Spelling suggestions: "subject:"mikroglia"" "subject:"mikroglian""
51 |
Immunreaktionen im zentralen Nervensystem bei Stimulation mit Bestandteilen von Borrelia burgdorferi / Immunoreactions in the central nervous system by stimulation with proteins from Borrelia burgdorferiHeinz, Torsten Joseph 08 January 2014 (has links)
No description available.
|
52 |
Morphologie der Mikroglia in Assoziation zu Amyloidablagerungen und Tau-Pathologien im caninen GehirnSchmidt, Franziska 09 September 2014 (has links)
Altersassoziiert entwickeln Hunde eine Erkrankung, die in vielen Aspekten der Alzheimer-Krankheit des Menschen ähnelt. Das canine kognitive Dysfunktionssyndrom äußert sich klinisch u.a. durch Desorientierung in vertrauter Umgebung, Vergessen von Kommandos und einen gestörten Schlaf-Wach-Rhythmus. Aus der Literatur ist bekannt, dass in den Gehirnen von alten Hunden regelmäßig Aβ- und selten Tauablagerungen zu beobachten sind. Allerdings erfolgte bisher kein Nachweis des hochgradig zytotoxischen und modifizierten pE3Aβ. Auch Veränderungen der mikroglialen Morphologie wurden bisher nicht beschrieben.
Insgesamt lagen in dieser Studie 24 euthanasierte Rasse- und Mischlingshunde verschiedenen Alters vor. Fünf dieser Tiere besaßen ein durchschnittliches Alter von 2,1 Jahren und dienten als Kontrollgruppe. Die anderen 19 Hunde waren 8 bis 19 Jahre alt und wurden entsprechend ihrer Größe und des Gewichts in die drei Kategorien kleine (≤ 10 kg), mittelgroße (10 – 25 kg) und große Hunde (> 25 kg) unterteilt. Die Gehirne wurden aus den Schädeln präpariert und in 4 % Paraformaldehyd fixiert. Anschließend erfolgte die Präparation des frontalen und entorhinalen Kortex sowie der Hippokampusformation, die in 30%iger Saccharoselösung vitrifiziert und mittels Methylbutan bei -80 °C eingefroren wurden. Von den Regionen wurden Kryoschnitte mit einer Dicke von 40 µm angefertigt und diese anhand immunhistologischer Färbungen auf das Vorhandensein von Ablagerungen, bestehend aus den Amyloidsubtypen Aβ8-17 und pE3Aβ, sowie aus hyperphosphorylierten Tau, untersucht. Die Morphologie und das Aktivitätsstadium der Mikroglia wurden mit Antikörpern gegen Iba1 und TAL.1B5 analysiert. Zusätzlich erfolgte eine Untersuchung anhand des Filament Tracer. Stereologische Analysemethoden wurden zur Quantifizierung der Aβ-Ablagerungen und der Mikroglia angewandt.
Disseminierte Plaques fanden sich bereits ab 9 Jahren. In den untersuchten Gehirnregionen von alten Hunden zeichnete sich ein progressiver Verlauf der Ablagerungen ab. Da insbesondere kleinere Hunde ein höheres Alter erreichten als mittelgroße und große Hunde konnten in dieser Kategorie vermehrt Plaques beobachtet werden. Den alten Tieren gemein war, dass in den untersuchten Gehirnregionen pE3Aβ-Plaques häufiger vorlagen als Plaques, die aus Aβ8-17 bestanden. Kleinere parenchymale und meningeale Gefäße des frontalen Kortex schienen besonders anfällig gegenüber pE3Aβ-Ablagerungen zu sein. Im entorhinalen Kortex von kleinen Hunden war die Menge an gefäßassoziierten Aβ8-17- und pE3Aβ-Ablagerungen annähernd gleich. Bei mittelgroßen und großen Hunden dominierte im entorhinalen Kortex und ventralen Hippokampus die Anzahl an gefäßassoziierten Aβ8-17-Ablagerungen. Bei kleinen Hunden existierten im ventralen Hippokampus signifikant mehr gefäßassoziierte Aβ8-17- als pE3Aβ-Ablagerungen. Hyperphosphoryliertes Tau fand sich in der Hippokampusformation von drei Hunden im Alter von 11 bzw. 15 Jahren. Der Schweregrad war unterschiedlich ausgeprägt, sodass nur ein Hund eine hochgradige Pathologie mit NFTs und neuritischen Plaques aufwies. Einhergehend mit dem Alter und einer assoziierten Proteinpathologie fanden sich Veränderungen der mikroglialen Morphologie. Neben ramifizierten Mikroglia lagen in den untersuchten Gehirnregionen aktivierte Mikroglia vor. Einige Mikroglia wiesen Zeichen einer Seneszenz auf und waren insbesondere in den Gehirnen von Hunden mit einer hochgradigen Aβ- bzw. Tau-Pathologie vorhanden.
