• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 6
  • 5
  • 1
  • Tagged with
  • 52
  • 21
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Spin dynamics ande topological effects in physics of indirect excitons and microcavity polaritons / Dynamique de spin et effets topologiques en physique des exitons indirects et des polaritons

Nalitov, Anton 06 May 2015 (has links)
Cette thèse est consacrée à de nouveaux phénomènes en physique liées au spin et à la topologie des quasi-particules lumière-matière dans des hétérostructures. Elle est divisée en quatre parties. Chapitre 1 donne un fond nécessaire et introduit les propriétés fondamentales des polaritons et des excitons indirects dans des puits quantiques couplés. Chapitre 2 est concentré sur la dynamique de spin et sur formation de défauts topologiques dans des systèmes aux excitons indirects. Les 2 derniers chapitres considèrent les structures basées sur les microcavités. Chapitre 3 est consacré à la dynamique de spin des polaritons dans des oscillateurs paramétriques optiques. Finalement, chapitre 4 étudie les réseaux des microcavités en forme des piliers et introduit l’isolant topologique polaritonique. / The present thesis manuscript is devoted to new phenomena in physics of light-matter quasiparticles in heterostructures, related to spin and topology. It is divided into four parts. Chapter 1 gives a necessary background, introducing basic properties of microcavity polaritons and indirect excitons in coupled quantum wells. Chapter 2 is focused on spin dynamics and topological defects formation in indirect exciton many-body systems. The last 2 chapters are related to microcavity-based structures. Chapter 3 is devoted to polariton spin dynamics in optical parametric oscillators. Finally, Chapter 4 studies pillar microcavity lattices and introduces the polariton topological insulator.
42

Probing and modeling of optical resonances in rolled-up structures

Li, Shilong 22 January 2015 (has links)
Optical microcavities (OMs) are receiving increasing attention owing to their potential applications ranging from cavity quantum electrodynamics, optical detection to photonic devices. Recently, rolled-up structures have been demonstrated as OMs which have gained considerable attention owing to their excellent customizability. To fully exploit this customizability, asymmetric and topological rolled-up OMs are proposed and investigated in addition to conventional rolled-up OMs in this thesis. By doing so, novel phenomena and applications are demonstrated in OMs. The fabrication of conventional rolled-up OMs is presented in details. Then, dynamic mode tuning by a near-field probe is performed on a conventional rolled-up OM. Next, mode splitting in rolled-up OMs is investigated. The effect of single nanoparticles on mode splitting in a rolled-up OM is studied. Because of a non-synchronized oscillating shift for different azimuthal split modes induced by a single nanoparticle at different positions, the position of the nanoparticle can be determined on the rolled-up OM. Moreover, asymmetric rolled-up OMs are fabricated for the purpose of introducing coupling between spin and orbital angular momenta (SOC) of light into OMs. Elliptically polarized modes are observed due to the SOC of light. Modes with an elliptical polarization can also be modeled as coupling between the linearly polarized TE and TM mode in asymmetric rolled-up OMs. Furthermore, by adding a helical geometry to rolled-up structures, Berry phase of light is introduced into OMs. A -π Berry phase is generated for light in topological rolled-up OMs so that modes have a half-integer number of wavelengths. In order to obtain a deeper understanding for existing rolled-up OMs and to develop the new type of rolled-up OMs, complete theoretical models are also presented in this thesis.
43

Molding the flow of light in rolled-up microtubular cavities and topological photonic lattices

