Spelling suggestions: "subject:"metal oxide semiconductors"" "subject:"metal oxide ⅴsemiconductors""
321 |
Design and implementation of linearized CMOS mixer for RF application.January 2003 (has links)
Au-Yeung Chung-Fai. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2003. / Includes bibliographical references (leaves 85-91). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgments --- p.iii / Contents --- p.iv / Chapter Chapter 1 --- Introduction --- p.1 / Chapter Chapter 2 --- Basic Theory of Mixer --- p.6 / Chapter 2.1 --- Definition of mixer's electrical parameters --- p.8 / Chapter 2.2.1 --- Conversion gain --- p.8 / Chapter 2.2.2 --- Port-to-port isolation --- p.8 / Chapter 2.2.3 --- Noise figure --- p.9 / Chapter 2.2.4 --- 1-dB compression point (P1dB) --- p.11 / Chapter 2.2.5 --- 2nd order intercept point (IP2) --- p.11 / Chapter 2.2.6 --- 3rd order intercept point (IP3) --- p.12 / Chapter 2.2.7 --- Blocking dynamic range (BDR) --- p.12 / Chapter 2.2.8 --- Spurious free dynamic range (SFDR) --- p.12 / Chapter 2.2 --- Review of mixer architectures --- p.13 / Chapter 2.2.1 --- Diode mixer --- p.13 / Chapter 2.2.2 --- Dual-gate mxer --- p.14 / Chapter 2.2.3 --- Singly balanced mixer --- p.15 / Chapter 2.2.4 --- Doubly balanced dual-gate mixer --- p.16 / Chapter 2.2.5 --- Gilbert cell mixer --- p.18 / Chapter Chapter 3 --- CMOS Doubly Balanced Dual-Gate Mixer Design --- p.20 / Chapter 3.1 --- Design and Analysis --- p.20 / Chapter 3.1.1 --- Principle of operation --- p.20 / Chapter 3.1.2 --- Doubly balanced dual-gate mixer --- p.23 / Chapter 3.1.3 --- Common source output buffer --- p.25 / Chapter 3.1.4 --- Design example and simulation results --- p.26 / Chapter 3.2 --- IC Layout --- p.29 / Chapter 3.2.1 --- Multi-fingers transistor --- p.29 / Chapter 3.2.2 --- Matched transistor --- p.31 / Chapter 3.2.3 --- Match resistor --- p.32 / Chapter 3.2.4 --- Layout of CMOS doubly balanced dual-gate mixer --- p.33 / Chapter Chapter 4 --- Review of Mixer Linearization Techniques --- p.34 / Chapter 4.1 --- Source degeneration --- p.34 / Chapter 4.2 --- Feed-forward system --- p.36 / Chapter 4.3 --- Predistortion --- p.38 / Chapter 4.4 --- Difference-frequency (low-frequency) injection technique --- p.41 / Chapter Chapter 5 --- Mixer Linearization 一 Low Frequency Signal Injection --- p.44 / Chapter 5.1 --- Mixer's linearity --- p.44 / Chapter 5.2 --- Low-frequency signal injection method --- p.46 / Chapter 5.2.1 --- Single-injection scheme --- p.49 / Chapter 5.2.2 --- Dual-injection scheme --- p.50 / Chapter 5.2.3 --- Effect of gain error --- p.51 / Chapter 5.2.4 --- Bandwidth lim itation --- p.52 / Chapter Chapter 6 --- Experiments and Results --- p.55 / Chapter 6.1 --- CMOS doubly balanced dual-gate mixer --- p.55 / Chapter 6.1.1 --- Conversion gain --- p.56 / Chapter 6.1.2 --- Port-to-port isolation --- p.57 / Chapter 6.1.3 --- No ise figure --- p.60 / Chapter 6.1.4 --- 1-dB compression point --- p.61 / Chapter 6.1.5 --- 3rd order intercept point --- p.62 / Chapter 6.2 --- Low-frequency signal injection method --- p.63 / Chapter 6.2.1 --- Measurement result: single-injection scheme --- p.64 / Chapter 6.2.2 --- Measurement result: dual-injection scheme --- p.66 / Chapter Chapter 7 --- Conclusions and Recommendations for Future Work --- p.68 / Chapter 7.1 --- Conclusions --- p.68 / Chapter 