11 |
Étude du rôle extra-plaquettaire des microARN : implication des microparticules de plaquettes dans les communications intercellulairesLaffont, Benoit 23 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2015-2016 / Les plaquettes sanguines contiennent une quantité abondante et diversifiée de microARN, qui sont de petits ARN non-codants d’une vingtaine de nucléotides de long capables de réguler l’expression des gènes de manière post-transcriptionnelle et séquence spécifique. Suite à leur activation, les plaquettes libèrent des microparticules (MPs), qui contiennent du matériel génétique issu de leur cellule d’origine et susceptible d’être transmis à une autre cellule afin d’y exécuter une fonction biologique. Durant mes travaux de thèse, j’ai étudié le rôle extra-plaquettaire des microARN et la capacité des MPs de plaquettes à participer aux communications intercellulaires. Les résultats que j’ai obtenus démontrent que les plaquettes activées à la thrombine libèrent la majorité de leur contenu en microARN dans les MPs, notamment miR-223. Les MPs sont internalisées par les cellules endothéliales HUVEC, et y délivrent leur contenu en miR-223. De plus, les MPs contiennent des complexes effecteurs Argonaute 2 (Ago2)•miR-223 fonctionnels et capables de réguler l’expression d’un gène rapporteur dans les cellules cibles endothéliales. Enfin, miR-223 provenant des MPs est capable de réguler l’expression de deux gènes endogènes prédits pour être ciblés par miR-223 et présents dans les HUVEC, à la fois au niveau de l’ARN messager (ARNm) et de la protéine. Dans une deuxième étude, j’ai démontré que ce phénomène n’est pas exclusif aux cellules endothéliales et qu’il peut également se produire avec les macrophages primaires humains. Les MPs sont effectivement internalisées par les macrophages et y délivrent leur contenu en miR-126-3p, qui y est fonctionnel et y régule l’expression d’un gène rapporteur et de gènes endogènes. De plus, l’internalisation des MPs induit une modification du transcriptome des macrophages receveurs, avec 66 microARN et 653 ARN codants ou non codants dont les profils d’expression sont modifiés. Ces changements sont accompagnés d’une diminution de la sécrétion de cytokines et de chimiokines, et d’une augmentation de la capacité de phagocytose par les macrophages. Mes travaux de doctorat démontrent que les microARN véhiculés par les MPs plaquettaires sont impliqués dans la reprogrammation de l’expression des gènes et des fonctions des cellules les internalisant, reflétant ainsi la complexité des communications intercellulaires. / Blood platelets contain an abundant and diverse array of microRNAs, which are small non-coding RNAs of ~20 nucleotides involved in post-transcriptional regulation of gene expression in a sequence-specific manner. Upon activation, platelets release microparticles (MPs) containing genetic materials from their parental cells that may be transferred to, and exert potent biological effects in, recipient cells. During my PhD thesis, I studied the extra-platelet role of microRNAs, and the ability of platelet-derived MPs to mediate cell-to-cell communications. The results that I obtained demonstrate that thrombin-activated platelets preferentially release their microRNA content in MPs, including miR-223. MPs can be internalized by human umbilical vein endothelial cells (HUVEC), to which they transfer their miR-223 content. Moreover, platelet MPs contain functional effector Argonaute 2 (Ago2)•miR-223 complexes that are capable of regulating expression of a reporter gene in recipient HUVEC. Finally, platelet MP-derived miR-223 could regulate expression of two endogenous genes in recipient HUVEC, both at the mRNA and protein levels. In a second study, I demonstrated that this process is not exclusive to endothelial cells, and could take place also in primary human macrophages. Following their internalization by macrophages, MPs deliver functional miR-126-3p, which regulated expression of both a reporter gene and endogenous genes. Furthermore, MP internalization modified the transcriptome of recipient macrophages, with 66 microRNAs and 464 coding and non-coding RNAs that are differentially expressed. These changes are associated with a reduced secretion of cytokines and chemokines, and a marked increase in the phagocytic capacity of macrophages. My doctoral work demonstrate that platelet-derived microRNAs transfered by MPs are involved in reprograming recipient cells’ gene expression and functions, which illustrate the growing complexity of cell-to-cell communications.
|
12 |
Rôle du microARN-132 dans la maladie d'Alzheimer et les tauopathies connexesSmith, Pascal 24 April 2018 (has links)
Les démences affectent des millions de personnes dans le monde et la forme la plus répandue est la maladie d’Alzheimer (MA). Malgré des décennies de recherches, il n’y a toujours pas de traitement efficace pour contrer cette maladie. Elle est caractérisée par deux marqueurs distincts : les plaques amyloïdes extracellulaires générées par le clivage de la protéine Amyloid Precursor Protein (APP) ainsi que les enchevêtrements neurofibrillaires formés de la protéine tau. Cette dernière est également dérégulée dans une vingtaine de maladies neurodégénératives appelées tauopathies. Plusieurs études ont montré que les niveaux des microARNs (miRs) sont altérés chez des personnes atteintes de maladies neurodégénératives telles que la MA. Notamment, le miR-132 se retrouve à être l’un des plus réduit. Pour mieux comprendre l’implication des microARNs (miRs) dans la progression de la MA et les tauopathies, mon objectif de doctorat a été d’étudier le rôle du miR-132 sur la régulation de tau en utilisant aussi bien des outils in vitro que des méthodes in vivo. Nous avons identifié in vitro un facteur d’épissage, PTBP2 pouvant réguler l’inclusion d’un exon important de tau. Ce facteur est augmenté et corrèle inversement avec l’expression de miR-132 chez un groupe de patients atteints de paralysie supranucléaire progressive (PSP), une maladie tauopathique. À l’aide de tests comportementaux, nous avons également démontré qu’une abolition génétique de miR-132 chez la souris réduisait l’apprentissage et la mémoire qui sont des conséquences connues de la MA. Enfin, nous avons établi que l’absence du miR-132 accélère la phosphorylation et l’agrégation de tau dans un modèle de souris Alzheimer. Nous avons démontré que miR-132 régule directement tau par son 3’Untranslated Region (3’UTR) et que l’expression de miR-132 corrèle avec différents tests cognitifs dans une cohorte de patients atteints de la MA. De plus, nous avons développé une approche thérapeutique prometteuse en utilisant ce miR comme agent de traitement dans le cerveau d’un modèle de souris Alzheimer. Ces travaux ont contribués à la compréhension de la progression des maladies neurodégénératives multifactorielles telles que la MA. / Dementia affects millions of people worldwide and the most common form is Alzheimer’s disease (AD). After more than a century of research, there is no efficient cure for this neurodegenerative disease. There are two pathological hallmarks : senile plaques formed by beta-amyloid peptide deposits and neurofibrillary tangles composed of a hyperphosphorylated and aggregated protein called tau. Tau pathology is also found in twenty neurodegenerative diseases called tauopathies. Studies have shown that miRNA expression profiles are deregulated in post-mortem brain tissues of patients. Of interest, miRNA-132 (miR-132) was the most downregulated. To understand the role of miRNAs in AD, my main goal was to study the involvement of miR-132 in tau regulation using in vitro tools and transgenic mice. We have identified a splicing factor, PTBP2 which affects tau exon inclusion. This factor is upregulated in a subset group of tauopathic patients, (progressive supranuclear palsy (PSP)). The miR-132 level reduction was also correlated with the PTBP2 upregulation in this cohort of patients. In the second study, we have demonstrated that learning, memory formation and retention are altered in a miR-132 knockout mouse model. Finally, we have found that a long-term loss of miR-132 promotes tau hyperphosphorylation and aggregation in AD mice. We have demonstrated that tau is a direct target of miR-132 and their expression levels in human correlate with different cognitive test scores from in AD patients. Finally, we have developed a miR-132-based therapeutic strategy in the AD mouse brain with promising results. Taken together, these results have contributed to the better understanding of complex neurodegenerative diseases such as AD.