Saei Ghareh Naz, Ehsan 03 May 2021 (has links)
The presence of photonic band gap in an arbitrarily shaped photonic structure, particularly structures that are fabricated by exploiting rolled-up nanotechnology, can be understood from the density of optical states. In this thesis, the density of optical states and the local density of optical states in finite-sized photonic structures are calculated using the finite difference time domain method together with a parallelized message passing interface. With this approach, a software package suitable for high-performance computing on multi-platform was published under GNU GPL license. When light is guided to propagate along a rolled-up thin film, whispering gallery mode resonances can be formed in a microtubular structure. Dynamic probing and tuning via a plasmonic nanoparticle-coated glass tip are investigated to demonstrate the transition from dielectric-dielectric to dielectric-plasmonic coupling in the tubular microcavity. The competition of these two coupling mechanisms allow the tuning of the optical cavity modes towards lower and then higher energies in a single coupling system. Moreover, three dimensionally confined higher order axial modes can be selectively coupled and tuned by the glass tip due to their unique spatial distribution of the optical field along the tube axis. In addition, the interaction between sharp optical cavity modes and broad plasmonic modes supported by silver nanoparticles leads to the occurrence of Fano resonance. In particular, Fano resonances occurring at higher-order axial modes has been observed as well. The experimental results are supported by numerical simulations based on the finite difference time domain method. In photonic lattice structures, light propagation behavior can be influenced and defined by the photonic band structure. By designing the unit cell with glide mirror symmetry, topologically protected edge states operating in the visible spectral range have been proposed in two dimensional photonic crystals which can be made of feasible materials. Topological phenomena such as unidirectional waveguiding and/or effective zero refractive index are presented. In addition, a scheme to study topological phase transition in a single photonic crystal device is proposed and studied via unevenly stretching photonic lattice. Moreover, a new method is explored to distinguish the topological phase from the bulk modes. The research presented in this thesis concerns molding the flow of light in specially designed photonic devices for various potential applications. The software package can be used to design and investigate finite-sized photonic structures with an arbitrary shape, which is much faster in terms of computation than other reported techniques and software packages. The rolled-up microcavities can be employed to trap and store light in the way of whispering gallery mode resonances, and the resonant light can be tuned and modulated by a plasmonic nanoparticles-coated glass tip. This research is particularly interesting for optical signal processing, slowing light via Fano resonances, and high sensitive sensing. In addition, the topological photonic crystal design and examination scheme presented in this thesis provide a simplified yet more efficient way to obtain non-trivial topological phase from a tunable photonic crystal that can be verified not only by edge modes but also by bulk modes.:Bibliographic record 1 Abstract 1 LIST OF ABBREVIATIONS and Symbols 3 1 Introduction 9 1.1 Introduction and Motivation 9 1.2 Objectives 11 1.3 Organization of the thesis 12 2 Density of optical states in rolled-up photonic crystals and quasi crystals 15 2.1 Introduction 15 2.1.1 background 17 2.1.2 Infinitely extended ideal photonic crystal 17 2.2 Finite-sized photonic crystal, photonic quasicrystal, and arbitrary photonics structures 20 2.2.1 Numerical algorithm 25 2.2.2 Rolled-up photonic crystals and quasi crystals 30 2.3 Software package 33 2.3.1 Computational performance 33 2.3.2 FPS User interface 35 2.3.3 Detailed tutorial 37 2.3.4 Alternative rolled-up photonic crystals 47 2.3.5 Beyond 3D photonic crystals. 48 2.4 Conclusion 49 3 Rolled-up microesonator 51 3.1 Introduction 51 3.2 Rolled-up microresonators 52 4 Tip-assisted photon-plasmon coupling in three-dimensionally confined microtube cavities 57 4.1 Introduction 57 4.2 Tube and plasmonic particle preparation and characterization 60 4.3 Results and discussion 62 4.4 Axial mode tuning 64 4.5 Fano resonance 65 4.5.1 Background 65 4.5.2 Fano resonance in the tip assisted coupling setup 68 4.6 Conclusion 71 5 Topological photonics 73 5.1 Introduction and motivation 73 5.2 Topological phase transition point 77 5.2.1 Fundamental phase transition point 77 5.2.2 Zero refractive index material 79 5.3 Non-trivial topology in realistic materials 80 6 Topological phase transition in stretchable photonic crystals 85 6.1 Introduction and motivation 85 6.2 SSH model 88 6.3 Photonic crystal 91 6.4 Band structure and end modes of the photonic crystal 99 6.5 Conclusion 101 7 Summary and outlook 103 7.1 Summary 103 7.2 Outlook 104 Bibliography 111 List of figures 127 Publications 133 Acknowledgments 136 Selbständigkeitserklärung 137 Curriculum Vitae 138
44