Zusammenfassend ist festzustellen, dass mit dieser Studie eine nähere Charakterisierung des caninen kognitiven Dysfunktionssyndroms erfolgte. Die Befunde sind von hoher translationaler Bedeutung und fördern die Etablierung des Hundes als natürliches Modelltier zur Untersuchung von Alterungsprozessen des Gehirns und für die Erforschung des initialen Stadiums der Alzheimer-Krankheit.:1 Einleitung
2 Literaturübersicht
2.1 Das canine kognitive Dysfunktionssyndrom
2.2 Pathogenese der Proteinablagerungen
2.2.1 Amyloid-Pathologie
2.2.2 Tau-Pathologie
2.3 Mikroglia
2.3.1 Ursprung und Formen
2.3.2 Die Rolle der Mikroglia beim Morbus Alzheimer
2.4 Assoziation des CCDS zum Morbus Alzheimer
3 Tiere, Material und Methoden
3.1 Hunde
3.2 Gehirnproben
3.2.1 Gewinnung und Kryofixierung der Gehirne
3.2.2 Makroskopische Untersuchung der Gehirne
3.2.3 Untersuchte Gehirnregionen
3.2.4 Histologische Färbungen
3.3 Immunohistochemische und Immunfluoreszenzfärbungen
3.3.1 Antikörper und Seren
3.3.2 Protokoll der ABC-Methode
3.3.3 Protokoll zur Immunfluoreszenz
3.3.4 Kontrollen
3.4 Auswertung der Färbungen
3.4.1 Deskriptive Analyse der Präparate
3.4.2 Quantitative Analyse der immunhistochemischen Befunde
3.4.3 Statistische Auswertung
4 Ergebnisse
4.1 Anamnestische Merkmale der Hunde
4.1.1 Gruppeneinteilung in Größen- und Gewichtskategorien
4.1.2 Altersverteilung
4.1.3 Symptomatik
4.2 Pathologisch-histologische Untersuchung der Gehirne
4.2.1 Altersabhängige pathologische Gehirnveränderungen
4.2.2 Anteil der grauen Substanz des frontalen Kortex
4.2.3 Pathologisch-histologische Charakterisierung ausgewählter Hirnareale
4.2.3.1 Kontrollgruppe
4.2.3.2 Gehirne der alten Hunde
4.2.3.3 Korrelation der altersassoziierten Neuropathologie mit der Größen- und Gewichtskategorie
4.2.3.4 Statistische Auswertung
4.3 Detektion, Charakterisierung und Quantifizierung des Aβ-Proteins
4.3.1 Immunhistochemische Darstellung des Aβ-Proteins
4.3.1.1 Kontrollgruppe
4.3.1.2 Altersassoziierte Verteilung der Aβ-Ablagerungen
4.3.2 Morphologie der Aβ-Ablagerungen
4.3.3 Assoziation der Aβ-Ablagerungen mit der Größen- und Gewichtskategorie
4.3.4 Histochemische Darstellung des Aβ-Proteins
4.3.5 Quantifizierung der Aβ-Ablagerungen
4.4 Immunhistologische Darstellung von Tau-Pathologien
4.4.1 Kontrollgruppe
4.4.2 Alte Hunde der Versuchsgruppen
4.5 Charakterisierung und Quantifizierung der Mikroglia
4.5.1 Darstellung der Mikroglia
4.5.1.1 Kontrollgruppe
4.5.1.2 Alte Hunde der Versuchsgruppen
4.5.2 Assoziation der mikroglialen Morphologie zu den Größen- und Gewichtskategorien der untersuchten Hunde
4.5.3 Auswertung morphologischer Parameter mit dem Filament Tracer
4.5.4 Quantifizierung der Mikroglia
4.5.4.1 Untersuchung der Anzahl der Mikroglia in Assoziation zur Neuropathologie
4.5.4.2 Untersuchung der Anzahl der Mikroglia in Assoziation zu den Größen- und Gewichtskategorien
4.5.5 Nachweis HLA DR-positiver Mikroglia
4.5.5.1 Kontrollgruppe
4.5.5.2 Alte Versuchshunde
5 Diskussion
5.1 Hundepopulation
5.2 Pathologisch-histologische Untersuchung der Gehirne
5.3 Aβ-Pathologie
5.3.1 Parenchymale Aβ-Plaques
5.3.2 Gefäßassoziiertes Aβ-Protein
5.4 Tau-Pathologie
5.4.1 Häufigkeit innerhalb der Hundepopulation und kritische Wertung der Färbemethodik
5.4.2 Zusammenhang der Tau-Pathologie mit den Aβ-Ablagerungen
5.5 Mikroglia
5.5.1 Unterschiede in der Anzahl der Mikroglia zwischen jungen und alten Hunden
5.5.2 Unterschiede der Morphologie der Mikroglia zwischen jungen und alten Hunden
5.5.3 Detektion von dystrophischen Mikroglia in den Gehirnen von alten Hunden
5.6 Schlussfolgerungen
5.7 Ausblick
6 Zusammenfassung
7 Summary
8 Literaturverzeichnis
9 Anhang
9.1 Tabellarische Übersichten zu den Studientieren
9.2 Protokoll der H&E-Färbung
9.3 Übersicht einzelner Ergebnisse des humanen Gewebes
9.4 Tabellarische Übersichten der verwendeten Materialien
Abbildungsverzeichnis
Tabellenverzeichnis / Dogs develop an age-associated cognitive dysfunction syndrome with several aspects resembling Alzheimer\\\''s disease. Affected animals show signs of dis-orientation in their familiar surroundings, dementia, and a disturbed circadian rhythm. The underlying neurodegenerative disease is associated with patho-logic changes in the brain including regularly deposition of β-pleated amyloid and rarely hyperphosphorylated tau accumulation. However, there have been no reports of the highly cytotoxic and modified pE3Aβ in the canine brain. Equally, altered microglial morphology has not been documented so far.
For this study 24 euthanized thoroughbred dogs and mongrels of different ages were available. Five of these animals had an average age of 2.1 years and served as control group. The remaining 19 dogs were 8 to 19 years old. Accor-ding to their height and weight these dogs were divided into 3 different categories including small (≤ 10 kg), medium (11 - 25 kg) and large dogs (> 25 kg).
Brains were dissected from the skulls and fixed in 4 % paraformaldehyde.
Afterwards the frontal and entorhinal cortex as well as the hippocampal for-mation were isolated, vitrificated in 30 % sucrose solution and frozen to -80 °C by methylbutane. These regions were sliced into 40 µm thick sections and subsequently stained by immunohistology in order to detect deposits of Aβ8-17, pE3Aβ and hyperphosphorylated tau, respectively. Antibodies against Iba1 and TAL.1B5 were used to analyze microglial morphology and activation status. Additionally further investigations were made with the Filament Tracer of Imaris software. Stereological analysis methods served for the quantification of Aβ depositions and microglia.
