée. On donne une formule asymptotique pour le premier moment et une majoration pour le moment d'ordre 2 en utilisant des techniques de transformée de Mellin ainsi que des estimations sur les sommes de caractères. Dans les deux cas, on en déduit des résultats de non-annulation des fonctions thêta. On propose également un algorithme qui, pour beaucoup de caractères, se révèle en pratique efficace pour prouver la non-annulation sur l'axe réel positif des fonctions thêta ce qui entraîne la non-annulation sur le même axe des fonctions L associées. / In this thesis, we focus on the study of theta functions involved in the proof of the functional equation of Dirichlet L- functions. In particular, we adapt some results obtained for L-functions to the case of theta functions. S. Chowla conjectured that Dirichlet L- functions associated to primitive characters χ don’t vanish at the central point of their functional equation. In a similar way to Chowla’s conjecture, it is conjectured that theta functions don't vanish at the central point of their functional equation for each primitive character. With the aim of proving this conjecture for a lot of characters, we study moments of theta functions in various families. We concentrate on two important families. The first one which we consider is the family of all Dirichlet characters modulo p where p is a prime number. In this case, we prove asymptotic formulae for the second and fourth moment of theta functions using diophantine techniques. The second family which we consider is the set of primitive quadratic characters associated to a fundamental discriminant less than a fixed bound. We give an asymptotic formula for the first moment and an upper bound for the second moment using techniques of Mellin transforms and estimation of character sums. In both cases, we deduce some results of non-vanishing. We also give an algorithm which, in practice, works well for a lot of characters to prove the non-vanishing of theta functions on the positive real axis. In this case, this implies in particular that the associated L-functions don’t vanish on the same axis.
|
18 |
Correlators on the Wilson Line Defect CFTPeveri, Giulia 14 November 2023 (has links)
Konforme Feldtheorien (CFT) spielen eine Schlüsselrolle in der modernen theoretischen Physik. Mit CFT beschreibt man reale physikalische Systeme bei Kritikalität. Dank der AdS/CFT-Korrespondenz spielt sie auch bei der Untersuchung der Quantengravitation eine zentrale Rolle. Auf der Seite der CFT steht die N=4 supersymmetrische Yang-Mills (SYM) Theorie. Diese Arbeit dreht sich hauptsächlich um die supersymmetrische Wilson-Linie und ihre Interpretation als konformer Defekt in N=4 SYM. Insbesondere konzentrieren wir uns auf Anregungen, die auf dem Defekt lokalisiert sind, sogenannte Einfügungen, deren Korrelatoren durch eine eindimensionale CFT beschrieben werden.
Das erste Hauptergebnis dieser Arbeit ist ein effizienter Algorithmus zur Berechnung von Mehrpunkt Korrelationsfunktionen von Skalareinfügungen auf der Wilson-Linie bis zur nächsten Ordnung bei schwacher Kopplung kodieren. Es werden verschiedene Berechnungen solcher Vier-, Fünf- und Sechspunkt-Korrelatoren gezeigt und ihre Eigenschaften diskutiert. Darüber hinaus wird am Beispiel der Vierpunkt-Funktion die Leistungsfähigkeit der Ward-Identitäten veranschaulicht, die für die Ableitung eines Ergebnisses nächster, vorletzter und führender Ordnung entscheidend sind.
Dank dieser perturbativen Ergebnisse vermuten wir eine Mehrpunkt-Erweiterung der Ward-Identitäten, die von den Vier-Punkt-Funktionen erfüllt werden. Diese nichtperturbativen Beschränkungen erweisen sich als fundamentale Bestandteile des Bootstraps einer Fünfpunkt-Funktion bei starker Kopplung.