MODELING, DESIGN, AND ADJOINT SENSITIVITY ANALYSIS OF NANO-PLASMONIC STRUCTURES

Ahmed, Osman S. 04 1900 (has links)
<p>The thesis intends to explain in full detail the developed techniques and approaches for the modeling, design, and sensitivity analysis of nano-plasmoic structures. However, some examples are included for audiences of general microwave background. Although the thesis is mainly focused on simulation-based techniques, analytical and convex optimization approaches are also demonstrated. The thesis is organized into two parts. Part 1 includes Chapters 2-4, which cover the simulation-based modeling and sensitivity analysis approaches and their applications. Part 2 includes Chapters 5 and 6, which cover the analytical optimization approaches.</p> / <p>We propose novel techniques for modeling, adjoint sensitivity analysis, and optimization of photonic and nano-plasmonic devices. The scope of our work is generalized to cover microwave, terahertz and optical regimes. It contains original approaches developed for different categories of materials including dispersive and plasmonic materials. Artificial materials (metamaterials) are also investigated and modeled. The modeling technique exploits the time-domain transmission line modeling (TD-TLM) technique. Generalized adjoint variable method (AVM) techniques are developed for sensitivity analysis of the modeled devices. Although TLM-based, they can be generalized to other time-domain modeling techniques like finite difference time-domain method (FDTD) and time-domain finite element method (FEM).</p> <p>We propose to extend the application of TLM-based AVM to photonic devices. We develop memory efficient approaches that overcome the limitation of excessive memory requirement in TLM-based AVM. A memory reduction of 90% can be achieved without loss of accuracy and at a more efficient calculation procedure. The developed technique is applied to slot waveguide Bragg gratings and a challenging dielectric resonator antenna problem.</p> <p>We also introduce a novel sensitivity analysis approach for materials with dispersive constitutive parameters. To our knowledge, this is the first wide-band AVM approach that takes into consideration the dependence of material properties on the frequency. The approach can be utilized for design optimization of innovative nano-plasmonic structures. The design of engineered metamaterial is systematic and efficient. Beside working with engineered new designs, dispersive AVM can be utilized in bio-imaging applications. The sensitivity of the objective function with respect to dispersive material properties enables the exploitation of parameter and gradient based optimization for imaging in the terahertz and optical regimes. Material resonance interaction can be easily investigated by the provided sensitivity information.</p> <p>In addition to the developed techniques for simulation-based optimization, several analytical optimization algorithms are proposed to foster the parameter extraction and design optimization in terahertz and optical regimes. In terahertz time-domain spectroscopy, we have developed an efficient parameter based approach that utilizes the pre-known information about the material. The algorithm allows for the estimation of the optical properties of sample materials of unknown thicknesses. The approach has been developed based on physical analytical dispersive models. It has been applied with the Debye, Lorentz, Cole-Cole, and Drude model.</p> <p>Furthermore, we propose various algorithms for design optimization of coupled resonators. The proposed algorithms are utilized to transform a highly non-linear optimization problem into a linear one. They exploit an approximate transfer function of the coupled resonators that avoids negligible multiple reflections among them. The algorithms are successful for the optimization of very large-scale coupled microcavities (150 coupled ring resonators).</p> / Doctor of Philosophy (PhD)
45

Collective dynamics of excitons and exciton-polaritons in nanoscale heterostructures / Dynamique collective des excitons et exciton-polaritons dans des hétérostructures nanométriques