|
13 |
Role of the microrna pathway in Caenorhabditis elegans germline maintenanceBukhari, Syed Irfan Ahmad 18 April 2018 (has links)
Les voies de régulation dépendant des courts ARN non-codants contrôlent plusieurs processus biologiques. Ces courts ARNs sont important dans le développement des cellules germinales de plusieurs espèces ainsi que dans la régulation génique et la résistance virale. Néanmoins, la contribution de la voie de régulation dépendant des microARNs dans la biogénèse des cellules germinales demeure peu comprise. Étant donné que les protéines Argonautes ALG-1 et ALG-2 sont exclusivement impliquées et indispensables à la voie des microARNs, nous avons décidé de manipuler génétiquement ces gènes afin de déterminer si la voie des microARNs est importante dans la prolifération et différentiation des cellules germinales des animaux en utilisant le nématode Caenorhabditis elegans comme modèle d’étude. La perte de fonction des gènes alg-1 et alg-2 rend les animaux stériles, ce qui est similaire aux phénotypes observés chez les nématodes mutant pour Drosha et Dicer (deux enzymes essentielles à la production des microARNs). Ainsi, ceci supporte que la voie de régulation des microARNs joue un rôle essentiel pour le maintien des cellules germinales. Pour définir le rôle précis de ALG-1 et ALG-2 dans les processus complexes de régulation des cellules germinales, nous avons tout d’abord établi la descendance des souches mutantes alg-1(gk214) et alg-2(ok304). Ces deux souches de nématodes ont un faible nombre de descendant qui peut s’expliquer par un problème dans la prolifération des cellules germinales, de méiose ou dans la formation de gamètes. Une analyse précise des gonades de ces animaux indique une plus petite région mitotique avec un nombre de cellules germinales en prolifération inférieur à celui retrouvé chez les animaux de type sauvage. Nous avons aussi observé que les cellules entrent en méiose de manière plus précoce dans les animaux alg-1 et alg-2 mutants, que ces mutants ont des défaut dans la formation de gamètes et qu’ils ont un nombre plus élevé de cellules germinales apoptotiques. En utilisant l’immunofluorescence et des rapporteurs d’expression, nous avons confirmé que ALG-1 et ALG-2 sont exprimées dans la DTC, une cellule spécialisée situé à l’extrémité distale des gonades de C. elegans qui est au cœur de la régulation de la transition mitose-méiose des cellules germinales. En utilisant une lignée transgénique qui exprime ALG-1 exclusivement dans la DTC, nous pouvons partiellement rétablir le nombre de descendants ainsi que rétablir totalement le nombre de cellules retrouvé dans la région mitotique. De façon intéressante, nous observons que la perte de cinq microARNs exprimés dans la DTC mène à des phénotypes similaires à ceux observés dans les mutants alg-1 et alg-2. Finalement, l’analyse de l’expression génique par micropuces des gonades de vers alg-1 mutant indique que la voie des microARNs contribue à la régulation de différentes voies moléculaires importantes pour la prolifération et la différentiation des cellules germinales. L’ensemble de ces études supporte l’implication de la voie des microARNs dans le contrôle de la biogénèse des cellules germinales chez C. elegans. / Small non-coding RNA pathways assume pleiotropic roles in the regulation of multitude of biological processes. These non-coding RNAs have been shown to be involved in germline development in diverse species, in addition to their well-known participation in gene regulation and viral resistance pathways. However, the contribution of the miRNA, one of the small non-coding RNA pathways in germline biogenesis has remained elusive. Since ALG-1 and ALG-2 are exclusively involved in the miRNA pathway and indispensible for miRNA mediated gene silencing, we decided to genetically manipulate these genes to address whether miRNA pathway plays an important role in germline proliferation and differentiation using C. elegans as animal model. As double knockout of alg-1 and alg-2 leads to sterility, which mirrors the phenotypes of Drosha and Dicer mutants, we reasoned that the miRNA pathway proteins are crucial in germline maintenance. To delineate the role of ALG-1 and ALG-2 in the complex processes of germline regulation, we first investigated the brood size of alg-1(gk214) and alg-2(ok304) animals. Both mutants had significantly decreased brood size, which could result from defects in germline proliferation, meiosis or gamete formation. An extensive analysis of the germline of these mutants revealed a smaller mitotic region with less number of proliferating germ cells compared to the wild type. We also observed early entry into meiosis in alg-1(gk214) and alg-2(ok304). Using immunofluorescence and transgenic reporters, we confirmed ALG-1 and ALG-2 expression in DTC, a specialized cell located at the tip of both C. elegans gonadal arms that regulates mitosis-meiosis transition. Using transgenic line with alg-1 expressed exclusively in the DTC, we were able to partially rescue the brood size defect and completely restored the number of cells in the mitotic region. These mutants also presented defects in gamete formation and an increase in germ cell apoptosis. Interestingly, we observed that the disruption of five miRNAs expressed in the DTC display similar phenotypes as observed in alg-1 and alg-2 mutants. Finally, gene expression analysis by microarray of alg-1 mutant gonads indicates that the miRNA pathway is involved in the regulation of different pathways important for germline proliferation and differentiation. Together, our data supports the role of miRNA pathway in controlling germline biogenesis in C. elegans.