Disseminated Aβ plaques were detected in dogs from 9 years on. Within the examined brain regions of elderly dogs a progressive course of Aβ depositions was observed. Especially small dogs had a longer lifespan than medium and large dogs with the result that more plaques were deposited in the brains of small dogs. Elderly dogs had in common that pE3Aβ-plaques where more often located in the examined brain regions than plaques containing Aβ8-17. Minor parenchymal and meningeal vessels seemed to be susceptible especially to pE3Aβ depositions. The amount of vessel-associated Aβ8-17 and pE3Aβ in the entorhinal cortex of small dogs was almost equal. Within the entorhinal cortex of medium and large dogs the amount of vessel-associated Aβ8-17 predominated. The ventral hippocampus of small dogs showed significantly more vessel-associated Aβ8-17 than pE3Aβ depositions.
Hyperphosphorylated tau was present in the hippocampal formations of 3 dogs with an age of 11 and 15 years, respectively. The degree of severity varied with the result that only one dog showed a high-grade pathology with development of NFTs and neuritic plaques. Accompanied by age and associated protein pathology altered microglial morphology was detected. Alongside with ramified microglia, activated cells were identified in the examined brain regions. Several microglia showed signs of senescence and were present in the brains of dogs with severe Aβ and tau pathology.
Summarizing, this study facilitated a further characterization of the canine cognitive dysfunction syndrome. The results are of highly translational importance and encourage the establishment of the dog as a natural animal model for studying age-associated processes and the initial stage of Alzheimer’s disease.:1 Einleitung
2 Literaturübersicht
2.1 Das canine kognitive Dysfunktionssyndrom
2.2 Pathogenese der Proteinablagerungen
2.2.1 Amyloid-Pathologie
2.2.2 Tau-Pathologie
2.3 Mikroglia
2.3.1 Ursprung und Formen
2.3.2 Die Rolle der Mikroglia beim Morbus Alzheimer
2.4 Assoziation des CCDS zum Morbus Alzheimer
3 Tiere, Material und Methoden
3.1 Hunde
3.2 Gehirnproben
3.2.1 Gewinnung und Kryofixierung der Gehirne
3.2.2 Makroskopische Untersuchung der Gehirne
3.2.3 Untersuchte Gehirnregionen
3.2.4 Histologische Färbungen
3.3 Immunohistochemische und Immunfluoreszenzfärbungen
3.3.1 Antikörper und Seren
3.3.2 Protokoll der ABC-Methode
3.3.3 Protokoll zur Immunfluoreszenz
3.3.4 Kontrollen
3.4 Auswertung der Färbungen
3.4.1 Deskriptive Analyse der Präparate
3.4.2 Quantitative Analyse der immunhistochemischen Befunde
3.4.3 Statistische Auswertung
4 Ergebnisse
4.1 Anamnestische Merkmale der Hunde
4.1.1 Gruppeneinteilung in Größen- und Gewichtskategorien
4.1.2 Altersverteilung
4.1.3 Symptomatik
4.2 Pathologisch-histologische Untersuchung der Gehirne
4.2.1 Altersabhängige pathologische Gehirnveränderungen
4.2.2 Anteil der grauen Substanz des frontalen Kortex
4.2.3 Pathologisch-histologische Charakterisierung ausgewählter Hirnareale
4.2.3.1 Kontrollgruppe
4.2.3.2 Gehirne der alten Hunde
4.2.3.3 Korrelation der altersassoziierten Neuropathologie mit der Größen- und Gewichtskategorie
4.2.3.4 Statistische Auswertung
4.3 Detektion, Charakterisierung und Quantifizierung des Aβ-Proteins
4.3.1 Immunhistochemische Darstellung des Aβ-Proteins
4.3.1.1 Kontrollgruppe
4.3.1.2 Altersassoziierte Verteilung der Aβ-Ablagerungen
4.3.2 Morphologie der Aβ-Ablagerungen
4.3.3 Assoziation der Aβ-Ablagerungen mit der Größen- und Gewichtskategorie
4.3.4 Histochemische Darstellung des Aβ-Proteins
4.3.5 Quantifizierung der Aβ-Ablagerungen
4.4 Immunhistologische Darstellung von Tau-Pathologien
4.4.1 Kontrollgruppe
4.4.2 Alte Hunde der Versuchsgruppen
4.5 Charakterisierung und Quantifizierung der Mikroglia
4.5.1 Darstellung der Mikroglia
4.5.1.1 Kontrollgruppe
4.5.1.2 Alte Hunde der Versuchsgruppen
4.5.2 Assoziation der mikroglialen Morphologie zu den Größen- und Gewichtskategorien der untersuchten Hunde
4.5.3 Auswertung morphologischer Parameter mit dem Filament Tracer
4.5.4 Quantifizierung der Mikroglia
4.5.4.1 Untersuchung der Anzahl der Mikroglia in Assoziation zur Neuropathologie
4.5.4.2 Untersuchung der Anzahl der Mikroglia in Assoziation zu den Größen- und Gewichtskategorien
4.5.5 Nachweis HLA DR-positiver Mikroglia
4.5.5.1 Kontrollgruppe
4.5.5.2 Alte Versuchshunde
5 Diskussion
5.1 Hundepopulation
5.2 Pathologisch-histologische Untersuchung der Gehirne
5.3 Aβ-Pathologie
5.3.1 Parenchymale Aβ-Plaques
5.3.2 Gefäßassoziiertes Aβ-Protein
5.4 Tau-Pathologie
5.4.1 Häufigkeit innerhalb der Hundepopulation und kritische Wertung der Färbemethodik
5.4.2 Zusammenhang der Tau-Pathologie mit den Aβ-Ablagerungen
5.5 Mikroglia
5.5.1 Unterschiede in der Anzahl der Mikroglia zwischen jungen und alten Hunden
5.5.2 Unterschiede der Morphologie der Mikroglia zwischen jungen und alten Hunden
5.5.3 Detektion von dystrophischen Mikroglia in den Gehirnen von alten Hunden
5.6 Schlussfolgerungen
5.7 Ausblick
6 Zusammenfassung
7 Summary
8 Literaturverzeichnis
9 Anhang
9.1 Tabellarische Übersichten zu den Studientieren
9.2 Protokoll der H&E-Färbung
9.3 Übersicht einzelner Ergebnisse des humanen Gewebes
9.4 Tabellarische Übersichten der verwendeten Materialien
Abbildungsverzeichnis
Tabellenverzeichnis
|
53 |
Neurodegeneration und Neuroprotektion / ein Dialog zwischen Immunsystem und Gehirn auf ZellebeneWolf, Susanne 10 December 2001 (has links)