Visnevski, Dmitri 09 July 2013 (has links)
Dans ma thèse, je discute des phénomènes collectifs dynamiques impliquant des excitons et des exciton-polaritons dans des nanostructures de semiconducteurs. Dans le premier chapitre j’introduis brièvement des éléments de physique des semiconducteurs. Les quatre chapitres suivants sont dédiés à la présentation de résultats originaux. Le chapitre 2 décrit les phénomènes d’interaction cohérente entre phonons et condensats d’exciton. Le chapitre 3 décrit un laser à boite quantique dont l’émission peut être amplifiée par l’excitation par un pulse acoustique. Les chapitres 4 et 5 sont respectivement dédiés à l’étude du phénomène de multistabilité des exciton-polaritons et à l’étude d’un condensat d’excitons indirects. / In my thesis I will discuss some aspects of collective dynamics of excitons and exciton-polaritons in nanoscale heterostructures. In the first Chapter I will make a brief introduction to the modern semiconductor physics and willdescribe the general elements and notions which will be used further. Other four chapters would be devoted to four works in which I participated, notably, in Chapter 2 I will speak about the coherent interactions between phonons and exciton orexciton-polariton condensates, in Chapter 3 I will discuss the quantum dots lasing and its amplification by an acoustic pulse. Chapter 4 and 5 will be devoted respectively to the polariton multistability and to the condensates of indirect excitons.
46

Ultraviolet and visible semiconductor lasers based on ZnO heterostructures

Kalusniak, Sascha 03 February 2014 (has links)
Im Rahmen dieser Arbeit wurden die optischen Eigenschaften von auf ZnO-basierenden Heterostrukturen untersucht. Besonderes Augenmerk lag hierbei auf ihrer Eignung als aktives Material in Laserdioden für den ultravioletten und sichtbaren Spektralbereich. Es wurde gezeigt, dass ZnO und seine ternären Mischkristalle ZnCdO und ZnMgO erstaunlich vielfältige Anwendungen ermöglichen. Mit diesem Materialsystem lässt sich sowohl ein sehr großer Spektralbereich für Lasertätigkeit abdecken als auch eine Vielzahl von Laseranordnungen realisieren. Im Detail wurde demonstriert, dass sich die Lasertätigkeit von ZnCdO/ZnO Quantengraben-Strukturen vom violetten bis in den grünen Spektralbereich verschieben lässt. Obwohl diese Strukturen starke interne elektrische Felder aufweisen, konnte optisch gepumpte Lasertätigkeit bei Zimmertemperatur bis zu einer Wellenlänge von 510 nm gezeigt werden. Die für die Lasertätigkeit nötige optische Rückkopplung wird durch makroskopische Defekte der Probe verursacht und die Proben fungieren somit als Zufallslaser. Die Herstellung von Mikroresonatoren ermöglichte die Untersuchung des Zusammenspiels von Fabry-Perot- und Zufalls-Rückkopplung. Die experimentellen und theoretischen Ergebnisse zeigen, dass der Schwellengewinn eines Zufallslasers in der Regel größer ist als der des Fabry-Perot-Lasers. Des Weiteren wurde gezeigt, dass hoch reflektierende Braggreflektoren für den ultravioletten und blau/grünen Spektralbereich aus ZnO- und ZnMgO-Schichten hergestellt werden können. Ferner wurden die teils unbekannten Brechungsindexverläufe der verwendeten ternären Materialen erarbeitet und Mikrokavitäten mit ZnO/ZnMgO Quantengraben Strukturen als aktive Schichten realisiert. An diesen Kavitäten konnte bei Temperaturen bis zu 150 K starke Kopplung zwischen Exzitonen und Photonen nachgewiesen werden. Bei Zimmertemperatur konnte vertikal-emittierende Lasertätigkeit im nahen ultravioletten Spektralbereich demonstriert werden. / In the framework of this thesis, the optical properties of ZnO-based heterostructures fabricated by molecular beam epitaxy have been investigated, particularly with regard to their suitability for semiconductor laser devices operating in the ultraviolet and visible spectral range. It turned out that ZnO and its ternary alloys ZnMgO and ZnCdO are extremely versatile. They allow to tune the laser emission in a wide spectral range as well as to realize various laser geometries. In detail, it was shown that the laser emission of ZnCdO/ZnO multiple quantum wells can cover a spectral range from violet to green wavelengths. Although these structures suffer from large built-in electric fields, room temperature laser action under optical pumping was demonstrated up to a wavelength of 510. The optical feedback for lasing is provided by growth imperfections on a macroscopic length scale turning these structures into random lasers. The fabrication of micro-resonators allowed to study the interplay between random and Fabry-Perot feedback. The experimental and theoretical analysis shows that random feedback generally requires a larger gain than under Fabry-Perot feedback. Further, this work demonstrates that ZnO- and ZnMgO-layers can be used to fabricate highly reflective distributed Bragg reflectors for applications in the ultraviolet and blue/green spectral range. The partly unknown dispersion curves of the index of refraction of the employed ternary alloys have been elaborated. This enabled the realization of all monolithic microcavities with ZnO/ZnMgO quantum wells as active zone. For temperatures below 150 K strong exciton-photon coupling is observed in such microcavities. At room temperature, vertical cavity surface emitting laser action in the near UV spectral range is demonstrated for appropriately designed microcavities.
47