|
14 |
miRNAs as therapeutic agents in neurodegeneration : a pilot studyParsi, Sepideh 24 April 2018 (has links)
L’échec des différents essais cliniques souligne la nécessité de développer des nouvelles thérapies pour la maladie d'Alzheimer (MA), la cause la plus commune de démence. Les microARNs (miARNs) sont les ARNs non-codants les plus étudiés et ils jouent un rôle important dans la modulation de l'expression des gènes et de multiples voies de signalisation. Des études antérieures, dont celles de mon laboratoire d’accueil, ont permis de développer l’hypothèse que certains membres de la famille miR-15/107 (c.-à-d. miR-15ab, miR-16, miR-195, miR-424, and miR-497) pourraient être utilisés comme agents thérapeutiques dans MA. En effet, cette famille avait le potentiel de réguler de multiples gènes associés à MA, tels que la protéine précurseur de l'amyloïde (APP), la β-secrétase (BACE1), et la protéine Tau. Tel que démontré dans ce projet de thèse, j’ai choisi miR-16 comme cible thérapeutique potentielle pour MA parmi tous les membres de la famille. L’essai luciférase dans ce projet confirme que miR-16 peut réguler simultanément APP et BACE1, directement par une interaction avec la région non-codante en 3’ de l’ARNm). Notamment, nous observons aussi une réduction de la production des peptides amyloïdes et de la phosphorylation de Tau après une augmentation de miR-16 en cellule. J’ai ensuite validé mes résultats in vivo dans la souris en utilisant une méthode de livraison de miR-16 via une pompe osmotique implanté dans le cerveau. Dans ce cas, l'expression des protéines d’intérêts (APP, BACE1, Tau) a été mesurée par immunobuvardage et PCR à temps réel. Après validation, ces résultats ont été complémentés par une étude protéomique (iTRAQ) du tronc cérébral et de l'hippocampe, deux régions associées à la maladie. Ces données m’ont permis d’identifier d'autres protéines régulées par miR-16 in vivo, incluant α-Synucléine, Transferrine receptor1, et SRm300. Une autre observation intéressante : les voies régulées par miR-16 in vivo sont directement en lien avec le stress oxydatif et la neurodégénération. En résumé, ce travail démontre l’efficacité et la faisabilité d’utiliser un miARN comme outil thérapeutique pour la maladie d’Alzheimer. Ces résultats rentrent dans un cadre plus vaste de découvrir de nouvelles cibles pour MA, et en particulier la forme sporadique de la maladie qui représente plus de 95% de tous les cas. Évidemment, la découverte d’une molécule pouvant cibler simultanément les deux pathologies de la maladie (plaques amyloïdes et hyper phosphorylation de tau) est nouvelle et intéressante, et ce domaine de recherche ouvre la porte aux autres petits ARNs non-codants dans MA et les maladies neurodégénératives connexes. / Failure at different clinical trials emphasizes the need for developing new therapeutics for Alzheimer disease (AD) as the most common cause of dementia. MicroRNAs (miRNA) are the most studied groups of non-coding RNAs and have a critical role in modulating multiple signaling pathways and fine-tuning gene expression. Supporting evidence from other studies, including host lab, suggest that multiple members of the miR-15/107 family (miR-15ab, miR-16, miR-195, miR-424, and miR-497) could be used as therapeutic agents in AD. The potential ability of this miRNA family to modify disease pathway by multiple targeting of AD-associated genes such as Amyloid precursor protein (APP), β-site amyloid-β precursor protein cleaving enzyme (BACE1) and microtubule-associated protein Tau is of attention. Based on documented results in this study I chose miR-16 as candidate therapeutic miRNA in AD. This choice is based on data obtain from cells and in vitro luciferase assay indicating the role of this miRNA in the simultaneous regulation of APP, BACE1 (directly by targeting 3’UTR of these genes). Decrease in Tau phosphorylation and amyloid beta peptides were further observed following increased miR-16 levels. Furthermore, I validated these results in vivo by delivering miR-16 oligos using Osmotic pumps implanted subcutaneously to deliver oligos to lateral ventricles of mouse brain also providing a wide distribution of these oligos. Expression of desired protein targets was measured by western blot and qPCR in different brain regions. Results demonstrated a context-dependent action of delivered miR-16 increase on the potential AD involved targets in mouse brain. These results were complemented by proteomics study of Brainstem and Hippocampus regions. Data indicated the potential regulation of other proteins by miR-16 in vivo such as α-Synuclein in Brainstem and Transferrin receptor1 and SRm300 in Hippocampus. The increase in miR-16 levels in vivo and in vitro was sufficient to downregulate the protein product of these genes confirmed by western blot. Enrichment study predicted oxidative stress and neurodegeneration as top terms in close connection with miR-16. This work provided a proof-of-principle for possibility and efficiency of miRNA replacement based therapeutics delivered to CNS using miR-16 a member of the miR-15/107 family. Understanding the molecular mechanisms involved in the regulation of AD-related genes could have important implications for sporadic AD, which accounts for more than 95% of all cases with no effective therapy available. Multi-target therapy by non-coding RNA in AD is an emerging concept that would have the potential to change the way that therapeutics is developed for AD and other neurodegenerative diseases with complex nature and no effective therapy available.
|
15 |
Étude du rôle physiologique et pathologique de la famille miR-132/212 dans le cerveauRainone, Sara 20 November 2018 (has links)
La maladie d'Alzheimer (MA) est la forme de démence la plus fréquente dans le monde. Au niveau microscopique, le cerveau des patients atteints par la MA présente deux principales caractéristiques pathologiques : les plaques amyloïdes, constituées d'agrégats du peptide Aβ (Amyloïde Bêta), et les dégénérescences neurofibrillaires, formées par des agrégats de la protéine Tau anormalement hyperphosphorylée. Parmi les facteurs endogènes qui pourraient participer à la progression de la MA, il y a les microARNs (miRs). Les miRs sont des petits ARNs non codants qui régulent l’expression de gènes cibles au niveau post-transcriptionnel. En particulier, la famille miR-132/212 est fortement régulée à la baisse dans le cerveau des patients atteints de la MA. Des études précédentes ont démontré que, chez la souris 3xTg-AD, un modèle de la MA, la délétion génétique de la famille miR-132/212 conduit à une augmentation de la phosphorylation et de l’agrégation de la protéine Tau, les deux mécanismes présumés à la base de la formation des dégénérescences neurofibrillaires. En dehors de son rôle dans la MA, la famille miR-132/212 est également impliquée dans plusieurs troubles neurologiques. Notamment, son niveau d’expression est dérégulé dans d’autres pathologies neurodégénératives, telles que la démence fronto-temporale et la maladie de Parkinson. Il est donc possible que la famille miR-132/212 contribue au processus neurodégénératif de ces pathologies. Dans ce contexte, les travaux présentés visent à étudier le rôle de la famille miR132/212 dans la MA et, plus généralement, dans le cerveau. Tout d’abord, puisque la famille miR-132/212 a déjà un rôle connu dans la formation des dégénérescences neurofibrillaires, nous avons évalué son implication dans la formation des plaques amyloïdes, deuxième caractéristique pathologique de la MA. Nous avons ainsi démontré que la délétion génétique de la famille miR-132/212 favorise la production du peptide Aβ et la formation