Die Infiltration von T Zellen in das Zentrale Nervensystem (ZNS) ist ein Charakteristikum neuroinflammatorischer Erkrankungen wie der Multiplen Sklerose (MS) und ihrem Tiermodell der experimentellen autoimmunen Enzephalomyelitis (EAE), und führt zur Aktivierung intrinsischer Hirnmakrophagen, den Mikrogliazellen, zu axonaler Schädigung sowie zum Zusammenbruch der Blut-Hirnschranke. Die T Zellen, welche als erste im Gehirn erscheinen, sind vom Subtyp Th1, spezifisch für Bestandteile der Myelinscheide, wie das myelinbasische Protein (MBP), produzieren inflammatorische Zytokine und rekrutieren andere unspezifische T Zellen und Makrophagen. Da sich diese Zellen des Immunsystems gegen körpereigene Bestandteile richten, spricht man von autoreaktiven T Zellen und einer autoimmunen Erkrankung. Im ersten Teil meiner Dissertation habe ich den Einfluss dieser autoreaktiven T Zellen auf den Aktivierungszustand von Mikrogliazellen mit Hilfe muriner Schnittkulturpräparate von Hippocampus und entorhinalem Kortex untersucht, welche den myelinisierten Fasertrakt Tractus perforans mit seinen Ursprungsneuronen und Zielzellen enthielten. Gering aktivierte MBP-spezifische T Zellen induzierten die Expression der Aktivitätsmarker MHC-II und ICAM-1 auf den Mikroglia und die damit verbundene axonale Schädigung (Phagozytose) im gleichen Maße wie hochaktivierte unspezifische T Zellen. Nur Th1 Zellen konnten Mikroglia aktivieren. MBP-spezifische Th2 Zellen hingegen reduzieren die Th1 induzierte Mikrogliaaktivierung (ICAM-1) auf Kontrollniveau. MBP-spezifische Th1 Zellen konnten die Expression von B7 auf Mikrogliazellen modulieren, während die MBP-spezifischen Th2 Zellen diese Eigenschaft nicht besaßen. Durch diese Befunde kann die prominente Rolle von autoreaktiven Th1 Zellen beim Auslösen neuroinflammatorischer Prozesse auf ihre einmalige Fähigkeit, Mikrogliazellen zu aktivieren und deren kostimulatorische Moleküle zu modulieren, zurückgeführt werden. Gleichzeitig bieten die Daten eine mögliche Erklärung für die protektive Rolle von Th2 Zellen bei MS und EAE. Es ist bekannt, dass autoreaktive T Zellen, wie die MBP-spezifischen Th1 Zellen, auch im gesunden Zustand im humanen und murinen T-Zell-Repertoire vorhanden sind. Die physiologische Funktion dieser Zellen ist unklar. Untersuchungen am Nervus opticus sowie im Rückenmark in vivo belegen, dass autoreaktive T Zellen und Makrophagen die Reorganisationsprozesse im ZNS nach traumatischer Schädigung positiv beeinflussen. Diese bei neuroinflammatorischen Erkrankungen so destruktiv wirkenden autoreaktiven T Zellen verhindern nach einem experimentell gesetzten Primärschaden im ZNS das Fortschreiten der Schädigung und es kommt zu einer fast vollständigen Regeneration des Gewebes. Im zweiten Teil meiner Promotionsarbeit habe ich versucht, die Mechanismen, welche hinter dieser Protektion stecken aufzuspüren. Dazu habe ich ebenfalls das in vitro Hirnschnittmodell benutzt. Für diese Fragestellungen wurden Akutschnitte verwendet, die ein Modell für primäre Schädigung im ZNS darstellen. MBP-spezifische Th2 Zellen hatten ein größeres protektives Potential als MBP-spezifische Th1 Zellen. Die nicht ZNS-spezifischen Th1 und Th2 Zellen benötigten ihr Antigen (OVA-Peptid), um signifikant protektiv zu wirken. Durch eine Superstimulation der OVA- und MBP-spezifischen T Zellen wurde eine Neuroprotektion auf gleichem Niveau erreicht. Die Neuroprotektion nach primärer Schädigung von ZNS Gewebe ist somit antigen- und stimulationsabhängig und wird hauptsächlich von Th2 Zellen unterstützt. / The invasion of T cells into the central nervous system (CNS) is a hallmark of neuro inflammatory diseases like multiple sclerosis (MS) and its rodent model, experimental autoimmune encephalomyelitis (EAE), leading to activation of intrinsic macrophages, the microglia, axonal damage and break down of the blood brain barrier. The initial invading T cells are of the Th1 subtype and specific for parts of the myelin sheet like myelin basic protein (MBP). They produce inflammatory cytokines and recruit peripheral non-specific T cells and macrophages. Because these T cells are directed against a self antigen, they are called auto reactive T cells and the phenomenon an autoimmune disease. In the first part of my study I investigated the influence of auto reactive T cells on microglial cells' utilizing an organotypic slice culture system of hippocampus and entorhinal cortex. The slice culture contains a myelinated fibre tract - the tractus perforans - with its original and target neurons. Low activated MBP-specific T cells induced the expression of the activation markers ICAM-1 and MHC-II on microglia as well as microglial phagocytosis in the same manner as highly activated non-specific T cells. Only Th1 cells were able to activate microglia, while Th2 cells reduced the Th1 induced activation (ICAM-1 expression). MBP-specific Th1 cells could modulate the expression of co-stimulatory molecules B7-1 and B7-2, whereas MBP-specific Th2 cells could not. These findings could show why Th1 cells are responsible for EAE induction while Th2 cells can be protective. Auto reactive T cells like MBP-specific T cells have been found in the normal human and murine T cell repertoire. The physiological function of these cells is still unclear. Studies using the models of optic nerve crush or spinal cord crush have shown that macrophages and auto reactive T cells are involved in reorganisation and regeneration after CNS trauma. These auto reactive T cells, which are usually known to be destructive, could prevent CNS tissue from secondary degeneration. In the second part of my study I tried to identify the mechanisms involved in this phenomenon. I also used the organotypic slice culture system. Immediately after preparation causing the primary injury the slices were cultivated with T cells. Th2 cells were found to be more potent to prevent form secondary damage than Th1 cells. The non-CNS specific OVA Th1 and Th2 cells required their antigen to be fully protective. When over stimulated, MBP- and OVA-specific Th1 and Th2 cells proved to be protective to the same extend. Neuroprotection after primary injury depends on the T cell s state of activation and their antigen specificity. Among the cells examined I found Th2 cells were most effective in preventing CNS tissue from secondary injury.