Rolled-up Microtubular Cavities Towards Three-Dimensional Optical Confinement for Optofluidic Microsystems

Bolaños Quiñones, Vladimir Andres 15 September 2015 (has links) (PDF)
This work is devoted to investigate light confinement in rolled-up microtubular cavities and their optofluidic applications. The microcavities are fabricated by a roll-up mechanism based on releasing pre-strained silicon-oxide nanomembranes. By defining the shape and thickness of the nanomembranes, the geometrical tube structure is well controlled. Micro-photoluminescence spectroscopy at room temperature is employed to study the optical modes and their dependence on the structural characteristics of the microtubes. Finite-difference-time-domain simulations are performed to elucidate the experimental results. In addition, a theoretical model (based on a wave description) is applied to describe the optical modes in the tubular microcavities, supporting quantitatively and qualitatively the experimental findings. Precise spectral tuning of the optical modes is achieved by two post-fabrication methods. One method employs conformal coating of the tube wall with Al2O3 monolayers by atomic-layer-deposition, which permits a mode tuning over a wide spectral range (larger than one free-spectral-range). An average mode tuning to longer wavelengths of 0.11nm/ Al2O3-monolayer is obtained. The other method consists in asymmetric material deposition onto the tube surface. Besides the possibility of mode tuning, this method permits to detect small shape deformations (at the nanometer scale) of an optical microcavity. Controlled confinement of resonant light is demonstrated by using an asymmetric cone-like microtube, which is fabricated by unevenly rolling-up circular-shaped nanomembranes. Localized three-dimensional optical modes are obtained due to an axial confinement mechanism that is defined by the variation of the tube radius and wall windings along the tube axis. Optofluidic functions of the rolled-up microtubes are explored by immersing the tubes or filling their core with a liquid medium. Refractive index sensing of liquids is demonstrated by correlating spectral shift of the optical modes when a liquid interacts with the resonant light of the microtube. In addition, a novel sensing methodology is proposed by monitoring axial mode spacing changes. Lab-on-a-chip methods are employed to fabricate an optofluidic chip device, allowing a high degree of liquid handling. A maximum sensitivity of 880 nm/refractive-index-unit is achieved. The developed optofluidic sensors show high potential for lab-on-a-chip applications, such as real-time bio/chemical analytic systems.
48

Rolled-Up Vertical Microcavities Studied by Evanescent Wave Coupling and Photoluminescence Spectroscopy