de plaques amyloïdes chez le modèle murin 3xTg-AD. En utilisant une approche d’ARN-Seq et de bio-informatique, nous avons identifié des gènes faisant partie du réseau de la famille miR-132/212 qui ont des rôles dans la régulation du métabolisme de l'Aβ, y compris Tau, Mapk et Sirt1. En accord avec ces résultats, nous avons montré que la modulation du miR-132, ou de sa cible Sirt1, peut réguler directement la production d’Aβ dans les cellules. Finalement, nous avons démontré que les niveaux de la famille miR-132/212 corrèlent avec la quantité des plaques amyloïdes chez l'Homme. Ensuite, afin d’élucider le rôle de la famille miR-132/212 dans le cerveau, nous nous sommes concentrés sur l’identification de cibles régulées par cette dernière. Dans un premier temps, cette analyse a été conduite dans plusieurs modèles cellulaires in vitro, dans lesquels le rôle du miR-132, un des deux composants de la famille, a été spécifiquement étudié. Dans ce contexte, nous avons démontré que les cibles régulées par le miR-132 sont peu nombreuses et spécifiques au type cellulaire considéré. Dans un deuxième temps, l’analyse d’identification des cibles a été conduite dans un modèle de souris de délétion conditionnelle pour la famille miR-132/212 que nous avons spécifiquement généré. Nous avons ainsi caractérisé des cibles et des réseaux moléculaires modulés par la famille miR-132/212 dans ce modèle. Pris ensemble, ces résultats suggèrent que i) Le réseau de la famille miR-132/212, dont Sirt1 et probablement d'autres gènes cibles, participe à la production du peptide Aβ et la formation de plaques amyloïdes dans la MA ; ii) Même si le miR-132 peut potentiellement cibler un grand nombre de gènes simultanément, son ciblage est sélectif et spécifique au contexte cellulaire étudié. Enfin, les résultats obtenus mettent en évidence un ensemble de nouvelles cibles et de voies de signalisation régulées par la famille miR-132/212. En conclusion, ces travaux contribuent à l'avancement des connaissances du rôle physiologique et pathologique de la famille miR-132/212 dans le cerveau. / Alzheimer's disease (AD) is the most common form of dementia in the world. At the microscopic level, two main pathological features characterize the brain of AD patients: amyloid plaques, consisting of aggregates of the Aβ (Amyloid Beta) peptide, and neurofibrillary tangles, formed by aggregates of abnormally hyperphosphorylated Tau protein. Endogenous factors that may be involved in the progression of AD include microRNAs (miRs). MiRs are small non-coding RNAs that regulate the expression of target genes at the post-transcriptional level. In particular, the miR-132/212 family is strongly downregulated in the brain of AD patients. Previous studies have shown that in the 3xTg-AD mouse model of AD, the genetic deletion of the miR-132/212 family leads to an increase in phosphorylation and aggregation of Tau protein, two mechanisms leading to the formation of neurofibrillary tangles. Apart from its role in AD, the miR-132/212 family is also involved in several neurological disorders. In particular, its level of expression is deregulated in other neurodegenerative pathologies, such as frontotemporal dementia and Parkinson's disease. It is therefore possible that the miR-132/212 family contributes to the neurodegenerative process of these pathologies. In this context, the work presented aims to study the role of the miR-132/212 family in AD and, more generally, in the brain. First of all, since the miR-132/212 family already has a known role in the formation of neurofibrillary tangles, we wanted to evaluate its involvement in the formation of the other major pathological feature of AD: the amyloid plaques. We have demonstrated that the genetic deletion of the miR-132/212 family promotes Aβ production and amyloid plaque formation in the 3xTg-AD mice. Using RNA-Seq and bioinformatics, we identified genes of the miR-132/212 network with documented roles in the regulation of Aβ metabolism, including Tau, mapk, and sirt1. Consistent with these findings, we show that the modulation of miR-132, or its target sirt1, can directly regulate Aβ production in cells. Finally, we have shown that miR-132/212 levels correlate with the amount of amyloid plaques in humans. Then, in order to elucidate the role of the miR-132/212 family in the brain, we focused on identifying targets regulated by the miR-132/212 family. In a first step, this analysis was conducted in several in vitro cell models, in which the role of miR-132, one of two components of the family, was specifically studied. In this context, we have demonstrated that the targets regulated by miR-132 are few and specific to the cell type considered. In a second step, the target identification analysis was conducted in a conditional knockout mouse model for the miR-132/212 family that we specifically generated. We have therefore characterized the molecular targets and networks modulated by the miR-132/212 family in this model. Taken together, these results suggest that i) miR-132/212 network, including Sirt1 and likely other target genes, contributes to abnormal Aβ metabolism and senile plaque deposition in AD; ii) Although miR-132 can potentially target a large number of genes simultaneously, its targeting is selective and specific to the cellular context studied. Finally, the results obtained highlight a set of new targets and signalling pathways regulated by the miR-132/212 family. In conclusion, this work contributes to the advancement of the knowledge of the physiological and pathological role of the miR-132/212 family in the brain.
|
16 |
Caractérisation du rôle de deux interacteurs moléculaires du complexe de dégradation des microARN dans la régulation des courts ARN non codants chez le nématode C. elegansFressigné, Lucile 06 March 2019 (has links)
Les courts ARN non codants tels que les microARN, les piARN et les siARN sont de petites molécules d’ARN de 20 à 30 nucléotides de long qui sont très bien conservées au cours de l’évolution. Elles s’associent à des protéines Argonautes afin de former un complexe effecteur appelé RISC (RNA induced silencing complex). Ces courtes séquences, ne codant pour aucune protéine, agissent comme de puissants régulateurs de l’expression des gènes. De nombreuses évidences supportent qu’une dérégulation du niveau d’expression de ces courts ARN non codants contribue au développement et au maintien de nombreuses pathologies telles que le cancer. De ce fait, il est essentiel pour la cellule de contrôler la stabilité des courts ARN non codants. Le contrôle de la maturation et de la stabilité de ces courts ARN non codants sont des mécanismes peu connus. L’objectif principal de mon doctorat a donc été de mieux comprendre comment le niveau des courts ARN non codants est contrôlé. Afin d’étudier plus en détail comment le niveau des microARN est régulé, nous avons identifié la phosphatase PPM-2 (PP2Cα chez l’humain) et l’E3 ubiquitine ligase HECD-1 (HectD1 chez l’humain) comme étant de nouveaux interacteurs du complexe de dégradation des microARN. Nous avons utilisé des approches de génétique et de biologie moléculaire chez le nématode C. elegans, pour étudier le rôle de la perte de fonction de ppm-2 et d’hecd1 dans la voie des courts ARN non codants. Nos travaux ont montré que la perte de fonction de ppm-2 induit des défauts développementaux qui sont associés à des défauts de la voie des microARN. De plus, l’absence de ppm-2 exacerbe les phénotypes développementaux observés dans des animaux où la voie des microARN est altérée. De manière intéressante, chez le mutant ppm-2, nous avons constaté que d’autres voies de courts ARN non codants, telles