Spelling suggestions: "subject:"minimal surfaces"" "subject:"1inimal surfaces""
31 |
Minimal surfaces derived from the Costa-Hoffman-Meeks examples / Surfaces minimales dérivées des exemples de Costa-Hoffman-MeeksMorabito, Filippo 28 May 2008 (has links)
Cette thèse porte sur la construction de nouveaux exemples de surfaces minimales dérivées de la famille de surfaces de Costa-Hoffman-Meeks. Il s'agit d'une famille de surfaces minimales complètes plongées avec trois bouts et genre k > 0. Soit M_k la surface de Costa_Hoffman_Meeks de genre k. Dans le chapitre 1, j'ai démontré que M_k est non dégénérée pour k > 37. J'ai donc étendu les résultats de S. Nayatani qui assuraient que la surface M_k est non dégénérée seulement pour k=1,...,37. Ce résultat permet de montrer dans les chapitres 2 et 3 l'existence de nouveaux exemples de surfaces minimales de genre g arbitraire à l'aide d'une procédure de collage d'autres surfaces déjà connues (parmi lesquelles y figure la surface M_k). Sans ceci, ces résultats ne seraient valables que pour k < 38. En particulier dans le chapitre 2, j'ai démontré l'existence, dans H^2 x R, (H^2 étant le plan hyperbolique) d'une famille de surfaces minimales plongées inspirées de M_k, pour tout k > 0. Ce résultat peut être censé un cas particulier d'un théorème générale de désingularisation de l'intersection de deux surfaces minimales annoncé par N. Kapouleas et jamais publié. Le chapitre 3 est consacré à la construction de trois familles de surfaces minimales simplement périodiques plongées dans R^3 dont le quotient a genre arbitraire. Les résultats présentés dans ce chapitre (obtenus en collaborations avec L. Hauswirth et M. Rodríguez) généralisent plusieurs anciennes constructions / This thesis is devoted to the construction of new examples of minimal surfaces derived from the family of surfaces if Costa-Hoffman-Meeks. Surfaces in this family are complete embedded with 3 ends and genus k > 0. Let M_k denote the surface of Costa-Hoffman-Meeks of genus k. In chapter 1 I showed M_k is non degenerate for k > 37. So I extended the results of S. Nayatani which insured M_k is non degenerate only for k=1,...,37. That allows to prove in chapters 2 and 3 the existence of new examples of minimal surfaces by a gluing procedure involving already known surfaces (among which figures M_k). Without it theses results would hold only for k < 38. In particular in chapter 2 I showed the existence in H^2 x R (where H^2 denotes the hyperbolic plane) of a family of surfaces inspired to M_k, for all k > 0, which are complete and embedded. This result can be considered as a particular case of a general theorem of desingularization of the intersection of two minimal surfaces announced by N. Kapouleas and never published. Chapter 3 is devoted to the construction of 3 families of singly periodic minimal surfaces, embedded in R^3, whose quotient has an arbitrary value of the genus. The results showed in this chapter (obtained in collaboration with L. Hauswirth and M. Rodríguez) generalize many previous constructions
|
32 |
En studie av TPMS-baserade nätverksstrukturer tillverkade i PA11 : A study of TPMS-based network structures made in PA11Sundbom, Johan, Delahunt, Jakob January 2023 (has links)
SammanfattningTriply Periodic Minimal Surface (TPMS)-baserade nätverksstrukturer har snabbt blivit populära i flera tillämpningar, exempelvis medicinska implantat, värmeväxlare, stötdämpareoch lättviktskonstruktioner. Gyroidstrukturen är förmodligen den mest kända och använda, men en mängd varianter existerar med extremt goda egenskaper vid additiv tillverkning. Nätverkenkan printas helt utan stödstrukturer och kan erhålla mekaniska egenskaper i nivå̊ med de relativa bulkegenskaperna. I detta projekt skall mekaniska egenskaper för TPMS-baserade provbitar SLS-printade i PA11 undersökas genom dragprov, böjprov, slagseghetsprov och kompressionsprov. Dessutom ska det undersökas om byggriktning och orientering i skrivarens byggkammare har betydelse för materialets mekaniska egenskaper. Utöver detta kommer även en materialmodell byggas upp för analys med hjälp av Abaqus.Slutsatserna från examensarbetet var att både byggriktning och orientering i skrivarens kammare har betydelse för materialegenskaperna. Med resultaten från proverna ges rekommendationen att rikta stavarna från kammarens dörr inåt och med orienteringen liggandes. Även drogs slutsatsen att nätverksstrukturer når upp i nivå med de relativa bulkegenskaperna för trepunkts böjprov, dock endast med en ram runt hela provbiten. Det räckte ej med endast ram under och över / Triply Periodic Minimal Surface (TPMS)-based structures have quickly become popular inmany applications, for example medicinal implants, heat exchangers, shock absorbers and lightweight constructions. The gyroid structure is probably the most known and used, but plenty of variations exist with extremely good properties for additive manufacturing. The networks can be printed completely without support structures and can obtain mechanical properties in line with the relative bulk properties.This project shall evaluate the mechanical properties of TPMS-based test specimens SLSprinted in PA11 through compression testing, tensile testing, impact testing and three-point flexural testing. It shall also be determined if build direction and orientation in the printer’s build chamber effects the material’s mechanical properties. In addition to this will a material model be constructed for finite element analysis in Abaqus.The conclusions from this bachelor’s thesis are that both build direction and orientation in the printer’s build chamber effects the material mechanical properties. Based on the results from the tests the recommendation is given to direct the test specimens inward from the chamber’s door and to orient the specimens flat. The conclusion is also drawn that network structures can reach the relative bulk properties in three-point flexural test, however only with a frame encompassing the entire specimen. A frame only on top and bottom wasn’t enough.