Böttner, Stefan 20 May 2015 (has links) (PDF)
Vertically rolled-up microcavities are fabricated using differentially strained nanomembranes by employing rate and temperature gradients during electron beam evaporation of SiO2. The geometry of the rolled-up tubes is defined by a photo-lithographically patterned polymer sacrificial layer beneath the SiO2 layers that is dissolved to start the rolling. Rolled-up tubes support resonances formed by constructive interference of light propagating along the circumference. Optical studies are performed in the visible spectral range using a micro-photoluminescence (µPL) setup to excite and detect optical modes. Record high quality factors (Q factors) of 5400 for rolled-up resonators probed in PL-emission mode are found and their limits are theoretically investigated. Axial modes can also be supported when an increased winding number in the center is realized by appropriate pattern designs. In addition, higher order radial modes can be confined when atomic layer deposition (ALD) coatings are applied. Both types of modes are identified using polarization and spatially resolved µPL maps. Evanescent-wave coupling by tapered fibers and tubes on substrates is the second method used to study light confinement and to demonstrate frequency filtering in ALD coated rolled-up microcavities. Scans are performed by monitoring light from a tunable laser in the range of 1520-1570 nm after transmission through the tapered fiber. Dips in the spectrum are found and attributed to fundamental and axial resonant modes. Moreover, by coupling two tapered fibers to a lifted rolled-up microcavity, a four-port add-drop filter is demonstrated as a future component for vertical resonant light transfer in on-chip optical networks. Simulations show that the subwavelength tube wall thickness limits the Q factor at infrared wavelengths and ALD coatings are necessary to enhance the light confinement. After coating, two linear polarization states are found in experiment and fundamental and axial modes can be selectively excited by coupling the fiber to different positions along the tube axis. Spatially and polarization resolved transmission maps reveal a polarization dependent axial mode distribution which is verified theoretically. The results of this thesis are important for lab-on-chip applications where rolled-up microcavities are employed as high resolution optofluidic sensors as well as for future uses as waveguide coupled components in three-dimensional multi-level optical data processing units to provide resonant interlayer signal transfer.
49

Design of microlaser in medium infrarer wavelengnth range for biomedicine and environmental monitoring / Design de microlaser moyen infrarouge pour la biomédecine et la surveillance environnementale