que la voie des piARN et celle de l’endosiARN nucléaire, sont affectées. Du point de vue moléculaire, nous avons observé une déstabilisation du niveau d’expression de plusieurs protéines Argonautes dans le mutant ppm-2. En effet, ces dernières sont envoyées à la dégradation par la voie du protéasome seulement chez des animaux mutés pour ppm-2. Concernant l’étude de HECD1, nous avons remarqué que la perte de fonction de cette ubiquitine ligase entrainait une diminution de la progéniture et une létalité embryonnaire attribuable à des défauts dans la gamétogénèse. De plus, nous avons observé une accumulation de miARN fonctionnels chez des animaux mutés pour hecd-1. L’ubiquitine ligase HECD-1 pourrait être impliquée dans la transcription ou la dégradation des miARN. En conclusion, nos résultats suggèrent que PPM-2 permet de contrôler la stabilité des protéines Argonautes en les dirigeant dans une voie alternative de dégradation et que l’ubiquitine ligase HECD-1 pourrait être impliquée dans la régulation des miARN en modulant leur transcription ou leur dégradation. Mes travaux de doctorat nous ont permis de mettre en lumière un nouveau modulateur des courts ARN non codants, PPM-2, qui agit via le contrôle de la régulation des Argonautes. Les avancées de la recherche dans le domaine des courts ARN non codants pourra permettre le développement de nouvelles thérapies. / Small non-coding RNAs, like microRNAs, piRNAs or siRNAs, are small RNA molecules, 20 to 30 nucleotides long that are conserved during evolution. They form an induced silencing complex (RISC) in association with Argonaute proteins to regulate gene expression. Small non-coding RNAs are involved in the regulation of genes implicated in cell proliferation, differentiation and development. Many evidences support that deregulation of the expression level of those small non-coding RNAs contribute to the development of pathologies such as cancer. It is therefore essential for cells to control small non-coding RNA stability. The control of maturation and stability of those small molecules are poorly understood. The main objective of my doctorate was to better understand how the stability of small non-coding RNAs is controlled. In order to study in more detail how miRNAs are regulated, we identified two factors involved in miRNA turnover in C. elegans. We found that the phosphatase PPM-2 (PP2Cα in human) and the E3 ubiquitin ligase HECD-1 (HectD1 in human) are new components of the miRNA degradation complex. Using the power of the nematode C. elegans and molecular biology, we characterized the role of the loss of function of PPM-2 and HECD-1 in small non-coding RNA pathways. Loss of this phosphatase induces developmental defects which are associated with a defect in the miRNA pathway. Genetically, the phosphatase mutant exacerbates the phenotypes that are observed in animals where the miRNA pathway is affected. Interestingly, we further observed that the loss of the phosphatase affects other small non-coding RNA pathways like the piRNA and the siRNA pathways. At the molecular level, we observed a decrease in the expression level of many Argonaute proteins in phosphatase mutant animals. Upon blocking proteasomal degradation with MG132, we noticed that Argonaute proteins are sent to proteasomal degradation in phosphatase mutant animals. Concerning HECD-1, we noticed that the loss of function of the E3 ubiquitin ligase leads to the decrease of progeny and embryonic lethality due to defects in gametogenesis. Moreover, we observed an accumulation of functional miRNAs. This protein can be implicated in transcription or turnover of miRNAs. VIIn conclusion, our data suggest that PPM-2 controls the stability of Argonaute proteins by sending them through an alternative degradation pathway and that HECD-1 could be implicated in miRNA regulation by modulating their transcription or degradation. My doctoral work helped to highlight a new modulator of small non-coding RNAs, PPM-2, which acts through the regulation of Argonaute protein. A better understanding of the mechanisms controlling the stability and the function of these strong regulators will be useful to develop new therapies.
|
17 |
Understanding the contribution of miRNA-specific endogenous slicer-Argonautes in Caenorhabditis elegansPal, Anisha 21 October 2024 (has links)
L'expression génique régule essentiellement la fonction d'une cellule. La régulation précise de l'expression génique par différents régulateurs, tels que les miARN, est importante pour les processus biologiques dans différents organismes, notamment le modèle de nématode Caenorhabditis elegans. Les miARN sont des courts ARN non-codants d'environ 21 nucléotides impliqués dans la régulation posttranscriptionnelles des gènes en se liant à la région 3'UTR des ARN. Le pri-miARN, transcrit par l'ARN polymérase II, est traité par le complexe microprocesseur (Drosha-DGCR8) dans le noyau, puis le pré-miARN est transporté vers le cytoplasme. Le pré-miARN, clivé par Dicer, produit un petit duplex d'ARN, composé d'une paire de miARN matures (brin guide), qui forme le miRISC lorsque chargé à l'Argonaute avec GW-182/TNRC6, et de miARN passagers (brin étoile), qui est éliminé. Le facteur clé fonctionnel dans la régulation post-transcriptionnelle des gènes est l'Argonaute, composé de quatre domaines majeurs : N-terminal, PAZ, MID et PIWI. En fonction de certains acides aminés du domaine PIWI, ressemblant à RNase H, l'Argonaute peut agir comme une endonucléase en coupant les liens phosphodiesters des ARN, ce qu'on appelle activité de découpe, activité activée par la tétrade catalytique DEDH en présence de cations divalents (Mg+2, Mn+2) et d'une complémentarité presque parfaite ou parfaite entre le court ARN et la cible. Bien que l'activité de découpe de l'Argonaute se soit révélée particulièrement essentielle dans d'autres voies de courts ARN non codants (piARN, siARN) chez différents organismes ainsi que dans la voie des miARN chez les plantes, la contribution de l'Argonaute-slicer dans la voie des miARN chez les systèmes animaux reste peu étudiée puisque, notamment, il n'y a pas de complémentarité parfaite entre les miARN et les cibles chez les animaux, et donc, les Argonautes slicers chez les animaux ne participent pas au clivage de la cible. Néanmoins, les Argonautes chez les animaux portent toujours la tétrade catalytique, responsable de l'activité de découpe. Des chercheurs ont montré que les Argonautes sont essentielles dans la production de miARN spécifiques (miR-451, miR-486) chez les vertébrés et certains groupes ont également montré le rôle de l'Argonaute dans la voie des miARN dans les cellules. Malgré ces études, à ce jour, aucune publication n'a montré la contribution plus large et la pertinence des Argonautes endogènes possédant une activité de découpe spécifiques des miARN chez les animaux. Dans ce travail de thèse, nous abordons l'objectif de « l'Argonaute-slicer » dans la voie des miARN. En prolongement du travail publié, réalisé en utilisant le système transgénique dans notre laboratoire par Bouasker et Simard, il était impératif pour nous de comprendre la contribution des Argonautes portant le motif DEDH endogènes. L'objectif de ma thèse était d'investiguer la contribution globale des Argonautes qui possède la tétrade catalytique dans la voie des miARN. En utilisant le système CRSPR-Cas9, nous avons généré des mutants d'Argonautes, en modifiant leur résidus catalytiques. Ensuite, nous avons utilisé des techniques de génétique et de biologie moléculaire pour aborder notre objectif dans le système modèle de C. elegans, portant des Argonautes exclusivement impliqués dans la voie des miARN. Au cours