7.2 --- Recommendations for future work --- p.69 / Appendix --- p.70 / Chapter A1 --- CMOS technology --- p.70 / Chapter A1.1 --- MOSFET structure --- p.70 / Chapter A1.2 --- CMOS n-well process --- p.71 / Chapter A1.3 --- MOSFET device modeling --- p.74 / Chapter A1.4 --- Channel length modulation --- p.78 / Chapter A1.5 --- Body effect --- p.78 / Chapter A2 --- Mixer's nonlinearity analysis --- p.79 / Chapter A2.1 --- First-order effect --- p.79 / Chapter A2.2 --- Second-order effect --- p.80 / Chapter A2.3 --- Third-order effect --- p.81 / Chapter A2.4 --- Nonlinear IF spectrum --- p.82 / Chapter A3 --- Artificial IMD3 produced by low-frequency signal injection --- p.83 / Author's Publication List --- p.85 / References --- p.86
|
322 |
A high performance current mode amplifier with boosted saturation voltage.January 2009 (has links)
Tsang, Ka Hung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references. / Abstract also in Chinese. / Abstract / Acknowledgement / Content / Chapter 1. --- Introduction / Chapter 1.1 --- Motivation for Current-Mode Circuit --- p.1-1 / Chapter 1.2 --- Basic Current-Mode Building Block --- p.1-3 / Chapter 1.3 --- Adjoint Principle --- p.1-5 / Chapter 1.4 --- Characteristics of Current Amplifier --- p.1-8 / Chapter 1.5 --- Application of Current-Mode Circuit --- p.1-10 / Chapter 2. --- Conventional Design / Chapter 2.1 --- System Overview --- p.2-1 / Chapter 2.2 --- First Architecture and Circuit (Fully Current Mode) --- p.2-6 / Chapter 2.3 --- Second Architecture and Circuit (Voltage Mode) --- p.2-10 / Chapter 2.4 --- Performance Indicator --- p.2-15 / Chapter 3. --- Proposed Design / Chapter 3.1 --- Design Motivation --- p.3-1 / Chapter 3.2 --- Saturation Voltage Gain Stage (SVGS) --- p.3-7 / Chapter 3.3 --- Design 1: Current Amplifier with Boosted Saturation Voltage (Fully Current Mode) --- p.3-13 / Chapter 3.4 --- Design 2: Current Amplifier with Boosted Saturation Voltage (Voltage Mode) --- p.3-22 / Chapter 4. --- IC Measurement / Chapter 5. --- Conclusion / Chapter 5.1 --- Design 1: Current Amplifier with Boosted Saturation Voltage (Fully Current Mode) over Conventional Design --- p.5-1 / Chapter 5.2 --- Design 2: Current Amplifier with Boosted Saturation Voltage (Voltage Mode) over Conventional Design --- p.5-2 / Chapter 6. --- Future Idea / Chapter 7. --- Reference / Chapter 8. --- Appendix
|
323 |
CMOS power amplifier and transmitter front-end design in wireless communication.January 2009 (has links)
Ng, Yuen Sum. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references. / Abstract also in Chinese. / Chapter 1. --- INTRODUCTION --- p.11 / Chapter 1.1 --- Motivation --- p.11 / Chapter 1.2 --- Specifications --- p.12 / Chapter 1.3 --- Organization of the Thesis --- p.16 / Chapter 1.4 --- References --- p.16 / Chapter 2. --- BASIC THEORY OF POWER AMPLIFIER AND TRANSMITTER FRONT-END --- p.18 / Chapter 2.1 --- Classification of Power Amplifier --- p.18 / Chapter 2.1.1 --- Class A --- p.20 / Chapter 2.1.2 --- Class B --- p.21 / Chapter 2.1.3 --- Class AB --- p.22 / Chapter 2.1.4 --- Class C --- p.23 / Chapter 2.1.5 --- Class D --- p.24 / Chapter 2.1.6 --- Class E --- p.25 / Chapter 2.1.7 --- Class F --- p.28 / Chapter 2.2 --- Figure-of-Mhrit of Power Amplifier --- p.28 / Chapter 2.2.1 --- Small Signal Analysis --- p.29 / Chapter 2.2.1.1 --- S-parameter --- p.29 / Chapter 2.2.1.2 --- Gain and Stability --- p.29 / Chapter 2.2.2 --- Large Signal Analysis --- p.32 / Chapter 2.2.2.1 --- 1-dB compression point --- p.33 / Chapter 2.2.2.2 --- Third-order intermodulation point --- p.33 / Chapter 2.2.2.3 --- Power Gain --- p.35 / Chapter 2.2.2.4 --- Drain Efficiency and Power Added Efficiency --- p.35 / Chapter 2.2.2.5 --- AM-AM and AM-PM conversion --- p.36 / Chapter 2.2.3 --- Modulation Analysis --- p.36 / Chapter 2.2.3.1 --- Constellation Diagram and Error Vector Magnitude --- p.36 / Chapter 2.3 --- Reference --- p.37 / Chapter 3. --- CIRCUIT DESIGN OF POWER AMPLIFIER --- p.39 / Chapter 3.1 --- Introduction --- p.39 / Chapter 3.2 --- Topology of the Power Amplifier Design --- p.39 / Chapter 3.3 --- Design in Power Amplifier --- p.40 / Chapter 3.2.1 --- Power Stage --- p.40 / Chapter 3.2.2 --- Driver Stage and Input matching --- p.46 / Chapter 3.4 --- Simulation Result on Power Amplifier --- p.49 / Chapter 3.5 --- Layout consideration --- p.50 / Chapter 3.6 --- Measurement Result on Power Amplifier --- p.51 / Chapter 3.4.1 --- Small signal measurement --- p.52 / Chapter 3.4.2 --- Large signal measurement --- p.55 / Chapter 3.4.3 --- Modulation measurement --- p.56 / Chapter 3.7 --- Performance Summary --- p.58 / Chapter 3.8 --- Reference --- p.59 / Chapter 4. --- CIRCUIT DESIGN OF TRANSMITTER FRONT-END --- p.60 / Chapter 4.1 --- Introduction --- p.60 / Chapter 4.2 --- Topology of the Transmitter Front-End Design --- p.61 / Chapter 4.3 --- Design in transmitter front-end circuit --- p.64 / Chapter 4.2.1 --- I/Q Modulator --- p.64 / Chapter 4.2.2 --- Power Amplifier --- p.66 / Chapter 4.2.3 --- On-chip LC Balun --- p.72 / Chapter 4.4 --- Simulation Result of the Transmitter Front-End Design --- p.74 / Chapter 4.5 --- Layout consideration --- p.75 / Chapter 4.6 --- Measurement Result of the Transmitter Front-End Design --- p.76 / Chapter 4.4.1. --- Transmitter Front-End Measurement --- p.77 / Chapter 4.4.1.1 --- Output Reflection coefficient --- p.77 / Chapter 4.4.1.2 --- Large Signal Measurement --- p.78 / Chapter 4.4.1.3 --- Modulation Measurement --- p.81 / Chapter 4.4.2. --- LC Balun Measurement --- p.84 / Chapter 4.7 --- Performance Summary of the transmitter front-end circuit --- p.86 / Chapter 4.8 --- Reference --- p.89 / Chapter 5. --- CONCLUSION --- p.90 / Chapter 6. --- FUTURE WORK --- p.91
|
324 |
Voltage controlled resistance model for MOS transistorsJia, Joey Zong-yi 01 January 1988 (has links)
The voltage controlled resistance model is developed for a reliable MOS transistor resistance mapping. The model includes both system and local parameters, and incorporates the effect of rise and fall time variations on the gate delay. MOS transistor resistance mapping is applied in logic simulation and timing verification. Also, it can be used in automatic transistor sizing and critical path analysis.
|
325 |
Investigation of techniques for high speed CMOS arbitrary waveform generationNehl, Albert Henry 01 January 1990 (has links)
Today a growing number of applications in design engineering, production and environmental testing, and system service require specific analog waveforms and digital patterns. Such requirements are neither satisfactorily nor easily met by the use of standard function or single purpose, custom generators.