Palma, Giuseppe 20 April 2017 (has links)
Les micro-résonateurs optiques comptent parmi les dispositifs les plus importants en photonique. Les résonateurs WGM sont assez particuliers. Il s'agit de composant présentant une symétrie circulaire comme c'est le cas des sphères, des anneaux, des disques et des tores. Les résonateurs WGM présentent un facteur de qualité exceptionnel et un volume modal très faible. Ces appareils peuvent être utilisés dans plusieurs domaines, notamment la télédétection, le filtrage optique et l'optique non linéaire. D'autres applications sont possibles en biologie, médecine, spectroscopie moléculaire, surveillance environnementale, astronomie et astrophysique grâce à l'exploitation du rayonnement moyen infrarouge. Les micro-résonateurs optiques comportent un grand nombre de transitions vibrationnelles qui agissent comme des «empreintes» pour de nombreuses molécules organiques permettant le développement d'applications spectroscopiques innovantes et de nouveaux capteurs. Il convient de noter que l'atmosphère de la terre est transparente au niveau des deux fenêtres de transmission atmosphérique. La première est comprise entre 3 et 5 μm et la seconde entre 8 et 13 μm, ce qui rend possible des applications telles que la détection d'explosifs à distance ainsi que le brouillage de communication confidentielles. La large fenêtre de transparence en verres de chalcogénures dans le domaine spectral infrarouge rend envisageable le développement de nombreuses applications. Les verres de chalcogénure sont caractérisés par une bonne résistance mécanique et une durabilité chimique suffisante dans l'eau et l'atmosphère. Par ailleurs, l'indice de réfraction élevé, le rendement quantique élevé, l'énergie de phonon faible et la solubilité importante des terres rares permettent des émissions dans le domaine spectral du moyen IR. Dans cette thèse, la conception de dispositifs innovants en chalcogénure pour des applications utilisant le moyen infrarouge est étudiée en utilisant un code d'ordinateur personnel formé de façon aléatoire. Les appareils reposent sur des trois types de micro-résonateurs : les microsphères, les micro-disques et les microbulles. Les résonateurs WGM sont efficacement excités à l'aide de fibres nervurées et de guides d'ondes optiques de forme conique. Le nouveau procédé de conception est développé en utilisant la méthode d'optimisation par essaims particulaires (PSO). Elle permet de maximiser le gain d'un amplificateur reposant sur une microsphère d'émission laser dopée à l'erbium à 4,5 μm. Une technique innovante permettant de caractériser les propriétés spectroscopiques de la terre rare intégrant la recherche électromagnétique en mode WGM grâce à l'algorithme PSO a été développée. Les valeurs récupérées sont entachées d’une erreur inférieure à celle prévue par les instruments de mesure ayant un coût élevé. Des applications intéressantes peuvent être obtenues en excitant le micro-résonateur avec une fibre conique présentant deux LPG identiques sur les côtés. En effet, les FLP peuvent sélectionner le couplage de modes de fibre avec le résonateur WGM. En utilisant différentes paires de FLP identiques, opérant dans différentes bandes de longueurs d'onde, il est possible de coupler de façon sélective différents résonateurs à l'aide de la même fibre optique. Un code informatique aléatoire a été développé et validé. Il a démontré la faisabilité d'un capteur de microbulles de glucose. Un microdisque en terre rare dopé est étudié pour obtenir une source de lumière compacte et économique dans l'infrarouge moyen. Un code informatique est développé afin de simuler un micro-disque de terre rare dopé et associé à deux guides d'ondes nervurés, un pour le signal et l'autre pour la pompe. Le modèle est validé à l'aide d'un micro-disque dopée à l'erbium émettant à 4,5 μm. Ce dispositif très prometteur pour des applications dans le moyen infrarouge est obtenu en utilisant un micro-disque de praséodyme dopé émettant à 4,7 μm. / Optical micro-resonators represent one of the most important devices in photonics. A special kind is constituted by the WGM resonators, i.e. devices with circular symmetry such as spheres, rings, disks and toroids. They are characterized by very small dimensions, exceptionally quality factor and very low modal volume becoming a valuable alternative to the traditional optical micro-resonators, such as Fabry-Pérot cavities. These devices allow applications in several fields, such as sensing, optical filtering and nonlinear optics. In particular, different applications in biology and medicine, molecular spectroscopy, environmental monitoring, astronomy and astrophysics are feasible in Mid-Infrared wavelength range. For example, it includes a lot of strong vibrational transitions that act as “fingerprints” of many bio-molecules and organic species allowing the develop of innovative spectroscopic applications and novel sensors. In addition, the earth's atmosphere is transparent in two atmospheric transmission windows at 3–5 μm and 8–13 μm and then applications such as remote explosive detection, e.g. in airports and for border control, and covert communication systems are feasible. The wide transparency window of chalcogenide glasses in Mid-Infrared makes possible the development of several devices. Chalcogenide glasses are characterized by good mechanical strength and chemically durability in water and atmosphere. Furthermore, the high refractive index, high quantum efficiency, the low phonon energy and high rare-earth solubility enables the emissions at long wavelengths.In this thesis, the design of innovative chalcogenide devices for applications in Mid-Infrared is investigated using an ad-hoc home-made computer code. The devices are based on three kinds of micro-resonators: microspheres, micro-disks and microbubbles. The WGM resonators are efficiently excited by using tapered fiber and ridge waveguides. A novel design procedure is developed using the particle swarm optimization approach (PSO). It allows to maximize the gain of an amplifier based on an erbium-doped microsphere lasing at 2.7 μm.An innovative technique in order to characterize the spectroscopic properties of rare-earth is developed integrating the WGM electromagnetic investigation with PSO algorithm. The method is based on two subsequent steps: in the first one, the geometrical parameters are recovered, in the second one, the spectroscopic parameters. The recovered values are affected by an error less than that provided by high-cost measurement instruments. Furthermore, the procedure is very versatile and could be applied to develop innovative sensing systems.Interesting applications could be obtained exciting the micro-resonator by a tapered fiber with two identical LPGs on the sides. Indeed the LPGs can select the fiber modes coupling with the WGM resonator. Using different pairs of identical LPGs operating in different wavelength bands, it is possible to selective couple different micro-resonators by using the same optical fiber. An ad-hoc computer code is developed and validated and it demonstrated the feasibility of a microbubble glucose sensor.In order to obtain a compact and cost-saving light source in Mid-Infrared, rare-earth doped micro-disk are investigated. A computer code is developed in order to simulate a rare-earth doped micro-disk coupled to two ridge waveguide, one at signal wavelength and the other one at pump wavelength. The model is validated using an erbium-doped micro-disk emitting at 4.5 μm. A very promising device for application in Mid-Infrared is obtained using a praseodymium-doped micro-disk emitting at 4.7 μm.
50