de l'étude, nous avons découvert que la contribution physiologique et moléculaire de l'activité de découpe des Argonautes endogènes dans la voie des miARN n'est pas essentielle pour la viabilité, contrairement à l'étude transgénique. Bien que dans des contextes spécifiques et des conditions stressantes, les mutants aient montré des changements significatifs dans les phénotypes physiologiques et moléculaires, notre analyse confirme un rôle modéré de l'Argonaute slicer dans les voies canoniques des miARN en conditions de laboratoire. De plus, ce travail montre également de façon évidente l'importance de l'analyse de la fonction moléculaire d'un gène endogène dans un organisme modèle par rapport à l'utilisation d'un système de surexpression transgénique in cellulo ainsi que dans un organisme modèle. Dans l'ensemble, cette étude systémique délimite la pertinence des résidus catalytiques des Argonautes endogènes dans la voie des miARN dans un système modèle de nématode établi et largement reconnu. / The gene expression essentially regulates the function of a cell. The precise regulation of gene expression using different regulators, such as miRNA, is essential for the biological processes in different organisms, including the nematode model organism Caenorhabditis elegans. The miRNAs are about 21 nt long short noncoding RNAs involved in PTGS. The production of miRNAs involves multiple sequential steps in the nucleus and cytoplasm, and then the mature miRNA binds to the complementary 3'UTR to regulate gene expression. The pri-miRNA, transcribed by RNA polymerase II, is processed by the microprocessor complex (Drosha-DGCR8) in the nucleus, and thereafter pre-miRNA is transported to the cytoplasm. Pre-miRNA, cleaved by Dicer in the cytoplasm, produces a small RNA duplex, which consists of a pair of mature miRNA (guide strand) and passenger miRNA (star strand). The passenger strand is discarded, and mature miRNA-loaded Argonaute, along with GW-182/ TNRC6, forms miRISC, binds to the target, and brings upon various factors to trigger PTGS. The functional key factor in PTGS is Argonaute, which is made up of four major domains: N-terminal, PAZ, MID, and PIWI. Depending on the amino acids at particular positions in the PIWI domain, resembling RNase H, Agoanute can act as an endonuclease to cleave phosphodiester bonds in the RNA backbone. This catalytic function of Argonaute is called slicer activity. In the presence of divalent cations (Mg+2, Mn+2), a specific catalytic tetrad (DEDH) carrying Argonaute can cleave target mRNA due to near-perfect or perfect complementarity between small RNA and target. Even though the slicing activity of Argonaute has been found particularly essential in other small RNA pathways (pi-RNA, si-RNA) in different organisms as well as in miRNA pathway in plants, the contribution of slicer-Argonaute in miRNA pathway in animal systems remains understudied due to varying limiting factors. Notably, there is the absence of perfect complementarity between miRNAs and targets in animals, compared to plants, and therefore, the slicer Argonautes in animals do not take part in target cleavage during PTGS. Nonetheless, Argonautes, involved in the miRNA pathway in animals, still carry the catalytic tetrad, which is responsible for the slicer activity. Researchers have shown that slicer Argonaute is essential in the production of specific miRNAs (miR-451, miR-486) in vertebrates, and some groups also showed the role of slicer Argonaute in miRNA pathway in cellulo. Despite these studies, to date no reports showed the broader contribution and relevance of the function of miRNA-specific endogenous slicer-Argoanutes in animals. In this doctoral work, we set out to address the purpose of the slicer-Argoanutes in the miRNA pathway. In continuation of the published work done previously using the transgenic system in our lab by Bouasker and Simard, it was imperative for us to understand the contribution of endogenous slicer Argonautes. The aim of my Ph.D was to investigate the comprehensive contribution of endogenous Argonautes, carrying catalytic tetrad, in the miRNA pathway. Using current gene editing technology, CRSPR-Cas9 system, we generated Argonaute mutants by altering catalytic residue. Then, we employed genetics and molecular biology techniques to address our aim in the C. elegans model system, carrying Argonautes exclusively implicated in the miRNA pathway. During this study, we found out that the physiological and molecular contribution of endogenous slicer-Argonautes in the miRNA pathway is not essential for viability, contradictory to the transgenic research. Even though in specific backgrounds and stressful conditions, mutants showed significant changes in physiological and molecular phenotypes, our analysis confirms a moderate role of slicer-Argonaute in canonical miRNA pathways in laboratory condition. Moreover, this work also glaringly shows the importance of analysis of the molecular function of an endogenous gene in a model organism compared to the usage of a transgenic overexpression system in cellulo as well as in a model organism. Overall, this systemic study delineates the relevance of slicing residues of endogenous Argonautes in the miRNA pathway in an established and widely recognized nematode model system.
|
18 |
Étude sur la fonction de la phosphorylation de la protéine Argonaute ALG-1 chez C. elegansQuévillon-Huberdeau, Miguel 26 March 2024 (has links)
NOTICE EN COURS DE TRAITEMENT / Les microARN (miARN) sont des courts ARN non codants qui régulent l'expression des gènes, au niveau post-transcriptionnel. Ces molécules d'environ 22 nucléotides de long s'associent aux protéines Argonautes (AGO) pour former un complexe appelé microRNA induced silencing complex (miRISC). Ensuite, les miARN recrutent le miRISC à des séquences partiellement complémentaires, dans les régions 3' non traduites d'ARN messagers (ARNm). Le miRISC peut ainsi réprimer la traduction d'ARNm spécifiques et souvent induire leur dégradation. Ce mécanisme est notamment important pour le développement animal et des défauts dans cette voie moléculaire sont liés à diverses pathologies chez l'humain. Des évidences récentes montrent que les interacteurs du miRISC et son mode d'action sur les ARNm peuvent diverger à différents moments du développement du nématode Caenorhabditis elegans. Nous avons donc posé l'hypothèse que des modifications post-traductionnelles pourraient expliquer certaines de ces différences moléculaires et fonctionnelles. Les objectifs de ce projet de recherche étaient donc d'identifier les événements de phosphorylation sur la protéine Argonaute ALG-1 de C. elegans et de déterminer leur fonction biologique au cours du développement animal. À cette fin, nous avons purifié la protéine Argonaute ALG-1 chez C. elegans avec un anticorps spécifique, ainsi que ses orthologues humains AGO 1-4, à partir de cellules humaines en culture. Nous avons déterminé par spectrométrie de masse les modifications post-traductionnelles sur ces protéines. En utilisant des méthodes de mutagenèse par édition du génome chez C. elegans, nous avons criblé l'importance de nombreux sites de phosphorylation en s'attardant aux phénotypes associés à la perte de fonction des miARN. Ceci nous a permis de mettre en évidence l'importance d'une région phosphorylable conservée de cinq résidus sérines/thréonine sur le domaine PIWI des Argonautes. La perte de phosphorylation de ALG-1, lorsque ces acides aminés sont mutés en alanines, produit des phénotypes développementaux beaucoup plus sévères que chez des animaux déplétés du gène alg-1. Au niveau moléculaire, nous avons montré, à partir de cellules humaines