|
33 |
Representação de Weierstrass em variedades Riemannianas e Lorentzianas / Weierstrass representation in Riemannian and Lorentzian manifoldsFreire, Emanoel Mateus dos Santos 12 April 2018 (has links)
O Teorema de Representação de Weierstrass clássico, que faz uso da análise complexa para descrever uma superfície mínima imersa no espaço Euclidiano em termos de dados holomorfos, tem sido extremamente útil seja para construir novos exemplos de superfícies mínimas, seja para o estudo das propriedades destas superfícies. Em [24], usando a equação harmônica, os autores determinam uma fórmula de representação para superfícies mínimas, simplesmente conexas, imersas em uma variedade Riemanniana qualquer. Neste caso, a condição de holomorficidade dos dados de Weierstrass consiste em um sistema de equações diferenciais parciais com coeficientes não constantes. Logo, em geral, é complicado determinar soluções explícitas. No entanto, escolhendo adequadamente o espaço ambiente, tais equações se simplificam e a fórmula pode ser usada para produzir novos exemplos de imersões mínimas conformes. No espaço de Lorentz-Minkowski tridimensional uma fórmula de representação tipo-Weierstrass foi provada por Kobayashi, para o caso das imersões mínimas de tipo espaço (ver [18]), e por Konderak no caso das imersões mínimas de tipo tempo (ver [20]). Na demonstração destas fórmulas se utilizam as ferramentas da análise complexa e paracomplexa, respectivamente. Recentemente, em [22] os resultados de Kobayashi e Konderak foram generalizados para o caso de superfícies mínimas (de tipo espaço e de tipo tempo) imersas em 3-variedades Lorentzianas. Nesta dissertação estudaremos as fórmulas de representação de Weierstrass para superfícies mínimas imersas em variedades Riemannianas e Lorentzianas, que foram obtidas nos artigos [18], [20], [22] e [24]. / The classic Weierstrass Representation Theorem, which makes use of complex analysis to describe a minimal surface immersed in the Euclidean space in terms of holomorphic data, has been extremely useful either to construct new examples of minimal surfaces, rather than to study structural properties of these surfaces. In [24], using the standard harmonic equation, the authors determine a representation formula for simply connected immersed minimal surfaces in a Riemannian manifold. In this case, the holomorphicity condition of the Weierstrass data is a system of partial differential equations with nonconstant coefficients. Therefore, in geral, it is very difficult to determine explicit solutions. However, for particular ambient spaces, these equations become simpler and the formula can be used to produce new examples of conformal minimal immersions. In the three-dimensional Lorentz-Minkowski space a Weierstrass-type representation formula was proved by Kobayashi for spacelike minimal immersions (see [18]), and by Konderak for the case of timelike minimal immersions (see [20]). In the demonstration of these formulas are used the tools of complex and paracomplex analysis, respectively. Recently, in [22] the results of Kobayashi and Konderak were generalized to the case of (spacelike and timelike) minimal surfaces immersed in 3-Lorentzian manifolds. In this dissertation, we will study the Weierstrass representation formula for immersed minimal surfaces in Riemannian and Lorentzian manifolds, that was obtained in the articles [18], [20], [22] and [24].