Titanium Dioxide Based Microtubular Cavities for On-Chip Integration

Madani, Abbas 16 February 2017 (has links)
Following the intensive development of isolated (i.e., not coupled with on-chip waveguide) vertically rolled-up microtube ring resonators (VRU-MRRs) for both active and passive applications, a variety of microtube-based devices has been realized. These include microcavity lasers, optical sensors, directional couplers, and active elements in lab-on-a-chip devices. To provide more advanced and complex functionality, the focus of tubular geometry research is now shifting toward (i) refined vertical light transfer in 3D stacks of multiple photonic layers and (ii) to make microfluidic cooling system in the integrated optoelectronic system. Based on this motivation, this PhD research is devoted to the demonstration and the implementation of monolithic integration of VRU-MRRs with photonic waveguides for 3D photonic integration and their optofluidic applications. Prior to integration, high-quality isolated VRU-MRRs on the flat Si substrate are firstly fabricated by the controlled release of differentially strained titanium-dioxide (TiO2) bilayered nanomembranes. The fabricated microtubes support resonance modes for both telecom and visible photonics. The outcome of the isolated VRU-MRRs is a record high Q (≈3.8×10^3) in the telecom wavelength range with optimum tapered optical fiber resonator interaction. To further study the optical modes in the visible and near infrared spectral range, μPL spectroscopy is performed on the isolated VRU-MRRs, which are activated by entrapping various sizes of luminescent nanoparticles (NPs) within the windings of rolled-up nanomembranes based on a flexible, robust and economical method. Moreover, it is realized for the first time, in addition to serving as light sources that NPs-aggregated in isolated VRU-MRRs can produce an optical potential well that can be used to trap optical resonant modes. After achieving all the required parameters for creating a high-quality TiO2 VRU-MRR, the monolithic integration of VRU-MRRs with Si nanophotonic waveguides is experimentally demonstrated, exhibiting a significant step toward 3D photonic integration. The on-chip integration is realized by rolling up 2D pre-strained TiO2 nanomembranes into 3D VRU-MRRs on a microchip which seamlessly expanded over several integrated waveguides. In this intriguing vertical transmission configuration, resonant filtering of optical signals at telecom wavelengths is demonstrated based on ultra-smooth and subwavelength thick-walled VRU-MRRs. Finally, to illustrate the usefulness of the fully integrated VRU-MRRs with photonic waveguides, optofluidic functionalities of the integrated system is investigated. In this work, two methods are performed to explore optofluidic applications of the integrated system. First, the hollow core of an integrated VRU-MRR is uniquely filled with a liquid solution (purified water) by setting one end of the VRU-MRRs in contact with a droplet placed onto the photonic chip via a glass capillary. Second, the outside of an integrated VRU-MRR is fully covered with a big droplet of liquid. Both techniques lead to a significant shift in the WGMs (Δλ≈46 nm). A maximum sensitivity of 140 nm/refractive index unit, is achieved. The achievements of this PhD research open up fascinating opportunities for the realization of massively parallel optofluidic microsystems with more functionality and flexibility for analysis of biomaterials in lab-on-a-tube systems on single chips. It also demonstrates 3D photonic integration in which optical interconnects between multiple photonic layers are required.

Page generated in 0.0328 seconds