en culture, que l'hyperphosphorylation de ces acides aminés réduit l'association aux ARNm. De plus, nous avons montré que des mutants AGO2 qui ne sont pas en mesure de lier les miARN, ne sont pas hyperphosphorylés sur ces résidus dans les cellules humaines en culture. Ces résultats mettent en évidence un nouveau mécanisme de régulation de la voie de miARN, dans lequel l'hyperphosphorylation du domaine PIWI de l'Argonaute permet la dissociation du miRISC de sa cible. Nous proposons donc que la phosphorylation de cette région permettrait au miRISC d'être recyclé et de réprimer l'expression d'autres ARNm après sa déphosphorylation. En second lieu, notre crible a permis d'identifier une sérine phosphorylable sur le domaine MID de ALG-1 qui régule l'association de la protéine aux miARN, lors du développement du nématode. Nous avons montré que lorsque cette sérine est mutée en glutamate (phospho-mimétique) ALG-1 perd son association aux miARN. Par ailleurs, les animaux qui portent cette mutation présentent des niveaux de miARN moins élevés que chez les animaux sauvages, ainsi qu'une accumulation de brins passagers qui sont issus des duplex de miARN et normalement dissociés par AGO. Nous avons ensuite identifié l'enzyme qui produit la phosphorylation de cette sérine. Avec des expériences de phosphorylation in vitro, nous avons montré que cette phosphorylation pourrait être induite par la protéine kinase A (PKA). De surcroît, nos expériences soutiennent que alg-1 et PKA interagissent génétiquement. Précisément, le mutant non phosphorylable alg-1(S642A) supprime des phénotypes développementaux observés lors de la perte de fonction de la sous-unité régulatrice de PKA, kin-2. En somme, ce projet de recherche a permis de mettre en évidence un mécanisme conservé au cours de l'évolution qui régule l'association du miRISC aux ARNm par la phosphorylation des Argonautes, ainsi qu'un mécanisme qui régule l'association de ALG-1 aux miARN chez C. elegans. Notre étude indique d'ailleurs que le miRISC serait possiblement inhibé à des moments précis lors du développement animal, par exemple lors de la phosphorylation par PKA. Les études futures des voies signalétiques qui activent PKA chez le nématode nous permettra de mieux comprendre la fonction biologique et le contexte cellulaire qui requerrait l'inactivation du miRISC. / MicroRNAs (miRNAs) are a class of short non-coding RNAs that regulate gene expression in eukaryotes. These molecules are ~22 nucleotides in length and associate with Argonaute proteins (AGO) to guide them to mRNAs that contain sequences with partial complementarity, commonly found in the 3' untranslated region (UTR). The interaction between the miRISC (miRNA induced silencing complex) and the mRNA inhibits protein synthesis and often leads to degradation of the transcripts. While the function and importance of this gene regulation pathway has been studied in plant and animal models, mechanisms that modulate the miRISC gene silencing efficiency in different biological settings are still poorly understood. The hypothesis of my research project conveys the idea that post-translational modifications of Argonaute proteins modulate gene silencing during animal development. To test this hypothesis, we aimed to identify phosphorylation events on the Argonaute ALG-1 in the nematode C. elegans and uncover how these modifications affect its function during animal development. We purified ALG-1 protein from C. elegans extracts with a specific antibody and human Argonautes AGO1-4 from human cell cultures. We identified phosphorylated Argonaute peptides using mass spectrometry analysis and then we screened which modification affected ALG-1 function using gene editing. This led to the discovery of a highly conserved serine/threonine phosphorylation cluster on the PIWI domain of the Argonaute that when mutated into non-phosphorylatable amino-acids (alanine) caused phenotypes that were more severe than the loss of alg-1 in C. elegans. Molecular analysis of these phosphorylation sites showed that they modulate association to miRNA targets. Specifically, when using phospho-mimicking mutations on human AGO2, we showed that the hyperphosphorylation of this cluster causes the Argonaute to lose interaction with mRNAs. Furthermore, we showed that AGO mutants that are deficient for miRNA binding do not undergo hyperphosporylation. These results revealed a new mechanism that regulate miRNA-mediated gene silencing by which unphosphorylated AGO binds miRNA targets and following hyperphosporylation the miRISC is released from mRNAs. We proposed that this mechanism could be used by cells to recycle the complex and permit multiple rounds of silencing by the miRISC after dephosphorylation. Our forward genetic screen of ALG-1 phosphorylation sites identified a serine on the MID domain that modulates association to miRNAs. We showed that phospho-mimicking mutation of ALG-1 at this position impaired the ability of ALG-1 to bind most miRNAs. Furthermore, we found that this mutation led to accumulation of passenger strands miRNAs in the total RNA. Since the passenger strands are not bound by the phospho-mimicking mutant, we suggested that they accumulate as duplexes which would render them refractory to degradation by single stranded nucleases. Last we showed that the protein kinase A (PKA) phosphorylates this residue in vitro and interacts genetically with alg-1. Altogether, this research project uncovered new mechanisms that regulate the miRNA pathway through the phosphorylation of the Argonaute proteins. Our study also suggests that ALG-1 is inhibited at specific timing by PKA during C. elegans development, and further study of the biological settings that require this inactivation will be crucial to understand its function.
|
19 |
On the function and genetic interactions of the Caenorhabditis elegans genes alg-1 and alg-2Vasquez Rifo, Alejandro 20 April 2018 (has links)
La voie des microARNs est un mécanisme post-transcriptionnel de régulation génique qui contrôle divers aspects développementaux et physiologiques chez de nombreux eucaryotes supérieurs. Afin de mieux comprendre les rôles et modes d’actions des microARNs, nous avons entrepris l'exploration des interactions génétiques de cette voie chez le nématode \textit{Caenorhabditis elegans}. Nous nous sommes ainsi concentrés sur les gènes codant pour les protéines Argonautes ALG-1 et ALG-2, qui sont les principaux constituants effecteurs de cette voie. Premièrement, nous avons caractérisé la relation entre ces deux paralogues, en étudiant respectivement leur expression spatio-temporelle, leur association avec des microARNs, ainsi que les phénotypes associés à leur perte de fonction. Nous avons ainsi pu définir des caractéristiques communes et spécifiques pour chacune de ces deux protéines Argonautes et décrire de manière précise leurs rôles essentiels lors du développement embryonnaire. En effet, nous avons démontré que l'absence d'expression zygotique des protéines ALG-1/2 provoque un arrêt du processus morphogénétique lors de l'allongement des embryons et un défaut dans les structures de fixation épidermique-musculaires. Deuxièmement, nous avons realisé un criblage génétique dans le but d'identifier des nouveaux partenaires des protéines Argonautes ALG-1/2. Nous avons découvert le gène codant pour la protéine VPS-52, qui est un composant du complexe GARP (\textit{Golgi Associated Retrograde Protein}). La caractérisation de ce gène nous a permis de démontrer que VPS-52 interagit génétiquement avec le gène \textit{alg-1} et se comporte comme un modulateur positif de l'activité de certains miARNs impliqués dans le développement larvaire. Les