|
54 |
Untersuchungen zum makro- und mikroglialen Differenzierungspotential muriner Knochenmarkzellen in vitro und in vivoBoentert, Matthias 02 August 2004 (has links)
Die vorliegende Arbeit untersucht das Differenzierungsverhalten adulter muriner Knochenmarkzellen im Zentralnervensystem in vivo und in vitro. Hierzu wurden letal bestrahlte Mäuse mit Knochenmark aus transgenen Mausmutanten transplantiert, die das grün fluoreszierende Protein (GFP) unter der Kontrolle des humanen GFAP-Promoters exprimieren. Ein Teil der Rezipienten wurde vier Wochen nach Transplantation einer transienten fokalen cerebralen Ischämie unterzogen, um den Einfluss postischämischer inflammatorischer Vorgänge auf das Differenzierungsverhalten eingewanderter Zellen zu untersuchen. Eine zelluläre Koexpression von GFP und GFAP als Zeichen der Differenzierung hämatogener Zellen zu GFAP-exprimierenden Astrozyten fand sich bei keinem der analysierten Tiere. Für die in vitroVersuche wurden murine Knochenmarkzellen auf Mausastrozyten und auf organotypischen entorhinal-hippocampalen Hirnschnitten kokultiviert. Die hierzu verwendeten Knochenmarkzellen waren entweder retroviral mit GFP transfiziert oder stammten aus zwei verschiedenen transgenen Mausmutanten, von denen eine GFP nahezu ubiquitär unter dem b-Actin-Promoter, die andere GFP unter der Kon-trolle des humanen GFAP-Promoters exprimiert. Während zahlreiche Knochenmarkzellen nach wenigen Tagen der Kokultur die morphologischen Charakteristika ruhender Mikroglia annahmen und Immunoreaktivität für den Makrophagen/Mikroglia-Marker Iba1 aufwiesen, fand sich keine einzige Zelle mit Koexpression von GFP und GFAP. Diese Ergebnisse sprechen dafür, dass adulte murine Knochenmarkzellen bzw. ihre Abkömmlinge im zirkulierenden Blut nicht in GFAP-exprimierende Astrozyten differenzieren. / It has been postulated that adult murine bone marrow cells have the potential to differentiate into cells of neuroectodermal origin. In order to examine whether bone marrow cells can adopt an astroglial fate, various in vivo and in vitro approaches were chosen. Lethally irradiated recipient mice were transplanted with bone marrow derived from transgenic mice which express the green fluorescent protein (GFP) under the control of the human GFAP promoter. Four weeks after transplantation, several animals underwent transient focal cerebral ischemia. Although postischemic inflammatory processes may eventually have a permissive effect on cell differentiation, not a single cells coexpressing GFAP and GFP was found in the brains of all reci-pients examined. For in vitro studies, murine bone marrow cells were co-cultured on astrocytic monolayers or organotypic entorhinal-hippocampal brain slices. Bone marrow cells were either labelled by retroviral transfection with GFP or derived from two different transgenic mouse mutants expressing GFP under the control of the human GFAP-promoter or the murine b-Actin-promoter, respectively. After several days of co-culture bone marrow derived cells developed a ramified morphology and showed immunoreactivity for the monocytic/microglial marker Iba1. However, differentiation of bone marrow derived cells into GFAP-expressing astrocytes was not observed. Our results suggest that adult murine bone marrow cells cannot differentiate into GFAP-expressing astrocytes in vivo or in vitro.