Zum Abschluss dieser Arbeit definieren wir eine inhärent eindimensionale Mellin-Amplitude auf der nichtperturbativen Ebene mit geeigneten Subtraktionen und analytischen Fortsetzungen. Die Effizienz des 1d-Mellin-Formalismus zeigt sich auf der perturbativen Ebene. Man findet einen Ausdruck in geschlossener Form für die Mellin-Transformation von Kontaktwechselwirkungen führender Ordnung, den man verwendet, um CFT-Daten zu extrahieren. / Conformal field theory (CFT) plays a key role in modern theoretical physics. Through CFT we describe real physical systems at criticality and fixed points of the renormalization group flow. It is also central in the study of quantum gravity, thanks to the AdS/CFT correspondence. This thesis originates in the context of the N=4 supersymmetric Yang-Mills (SYM) theory, which represents the CFT side of this correspondence. This work mainly revolves around the supersymmetric Wilson line and its interpretation as a conformal defect in N=4 SYM. Particularly, we focus on excitations localized on the defect called insertions, whose correlators are described by a one-dimensional CFT.
The first main result of this work is an efficient algorithm for computing multipoint correlation functions of scalar insertions on the Wilson line, consisting of recursion relations encoding the possible interactions up to next-to-leading order at weak coupling. We show various computations of such four-, five- and six-point correlators, and discuss their properties. Moreover, we use the four-point function case to illustrate the power of the Ward identities, which are crucial in deriving a next-to-next-to-leading order result.
Thanks to these perturbative results, we find a family of differential operators annihilating our correlation functions, which we conjecture to be a multipoint extension of the Ward identities satisfied by the four-point functions. These non-perturbative constraints are shown to be fundamental ingredients in the bootstrap of a five-point function at strong coupling.
To conclude this thesis, we define an inherently one-dimensional Mellin amplitude at the non-perturbative level with appropriate subtractions and analytical continuations. The efficiency of the 1d Mellin formalism is manifest at the perturbative level. We find a closed-form expression for the Mellin transform of leading order contact interactions and use it to extract CFT data.
|
19 |
Combinatorial problems related to sequences with repeated entriesArchibald, Margaret Lyn 15 November 2006 (has links)
Student Number : 9708525G -
PhD thesis -
School of Mathematics -
Faculty of Science / Sequences of numbers have important applications in the field of Computer Science.
As a result they have become increasingly regarded in Mathematics, since analysis
can be instrumental in investigating algorithms.
Three concepts are discussed in this thesis, all of which are concerned with ‘words’
or ‘sequences’ of natural numbers where repeated letters are allowed:
• The number of distinct values in a sequence with geometric distri-
bution
In Part I, a sample which is geometrically distributed is considered, with the
objective of counting how many different letters occur at least once in the
sample. It is concluded that the number of distinct letters grows like log n as
n → ∞. This is then generalised to the question of how many letters occur
at least b times in a word.
• The position of the maximum (and/or minimum) in a sequence
with geometric distribution
Part II involves many variations on the central theme which addresses the
question: “What is the probability that the maximum in a geometrically distributed
sample occurs in the first d letters of a word of length n?” (assuming
d ≤ n). Initially, d is considered fixed, but in later chapters d is allowed to
grow with n. It is found that for 1 ≤ d = o(n), the results are the same as
when d is fixed.
• The average depth of a key in a binary search tree formed from a
sequence with repeated entries
Lastly, in Part III, random sequences are examined where repeated letters
are allowed. First, the average left-going depth of the first one is found,
and later the right-going path to the first r if the alphabet is {1, . . . , r} is
examined. The final chapter uses a merge (or ‘shuffle’) operator to obtain
the average depth of an arbitrary node, which can be expressed in terms of
the left-going and right-going depths.
|
20 |
On the index of differential operators on manifolds with conical singularitiesSchulze, Bert-Wolfgang, Sternin, Boris, Shatalov, Victor January 1997 (has links)
The paper contains the proof of the index formula for manifolds with conical points. For operators subject to an additional condition of spectral symmetry, the index is expressed as the sum of multiplicities of spectral points of the conormal symbol (indicial family) and the integral from the Atiyah-Singer form over the smooth part of the manifold. The obtained formula is illustrated by the example of the Euler operator on a two-dimensional manifold with conical singular point.
|
Page generated in 0.1036 seconds