|
34 |
Representação de Weierstrass em variedades Riemannianas e Lorentzianas / Weierstrass representation in Riemannian and Lorentzian manifoldsEmanoel Mateus dos Santos Freire 12 April 2018 (has links)
O Teorema de Representação de Weierstrass clássico, que faz uso da análise complexa para descrever uma superfície mínima imersa no espaço Euclidiano em termos de dados holomorfos, tem sido extremamente útil seja para construir novos exemplos de superfícies mínimas, seja para o estudo das propriedades destas superfícies. Em [24], usando a equação harmônica, os autores determinam uma fórmula de representação para superfícies mínimas, simplesmente conexas, imersas em uma variedade Riemanniana qualquer. Neste caso, a condição de holomorficidade dos dados de Weierstrass consiste em um sistema de equações diferenciais parciais com coeficientes não constantes. Logo, em geral, é complicado determinar soluções explícitas. No entanto, escolhendo adequadamente o espaço ambiente, tais equações se simplificam e a fórmula pode ser usada para produzir novos exemplos de imersões mínimas conformes. No espaço de Lorentz-Minkowski tridimensional uma fórmula de representação tipo-Weierstrass foi provada por Kobayashi, para o caso das imersões mínimas de tipo espaço (ver [18]), e por Konderak no caso das imersões mínimas de tipo tempo (ver [20]). Na demonstração destas fórmulas se utilizam as ferramentas da análise complexa e paracomplexa, respectivamente. Recentemente, em [22] os resultados de Kobayashi e Konderak foram generalizados para o caso de superfícies mínimas (de tipo espaço e de tipo tempo) imersas em 3-variedades Lorentzianas. Nesta dissertação estudaremos as fórmulas de representação de Weierstrass para superfícies mínimas imersas em variedades Riemannianas e Lorentzianas, que foram obtidas nos artigos [18], [20], [22] e [24]. / The classic Weierstrass Representation Theorem, which makes use of complex analysis to describe a minimal surface immersed in the Euclidean space in terms of holomorphic data, has been extremely useful either to construct new examples of minimal surfaces, rather than to study structural properties of these surfaces. In [24], using the standard harmonic equation, the authors determine a representation formula for simply connected immersed minimal surfaces in a Riemannian manifold. In this case, the holomorphicity condition of the Weierstrass data is a system of partial differential equations with nonconstant coefficients. Therefore, in geral, it is very difficult to determine explicit solutions. However, for particular ambient spaces, these equations become simpler and the formula can be used to produce new examples of conformal minimal immersions. In the three-dimensional Lorentz-Minkowski space a Weierstrass-type representation formula was proved by Kobayashi for spacelike minimal immersions (see [18]), and by Konderak for the case of timelike minimal immersions (see [20]). In the demonstration of these formulas are used the tools of complex and paracomplex analysis, respectively. Recently, in [22] the results of Kobayashi and Konderak were generalized to the case of (spacelike and timelike) minimal surfaces immersed in 3-Lorentzian manifolds. In this dissertation, we will study the Weierstrass representation formula for immersed minimal surfaces in Riemannian and Lorentzian manifolds, that was obtained in the articles [18], [20], [22] and [24].
|
35 |
Sobre a busca de superfícies minimais e seu emprego nas estruturas de membrana. / On finding minimal surfaces and their application to membrane structures.Souza, Diogo Carlos Bernardes de 28 August 2008 (has links)
Esta dissertação apresenta uma revisão histórica dos trabalhos acerca de superfícies minimais, ressaltando a pertinência da analogia entre a busca de superfícies de mínima área e a busca de formas de membranas estruturais sujeitas a um estado de tensões superficiais, homogêneo e isótropo. São colocados alguns conceitos geométricos das superfícies parametrizáveis, com base na geometria diferencial, a fim de realizar o equilíbrio diferencial de membranas e determinar as suas equações de equilíbrio. Além disso, é apresentada uma metodologia puramente geométrica para a determinação de superfícies minimais, baseada na minimização do funcional da área, dado pela soma das áreas das facetas triangulares nas quais a superfície é discretizada. O trabalho discute a formulação matemática do problema e apresenta resultados obtidos tanto por meio das rotinas implementadas no software MATLAB quanto por meio daquelas da biblioteca de otimização deste mesmo software. Finalmente, são realizados alguns exemplos e um teste de convergência, comparando as superfícies resultantes dos métodos numéricos com suas respectivas respostas analíticas. A geometria final de um dos exemplos é verificada por meio da analogia dos filmes de sabão, realizando-se uma análise não-linear de equilíbrio através do software Ansys. As soluções foram bastante satisfatórias, resultando em formas muito próximas das analíticas e com pequenos erros relativos das áreas. O teste de convergência também comprovou que o refinamento da discretização leva a uma solução mais próxima da desejada. Portanto, os procedimentos apresentados podem ser empregados no processo de busca da forma de membranas estruturais. / This dissertation presents a historical review on the theoretical developments on minimal surfaces, highlighting the important analogy between the problems of finding minimal area surfaces and finding membrane surfaces with homogeneous and isotropic stress fields. Some geometric concepts of the parametric surfaces are placed, on the basis of differential geometry, in order to do the differential equilibrium of membranes and to achieve its equilibrium equations. Moreover, a purely geometric methodology for the determination of minimal surfaces is presented, based on the minimization of the area functional, which is computed by the simple addition of a finite number of triangular facet areas in which the surface is divided. It discusses the mathematical formulation of the problem as well as some results obtained with the algorithms implemented in MATLAB and others obtained with the aid of MATLAB optimization routines. Finally, some examples and a convergence test are produced, comparing their analytical and numerical results. The final geometry of one of examples is verified by means of the soap film analogy, with a nonlinear equilibrium analysis through Ansys. The solutions have been sufficiently satisfactory, resulting forms very close to the analytical ones and with small areas relative errors. Convergence test also confirm that the method lead to numerical solutions as close to the analytical one as required, as long as the triangular facets mesh is refined. Therefore, the presented procedures can be used in structural membranes form finding.