|
55 |
T-Zell-vermittelte Autoimmunität / die Rolle von T-Zellen verschiedener Phänotypen und deren Interaktion mit dem betroffenen Gewebe unter besonderer Beachtung des ZentralnervensystemsGimsa, Ulrike 26 February 2004 (has links)
Die vorliegende Arbeit befaßt sich mit T-Helferzellen und ihren Interaktionen mit Gewebszellen, wie sie im gesunden Organismus und in Autoimmunerkrankungen auftreten. Es werden Fragen der Toleranzinduktion durch orale Gabe von Antigenen, speziell der oralen Verabreichung von Collagen II bei Patienten mit rheumatoider Arthritis diskutiert. Eine Immundeviation als Mittel, inflammatorische Th1-Zellantworten in anti-inflammatorische Th2-Zellantworten zu verwandeln, kann durch Eingriffe in die T-Zell-Signaltransduktion erreicht werden. Es werden neue Ansätze zu Mechanismen diskutiert, die das Immunprivileg des Zentralnervensystems gewährleisten. Die hirnresidenten Immunzellen, zu denen Mikrogliazellen und Astrozyten zählen, besitzen Eigenschaften, die eine Entzündung unwahrscheinlich machen. Sie müssen aktiviert werden, um Antigene präsentieren zu können. In organtypischen entorhinal-hippocampalen Schnittkulturen konnte gezeigt werden, dass Mikrogliazellen durch Th1-Zellen aktiviert, von Th2-Zellen hingegen deaktiviert werden. Die Möglichkeit, dass die Costimulation über CD80 oder CD86 differentielle Effekte auf den Charakter der Immunantwort hat, wird diskutiert. Der Einfluß von pro-inflammatorischen Zytokinen auf Mikrogliaaktivierung und den Erhalt von Nervenfasern wurde ebenfalls in Hirnschnittkulturen untersucht. Astrozyten sind wesentlicher Bestandteil der Blut-Hirn-Schranke. Diese kann jedoch von aktivierten T-Zellen überwunden werden. In dieser Arbeit wird gezeigt, dass Astrozyten über eine Expression von CD95L in aktivierten T-Zellen Apoptose induzieren können. Davon sind jedoch nicht alle T-Zellen betroffen. Andererseits wird eine T-Zellproliferation unterdrückt, indem T-Zellen unter Astrozyteneinfluß verstärkt CTLA-4 exprimieren, was einen Zellzyklusarrest zur Folge hat. Darüber hinaus ist eine verstärkte Produktion von Nervenwachstumfaktor (NGF; nerve growth factor) nach antigenspezifischer Interaktion von Astrozyten mit Th1- und Th2-Zellen als zusätzliches Mittel, eine Neuroinflammation einzudämmen, anzusehen. Die Arbeit stellt diese Ergebnisse in fünf Kapiteln dar, welche gleichzeitig eine Einführung in die als Anlagen enthaltenen zehn Publikationen geben. / This thesis deals with T helper cells and their interactions with tissue cells as they occur in the healthy organism and in autoimmune diseases. Questions of tolerance induction by oral application of antigens are discussed especially oral treatment with type II collagen in patients with rheumatoid arthritis. In order to transform inflammatory Th1 responses into anti-inflammatory Th2 responses, immune deviation can be reached by interference with T-cell signal transduction. New approaches towards the different ways that the immune privilege of the central nervous system is maintained are discussed. The resident immune cells, i.e. microglia and astrocytes possess properties that make inflammation unlikely. They have to be activated in order to present antigens. It has been shown in organotypic entorhinal-hippocampal slice cultures that Th1 cells activate whereas Th2 cells deactivate microglial cells. The possibility is discussed as to whether costimulation via CD80 or CD86 differentially influences the character of the immune response. The influence of pro-inflammatory cytokines on microglial activation and preservation of nerve fibers has also been studied in brain slice cultures. Astrocytes are an essential part of the blood-brain barrier, which can be crossed by activated T cells. The thesis shows that astrocytes can induce apoptosis in activated T cells via expression of CD95L. However, not all T cells are affected. T cell proliferation is suppressed by increased CTLA-4 expression in T cells under the influence of astrocytes, resulting in a cell cycle arrest. An additional mechanism of confining neuroinflammation is increased production of the nerve growth factor (NGF) following antigen-specific interaction of astrocytes and Th1 and Th2 cells, respectively. These results are presented in five chapters that also introduce the ten attached publications.
|
56 |
Lokalisierung und Charakterisierung Foxp3+ regulatorischer T-Zellen bis zu 30 Tage nach mechanischer und ischämischer Läsion des GehirnsStubbe, Tobias 14 January 2014 (has links)
Nach einer Läsion im Gehirn kommt es trotz der Bildung autoreaktiver T-Zellen zu keiner autoimmunen Neuropathologie. Foxp3+ regulatorische T-Zellen (Tregs) vermitteln möglicherweise Immuntoleranz nach zerebraler Läsion. Deswegen wurde in dieser Studie die Rolle der Tregs 7, 14 und 30 Tage nach einem transienten Verschluss der mittleren Hirnarterie (MCAO), einem Modell für ischämischen Schlaganfall, und nach entorhinaler Kortexläsion (ECL) in der Maus untersucht. Durchflusszytometrisch wurde in beiden Modellen 14 und 30 Tage nach Läsion eine Akkumulation der Tregs in der ipsilateralen Hemisphäre beobachtet. Mikroskopisch wurden an der Läsion Zellkontakte der Tregs mit antigenpräsentierenden Zellen beobachtet. Weitere Experimente wurden ausschließlich nach MCAO durchgeführt. Am Tag 14 und 30 war in der ipsilateralen Hemisphäre eine Akkumulation der Mikroglia zu beobachten. Makrophagen und dendritische Zellen wurden an den Tagen 7, 14 und 30 detektiert. Am Tag 7 und 14 waren ipsilateral im Gehirn ca. 60 % der Tregs positiv für den Proliferationsmarker Ki-67. In zwei Versuchsansätzen wurden naive CD45RBhigh/CD4+ Zellen aus lymphatischen Organen von Foxp3EGFP Mäusen, mit Wildtyp T-Zellrezeptor (TCR), oder 2D2.Foxp3EGFP Mäusen, mit TCR spezifisch gegen Myelin-Oligodendrozyten-Glykoprotein, isoliert. Die Zellen wurden einen Tag vor MCAO in RAG1-/- Mäuse, welche keine adulten T- und B-Zellen besitzen, transferiert. Am Tag 14 nach MCAO war in den RAG1-/- Mäusen keine de novo Induktion Foxp3EGFP+ Tregs zu beobachten. CD25+ Tregs wurden durch die Injektion eines Antikörpers gegen CD25 depletiert, um deren Wirkung nach MCAO zu untersuchen. Nach Depletion konnte bis zu 27 Tage nach MCAO keine Veränderung des Läsionsvolumen und des Gangverhaltens beobachtet werden. In dieser Studie wurde im Gehirn eine späte Präsenz und Proliferation Foxp3+ Tregs nach Läsion nachgewiesen. Mikroglia und periphere Immunzellen sind langfristig an Immunvorgängen im lädierten Gehirn beteiligt. / After brain lesion autoreactive T cells specific against brain antigens are expanded, but no delayed autoimmune neuropathology evolves. Immune suppressive CD4+/Foxp3+ regulatory T cells (Tregs) could have an important role in maintaining immune tolerance in the lesioned brain. Therefore, this study sought to analyse the role of Tregs in mice 7, 14 and 30 days after transient middle cerebral artery occlusion (MCAO), a model for ischemic stroke, and entorhinal cortex lesion (ECL). An accumulation of Tregs was detected in the brain by flow cytometry in both models at days 14 and 30 after lesion. Using immunohistochemistry Tregs were found in close cell-cell contact with antigen presenting cells at the lesion site. Further experiments were performed solely with MCAO. On days 14 and 30 after MCAO a strong accumulation of microglia occurred in the ipsilesional hemisphere. Macrophages and dendritic cells were found ipsilesionally on days 7, 14 and 30. On days 7 and 14 about 60% of Tregs were positive for the proliferation marker Ki-67 in the lesioned hemisphere. In two different setups naïve CD45RBhigh/CD4+ cells were isolated from lymphatic organs of Foxp3EGFP mice, carrying a wild type T cell receptor (TCR), or 2D2.Foxp3EGFP mice, carrying a TCR specific for myelin oligodendrocyte glycoprotein. One day before MCAO naïve CD45RBhigh/CD4+ cells depleted of Foxp3EGFP+ Tregs were transferred into RAG1-/- mice, which lack adult B and T cells. At day 14 after MCAO no de novo generation of Foxp3EGFP+ Tregs was observed. The effects of Tregs on stroke outcome were tested by depleting CD25+/Foxp3EGFP+ Tregs with an antibody against CD25. After depletion no effects on lesion volumes and gait parameters were detected up to 27 days following MCAO. The present study demonstrates for the first time a sustained presence and proliferation of Tregs in the lesioned brain. Local microglia and peripheral immune cells are involved in long-lasting immune processes following brain lesion.