mutants de \textit{vps-52} aggravent les défauts des cellules souches épidermales observés dans les mutants de \textit{alg-1} et du microRNA \textit{mir-48}. Ils augment également la létalité du mutant \textit{let-7(n2853)} et ce dépendement de sa cible. Ces augmentations phénotypiques sont liées à une baisse des niveaux des microARNs miR-48, miR-241 et des protéines GW182. Cette étude nous amène donc à proposer que l'activité des microARNs peut être contrôlée en partie par un mécanisme de transport rétrograde dépendant du complexe GARP. / The microRNA pathway is a post-transcriptional gene regulatory system that controls multiple developmental and physiological processes in many eukaryotes. We have undertaken the exploration of the genetic interactions of this pathway in the nematode \textit{Caenorhabditis elegans}, with the goal of unveiling processes controlled by microRNAs and the mechanisms of microRNA action. We focused on the genetic interactions of the \textit{alg-1} and \textit{alg-2} genes, that encode the microRNA-specific Argonaute proteins, key effector constituents of this pathway. In the first place, we characterized the relationship between these two argonaute paralogs, with respect to their spatio-temporal expression, association to microRNAs, and loss-of-function phenotypes. Thus, we defined shared and gene-specific features of these Argonautes and defined in detail their essential role during embryonic development. The absence of zygotic \textit{alg-1} and \textit{alg-2} expression causes arrest during the morphogenetic process of elongation with defects in the epidermal-muscle attachment structures. Addressing another aspect, we sought to elucidate novel genetic interactors of these argonautes using a forward genetics approach. We identified \textit{vps-52}, a component of the GARP (Golgi Associated Retrograde Protein) complex, as a genetic interactor of the \textit{alg-1} gene and established that, through its GARP complex function, it effects a positive modulatory role on miRNA activity. Mutants of \textit{vps-52} exacerbate the seam cell defects in the loss-of-function alleles of \textit{alg-1} and the \textit{let-7} miRNA family member \textit{mir-48} and enhance the lethality of the \textit{let-7(n2853)} hypomorph in a target dependent manner. These phenotypic enhancements related to decreased levels of the \textit{let-7} family microRNAs (miR-48 and miR-241) and the worm GW182 protein. Furthermore, the positive effect of \textit{vps-52} on microRNA activity seems to be conserved in mammalian cells, where VPS52 co-fractionates with miRISC components. Our analyses allow us to propose that VPS-52 as part of the GARP complex participates in membrane-related processes of the miRNA pathway, which facilitate miRNA activity and operate at the effector miRISC level.
|
20 |
Contribution de deux clusters de microARN soumis à empreinte parentale à la progression tumorale et au pronostic des neuroblastomes / Contribution of two parental imprinted microRNA clusters in tumor progression and prognosis of neuroblastomaGattolliat, Charles-Henry 24 September 2013 (has links)
Le neuroblastome, tumeur embryonnaire d’origine neuro‐ectodermique, représente, après les tumeurs cérébrales, la tumeur maligne la plus préoccupante de l’oncologie pédiatrique. L’extrême hétérogénéité des tumeurs neuroblastiques conduit d’une part, à rechercher les mécanismes de son oncogenèse, d’autre part, à améliorer la prédiction du risque de gravité, au diagnostic de la maladie.Le travail de thèse a consisté, à l’aide d’une cohorte tumorale de patients et de lignées de neuroblastome, à rechercher les microARN impliqués dans la progression tumorale. En comparant des tumeurs de bas risque à celles de haut risque, plusieurs microARN du cluster C14MC, situés au locus 14q32.31, ont été identifiés. L’expression de ces microARN corrèle le pronostic ; les tumeurs de haut risque présentant une perte d’expression différentielle. Ainsi, l’expression de miR‐487b et miR‐410 s’est révélée être un facteur pronostique supérieur à l’algorithme de risque standard actuel (âge, stade, statut de l’amplification de l’oncogène N‐MYC). Le contexte d’empreinte génomique parentale du cluster C14MC a conduit à rechercher d’autres microARN d’intérêt sur le second cluster de microARN du génome, C19MC, lui aussi soumis à empreinte. Dans les tumeurs de haut risque, une hyper‐expression relative du miR‐516a‐5p est significativement associée au pronostic. La combinaison des niveaux d’expression de miR‐487b et miR‐516a‐5p se révèle être un facteur pronostique supérieur aux seuls microARN du cluster C14MC : elle offre une nouvelle stratification de risque.Dans les tumeurs neuroblastiques, la dérégulation d’expression serait circonscrite aux microARN des deux clusters C14MC et C19MC ainsi qu’aux gènes vicinaux DLK1 et MEG3 du locus 14q 32.31, elle résulterait d’anomalies de méthylation. Le traitement de lignées de neuroblastome de phénotype neuronal par des modulateurs de l’épigénome (5‐Azacytidine et acide phényl‐butyrique) lève l’expression des microARN du C14MC et des gènes DLK1 et MEG3. Quant aux gènes cibles des miR‐487b et miR‐516a‐5p, les recherches désignent les gènes N‐MYC, TWIST1 et TWIST2 comme candidats directs ou indirects. Ces résultats et la littérature – rapportant, dans les formes agressives de plusieurs types de cancers de l’adulte, des anomalies d’expression des microARN des clusters C14MC (hypo‐expression) et C19MC (hyperexpression) – suggèrent très fortement l’implication de ces deux clusters dans la carcinogenèse humaine. / Neuroblastoma, an embryonal tumour of neuro‐ectodermal origin, stands up with brain tumours as the most worrying cancer of paediatric oncology. The huge heterogeneity of neuroblastic tumours has led i) to find oncogenic mechanisms, and ii) to refine risk stratification of the disease. In using a tumour cohort of patients as well as human NB lines, we sought for microRNA involved in neuroblastoma tumour progression. Comparison of tumours of low‐risk to those of high‐risk resulted to identifying several microRNA composing the C14MC cluster (located within the 14q32.31 locus), whose expression was associated with prognosis; high risk tumours having a differential lower transcript level.Expression of miR‐487b and miR‐410 was a better prognostic factor than the standard algorithm based on age, stage, and N‐MYC genomic content status. As the C14MC cluster belongs to a imprinted locus, the second cluster of microRNAs so far described in the human genome as imprinted, i.e., the C19MC, was analysed: in high‐risk neuroblastoma, miR‐516a‐5p transcript level was differentially up‐regulated (contrasting to microRNAs from C14MC) and was also associated with prognosis. Combination of transcript levels of miR‐487b and miR‐516a‐5p provides a powerful prognostic factor better than only miR expression from C14MC. Therefore, new risk stratification has been proposed.In neuroblastoma, tumour expression deregulation found to be restricted to C14MC and C19MC as well as the DLK1 et MEG3 harboured by the 14q32.31 locus, should result from methylation anomalies. Epigenetic modulators (5‐AZA and PBA) resulted in a significant increase of miR from C14MC as well as DLK1 and MEG3 genes. With regards to target genes, our results point out N‐MYC, TWIST1 and TWIST2 as direct or indirect targets of miR‐487b & miR‐516a‐5p. Our data and literature – indicating relative underexpression of C14MC microRNAs and hyper‐expression of C19MC microRNAs in aggressive forms of various adult cancers – thus stress the potential involvement of the two clusters in human carcinogenesis.
|
Page generated in 0.043 seconds