Traditional methods of waveform generation suffer from undesirable complexity or mediocre performance and are otherwise limited. For the majority of arbitrary waveform generation applications, including medical engineering, modal analysis and electronic engineering, direct digital synthesis techniques are satisfactory. Direct digital synthesis, based generally on periodic retrieval of predetermined amplitude values, may be used to 2 generate such waveforms. Within the limits imposed by the system's maximum sample rate and the Nyquist criteria, any waveform may be produced using these techniques.
The objective of this inquiry, within a particular set of constraints, is to extend the cost/performance envelope of direct digital synthesis techniques for the generation of arbitrary waveforms. Performance is enhanced, particularly in the areas of output bandwidth and signal purity.
|
326 |
The single source chemical vapour deposition of alkaline earth metal oxide thin filmsHill, Matthew Roland, Chemistry, Faculty of Science, UNSW January 2006 (has links)
Metal oxide thin films are dynamic materials that have revolutionised the nature of semiconductor and electronic thin film devices. Recently, progress has stagnated in some aspects due to the increasingly complex deposition apparatus required, and the dearth of suitable precursor complexes of certain ???difficult??? metals. This thesis seeks to address both of these issues. The application of a precursor complex, Mg6(O2CNEt2)12 to the SSCVD of MgO thin films delivered the highest quality films ever reported with this technique. The resultant films were found to be of purely (111) orientation. Due to the nature of the precursor, the chemical reactions occurring at the surface during SSCVD growth result in a high growth rate, low flux environment and films of (111) orientation have been achieved without the amorphous underlayer. This finding has important implications for buffer layers in perovskite thin film devices. The unprecedented precursor chemistry has been used as a basis for the extremely high quality material produced, along with the unusual, yet beneficial structural morphology it possesses. A new range of barium complexes with single encapsulating ligands have been prepared for use in chemical vapour deposition (CVD) of BaTiO3 thin films. A novel pathway to an unprecedented class of barium carbamates is reported, and also new dianionic bis ??-ketoesterates and their barium, strontium, and calcium analogues were synthesised. High resolution mass spectrometry showed the barium bis ??-ketoesterate derivatives to be monomeric, and preliminary testing indicated some volatility in these species. Insights were gained into the likely successful pathways to building a volatile heterobimetallic precursor complex containing an alkaline earth metal. The knowledge of intimate mixing in heterobimetallic precursor complexes was extended by some novel chemistry to develop the first mixed Zn/Mg carbamato cluster complexes. These complexes were found to be excellent SSCVD precursors for ZnxMg1-xO thin films. Thin films were deposited with these precursors and exhibited a single preferred orientation, with a constant amount of magnesium throughout the bulk of the films. Investigation of the light emission properties of the films revealed significant improvements in the structural order commensurate with the incorporation of magnesium, and the formation of the ZnxMg1-xO alloy.
|
327 |
Systematic evaluation of metal gate electrode effective work function and its influence on device performance in CMOS devicesWen, Huang-Chun, January 1900 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2006. / Vita. Includes bibliographical references.