|
57 |
Zelluläre Neogenese im adulten murinen cerebralen CortexEhninger, Dan-Achim 18 December 2003 (has links)
Es wurde Zellneubildung im erwachsenen cerebralen Cortex der Maus in Abhängigkeit von Umweltbedingungen und Aktivitätsgrad untersucht. Es war bekannt, dass eine reizreiche Umgebung und körperliche Aktivität die Neubildung von Nervenzellen im erwachsenen Hippokampus steigern. Als Zellproliferationsmarker wurde BrdU appliziert und BrdU-inkorporierende Zellen 1 Tag und 4 Wochen nach BrdU-Gabe unter Verwendung immunhistochemischer Methoden zur Detektion BrdU-inkorporierender Zellen in verschiedenen kortikalen Regionen und Schichten quantifiziert. Die phänotypische Charakterisierung BrdU+ Zellen wurde durch kombinierte Verwendung immunhistochemischer Methoden und konfokaler Mikroskopie vorgenommen. Die im adulten murinen cerebralen Cortex proliferierenden Zellen differenzierten weit überwiegend glial. Keine der kortikalen BrdU+ Zellen zeigte zweifelsfreie Zeichen einer neuronalen Differenzierung. Damit scheint die adulte Nervenzellneubildung unter physiologischen Bedingungen eine regionale Spezialität des Hippokampus und anderer Strukturen zu sein. Weder körperliche Aktivität (RUN) noch eine reizreiche Umgebung (ENR) führten 1 Tag oder 4 Wochen nach BrdU zu einem signifikanten Unterschied zur Kontrollgruppe (CTR), was die Anzahl BrdU+ Zellen im gesamten Cortex zusamengefaßt betrifft. Dagegen konnten die vorbeschriebenen Effekte von RUN und ENR auf hippokampale BrdU-inkorporierende Zellen repliziert werden. Dies ist ein starker Hinweis darauf, dass die Verstärkung adulter Neurogenese durch RUN und ENR im Gyrus dentatus des Hippokampus eine hippokampus-spezifische Reaktion und nicht etwa Teil einer generalisierten zentralnervösen Reaktion ist. Jedoch konnte gezeigt werden, dass körperliche Aktivität und eine reizreiche Umgebung zur lokalen Beeinflussung kortikaler Zellneubildung in bestimmten Schichten und Regionen führten. So konnten bei RUN-Tieren signifikant mehr BrdU+ Zellen in Schicht I des cingulären, motorischen und visuellen Cortex als bei CTR-Tieren gefunden werden. ENR-Tiere hatten 4 Wochen nach BrdU signifikant mehr BrdU+ Zellen in Schicht II/III des visuellen Cortex als CTR-Tiere. Die Phänotypisierung BrdU+ Zellen in diesen kortikalen Bereichen ergab, dass RUN zu einer lokalen, deutlich ausgeprägten Verstärkung der Neubildung von Mikroglia führte, während ENR tendentiell lokal kortikale Astrozytogenese verstärkte (signifikant in Schicht I des motorischen Cortex 4 Wochen nach BrdU). Damit konnte erstmals berichtet werden, dass körperliche Aktivität zelltypspezifisch die Neubildung kortikaler Mikroglia stimuliert. Dieses Ergebnis ist zunächst überraschend, da mikrogliale Proliferation und Aktivierung klassischweise im Zusammenhang mit Schadenszuständen des ZNS gesehen werden. In der Tat ist dies einer der ersten Befunde, der eine mikrogliale Reaktion mit nicht-pathologischen, vollkommen physiologischen Bedingungen in Verbindung bringt. Dies könnte einen neuen Blickwinkel auf mikrogliale Funktionen eröffnen. / The effect of physical activity and enriched environment on cell genesis in the cerebral cortex of adult mice were investigated. It is well known that living under the conditions of an enriched environment and physical activity both enhance the generation of new neurons in the adult murine hippocampus. To label proliferating cells mice were injected with bromodesoxyuridine (BrdU). The number of BrdU incorporating cells in different regions and layers of the cerebral cortex was determined 1 day and 4 weeks after BrdU administration. To characterize cortical BrdU+ cells phenotypically immunohistochemistry and confocal microscopy were used. Adult-generated cortical cells were glial cells. None of all the examined cortical BrdU+ cells showed immunoreactivity for NeuN (expressed in mature neurons) unambiguously indicating that the generation of new neurons in the adult brain is a speciality of the hippocampus and other brain structures. Physical activity (RUN) and enriched environment (ENR) did not affect the number of BrdU+ cells in all cortical regions taken together compared to control animals (CTR), both 1 day and 4 weeks after BrdU. However, the known effects of RUN and ENR on hippocampal cell genesis were replicated suggesting that the enhancement of adult hippocampal neurogenesis by RUN and ENR is a hippocampus-specific reaction and not part of a generalized reaction of the adult cns. It was shown that physical activity and enriched environment had effects on cell genesis in distinct cortical layers and regions. RUN-animals had significantly more BrdU+ cells in layer I of the cingulate, motor and visual cortex than CTR. ENR-animals had significantly more BrdU+ cells in layer II/III of the visual cortex than CTR 4 weeks after BrdU. Phenotyping of BrdU+ cells in these cortical parts revealed that RUN led to a marked increase of the generation of microglia. ENR tended to enhance astrocytogenesis in several cortical parts (reaching significance in layer I of the motor cortex 4 weeks after BrdU). This is the first report that physical activity stimulates the generation of cortical microglia in a cell-type-specific and to some degree region-specific manner. This result is surprising because microglial proliferation and activation are generally thought to occur under conditions involving damage to the nervous system. In fact, this is one of the first reports linking a microglial reaction with an entirely physiological condition. This might shed a new light on microglial function.
|
58 |
Effekte von Hyperoxie und Stickstoffmonoxid beim NeugeborenenHöhn, Thomas 01 October 2002 (has links)
In der vorliegenden Arbeit sind Untersuchungen vorgestellt, die sich mit Wirkungen und Interaktionen von zwei ubiquitär im menschlichen Körper vorkommenden Gasen befassen, i.e. Sauerstoff und Stickstoffmonoxid. Im Falle beider Substanzen ermöglicht die geringe Größe der Moleküle eine freie Diffusion über Membranen hinweg, eine Eigenschaft, die für die Funktion der Signaltransduktion geradezu prädestiniert. Aus den vorgelegten Untersuchungen lassen sich die folgenden Folgerungen ableiten: * Stickstoffmonoxid wirkt in-vitro selektiv bakteriostatisch auf Bakterien, die üblicherweise Früh- und Neugeborene besiedeln. Dabei hängt die Selektivität von den jeweiligen bakteriellen Verteidigungsmechanismen ab, die bakteriostatische Wirkung liegt in einem Konzentrationsbereich, der außerhalb desjenigen liegt, der derzeit klinisch angewendet wird. * Hyperoxie führt im Ganztiermodell der unreifen Ratte zu einer zerebralen Hochregulation von iNOS und damit zur Synthese von NO. Soweit dies anhand der Synthese von Peroxynitrit als definitivem Schädigungsmechanismus beurteilbar ist, wird trotz entsprechender iNOS-Expression wenig bis gar kein Peroxynitrit gebildet. Da das Zusammentreffen von NO und Sauerstoff sonst regelhaft zur Entstehung von Peroxynitrit führt, müssen im Gehirn der unreifen Ratte ausreichende antioxidative Schutzmechanismen präsent sein, die diese Reaktion verhindern. * Im in-vitro-Modell der Gasäquilibrierung von Nabelschnur-PMN zeigte sich unter Hyperoxie das ausgeprägteste Aktivierungsmuster aller verglichenen Sauerstoffkonzentrationen. Dies stand im Gegensatz zur Exposition adulter Zellen, hier fand sich eine größere Hyperoxietoleranz bei gleichzeitig stärkster Aktivierung unter Hypoxiebedingungen. Welche Bedeutung diesen Ergebnissen im klinischen Umgang mit Neugeborenen zukommt muß derzeit noch offen bleiben. Allerdings häufen sich Hinweise aus experimentellen Studien, die darauf hindeuten, daß ein restriktiver Umgang mit hohen Sauerstoffkonzentrationen auch im klinischen Umfeld gerechtfertigt sein könnte. / The present investigations deal with the effects and interactions of gases, which are ubiquitous in the human body i.e. oxygen and nitric oxide. Both substances are small enough to freely diffuse across biological membranes. This ability predestines both molecules for the function of signal transduction. The results of our investigations lead to conclusions as follows: * Nitric oxide has selective bacteriostatic effects in-vitro on some bacterial strains typically isolated from preterm and term newborn infants. Selectivity depends on the presence of bacterial defense mechanisms. The bacteriostatic effect takes place at concentrations above those currently used in clinical practice. * Hyperoxia leads to upregulation of iNOS and subsequent NO production in an animal model of the immature rat. Despite this upregulation of iNOS synthesis there is no increased production of peroxynitrite which is known to cause cellular and DNA damage. Since the combination of NO and high concentrations of oxygen lead to peroxynitrite formation on a regular basis, effective antioxidant mechanisms appear to prevent peroxynitrite formation in the brain of the immature rat. * The most pronounced activation of cord blood polymorphonuclear cells (PMN) during conditions of hyperoxia, normoxia, and hypoxia was found for exposure towards high oxygen concentrations in an in-vitro model of gas equilibration. As opposed to that, hypoxia was the most potent trigger for adult PMN. It remains to be determined which clinical implications must be derived from these results. However, increasing experimental evidence indicates that exposure towards high oxygen concentrations should be restricted also in clinical practice and not only in preterm infants, but also in term newborns.
|
59 |
Untersuchungen zur Rekrutierung myeloischer Zellen in einem Tiermodell der Alzheimerschen Erkrankung / Analysis of myeloid cell recruitment in an animal model of Alzheimer s DiseaseSchlevogt, Bernhard Martin 15 February 2012 (has links)
No description available.
|
60 |
Activin A und Follistatin bei bakteriellen Infektionen - Der Einfluss von Activin A auf Mikrogliazellen in vitro und der Einfluss von Follistatin auf den Verlauf einer E. coli-K1-Sepsis im Mausmodell / Activin A und Follistatin during bacterial infections - The effect of Activin A on microglial cells in vitro and the influence of Follistatin on the course of E. coli K1 sepsis in a mouse modelDießelberg, Catharina 19 June 2012 (has links)
No description available.
|
Page generated in 0.0413 seconds