|
328 |
The single source chemical vapour deposition of alkaline earth metal oxide thin filmsHill, Matthew Roland, Chemistry, Faculty of Science, UNSW January 2006 (has links)
Metal oxide thin films are dynamic materials that have revolutionised the nature of semiconductor and electronic thin film devices. Recently, progress has stagnated in some aspects due to the increasingly complex deposition apparatus required, and the dearth of suitable precursor complexes of certain ???difficult??? metals. This thesis seeks to address both of these issues. The application of a precursor complex, Mg6(O2CNEt2)12 to the SSCVD of MgO thin films delivered the highest quality films ever reported with this technique. The resultant films were found to be of purely (111) orientation. Due to the nature of the precursor, the chemical reactions occurring at the surface during SSCVD growth result in a high growth rate, low flux environment and films of (111) orientation have been achieved without the amorphous underlayer. This finding has important implications for buffer layers in perovskite thin film devices. The unprecedented precursor chemistry has been used as a basis for the extremely high quality material produced, along with the unusual, yet beneficial structural morphology it possesses. A new range of barium complexes with single encapsulating ligands have been prepared for use in chemical vapour deposition (CVD) of BaTiO3 thin films. A novel pathway to an unprecedented class of barium carbamates is reported, and also new dianionic bis ??-ketoesterates and their barium, strontium, and calcium analogues were synthesised. High resolution mass spectrometry showed the barium bis ??-ketoesterate derivatives to be monomeric, and preliminary testing indicated some volatility in these species. Insights were gained into the likely successful pathways to building a volatile heterobimetallic precursor complex containing an alkaline earth metal. The knowledge of intimate mixing in heterobimetallic precursor complexes was extended by some novel chemistry to develop the first mixed Zn/Mg carbamato cluster complexes. These complexes were found to be excellent SSCVD precursors for ZnxMg1-xO thin films. Thin films were deposited with these precursors and exhibited a single preferred orientation, with a constant amount of magnesium throughout the bulk of the films. Investigation of the light emission properties of the films revealed significant improvements in the structural order commensurate with the incorporation of magnesium, and the formation of the ZnxMg1-xO alloy.
|
329 |
The single source chemical vapour deposition of alkaline earth metal oxide thin filmsHill, Matthew Roland, Chemistry, Faculty of Science, UNSW January 2006 (has links)
Metal oxide thin films are dynamic materials that have revolutionised the nature of semiconductor and electronic thin film devices. Recently, progress has stagnated in some aspects due to the increasingly complex deposition apparatus required, and the dearth of suitable precursor complexes of certain ???difficult??? metals. This thesis seeks to address both of these issues. The application of a precursor complex, Mg6(O2CNEt2)12 to the SSCVD of MgO thin films delivered the highest quality films ever reported with this technique. The resultant films were found to be of purely (111) orientation. Due to the nature of the precursor, the chemical reactions occurring at the surface during SSCVD growth result in a high growth rate, low flux environment and films of (111) orientation have been achieved without the amorphous underlayer. This finding has important implications for buffer layers in perovskite thin film devices. The unprecedented precursor chemistry has been used as a basis for the extremely high quality material produced, along with the unusual, yet beneficial structural morphology it possesses. A new range of barium complexes with single encapsulating ligands have been prepared for use in chemical vapour deposition (CVD) of BaTiO3 thin films. A novel pathway to an unprecedented class of barium carbamates is reported, and also new dianionic bis ??-ketoesterates and their barium, strontium, and calcium analogues were synthesised. High resolution mass spectrometry showed the barium bis ??-ketoesterate derivatives to be monomeric, and preliminary testing indicated some volatility in these species. Insights were gained into the likely successful pathways to building a volatile heterobimetallic precursor complex containing an alkaline earth metal. The knowledge of intimate mixing in heterobimetallic precursor complexes was extended by some novel chemistry to develop the first mixed Zn/Mg carbamato cluster complexes. These complexes were found to be excellent SSCVD precursors for ZnxMg1-xO thin films. Thin films were deposited with these precursors and exhibited a single preferred orientation, with a constant amount of magnesium throughout the bulk of the films. Investigation of the light emission properties of the films revealed significant improvements in the structural order commensurate with the incorporation of magnesium, and the formation of the ZnxMg1-xO alloy.
|
330 |
Design of low power 2.4GHz CMOS LC balanced oscillators with low phase noise and large tuning rangeSeshan, Nilakantan 25 January 2002 (has links)
The design of two 2.4GHz CMOS LC balanced oscillators in the 0.25μm
National BiCMOS process for Bluetooth specifications is presented. These oscillators
achieve low phase noise with low power consumption. At a frequency offset of
500KHz from the 2.11GHz carrier, the measured phase noise is -101.9dBc/Hz for the
NMOS oscillator with a power dissipation of 12.5mW. The complementary oscillator
has a phase noise of -103.6dBc/Hz at 500KHz offset from the 2.19GHz carrier and a
power dissipation of 6.25mW from a 2.5V power supply. A wide tuning range of 16%
is obtained by means of a PMOS varactor in conjunction with an array of switched
capacitors. / Graduation date: 2002
|
Page generated in 0.0581 seconds