|
36 |
Teorema fundamental das imersões e superfícies mínimas em espaços produto / Fundamental theorem of immersions and minimal surfaces in product spacesEscobosa, Fernando Maia Nardelli 22 February 2017 (has links)
Neste trabalho demonstramos o Teorema Fundamental das Imersões para S^m x R e H^m x R, dando condições necessárias e suficientes para que uma variedade Riemanniana simplesmente conexa seja isometricamente imersa nestes ambientes. Para isto, utilizamos referenciais móveis e distribuições integráveis. Como aplicação do Teorema Fundamental, provamos a existência de uma família a um parâmetro de deformações isométricas mínimas de uma dada superfície mínima em S² x R e H² x R, chamada de família associada. Além disso, relacionamos o problema de encontrar uma imersão isométrica mínima para uma dada superfície Riemanniana simplesmente conexa nestes espaços a um sistema de duas equações diferenciais parciais. Construímos exemplos de superfícies conjugadas em ambos os ambientes e de superfícies admitindo duas imersões mínimas isométricas não associadas em H² x R. / In this work we give a proof of the Fundamental Theorem of Immersions for S^m x R and H^m x R, providing necessary and sufficient conditions for a simply connected Riemannian manifold to be isometrically immersed on this ambient spaces. In order to do this, we use moving frames and integrable distributions. As an application of the Fundamental Theorem, we proof the existence of a one parameter family of minimal isometric deformations of a given minimal surface in S² x R and H² x R, which is called the associated family. Furthermore, we relate the problem of finding an minimal isometric immersion for a given simply connected Riemannian surface in this spaces to a system of two partial differential equations. Also, we construct examples of conjugated surfaces in both ambient spaces and surfaces admitting two non associated minimal isometric immersions in H² x R.
|
37 |
Evaluation of Properties of Triply Periodic Minimal Surface Structures Using ANSYSJanuary 2019 (has links)
abstract: The advancements in additive manufacturing have made it possible to bring life to designs
that would otherwise exist only on paper. An excellent example of such designs
are the Triply Periodic Minimal Surface (TPMS) structures like Schwarz D, Schwarz
P, Gyroid, etc. These structures are self-sustaining, i.e. they require minimal supports
or no supports at all when 3D printed. These structures exist in stable form in
nature, like butterfly wings are made of Gyroids. Automotive and aerospace industry
have a growing demand for strong and light structures, which can be solved using
TPMS models. In this research we will try and understand some of the properties of
these Triply Periodic Minimal Surface (TPMS) structures and see how they perform
in comparison to the conventional models. The research was concentrated on the
mechanical, thermal and fluid flow properties of the Schwarz D, Gyroid and Spherical
Gyroid Triply Periodic Minimal Surface (TPMS) models in particular, other Triply
Periodic Minimal Surface (TPMS) models were not considered. A detailed finite
element analysis was performed on the mechanical and thermal properties using ANSYS
19.2 and the flow properties were analyzed using ANSYS Fluent under different
conditions. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2019
|
38 |
Digital representation and constructability of minimal surfaces in concreteKeskin, Zeynep 21 September 2015 (has links)
This thesis investigates minimal surfaces in design and researches their potential for constructability in concrete through the creation of physical prototypes with the design of two mold making processes, one being sacrificial and the other reusable. The study starts by acknowledging that minimal surfaces have been extensively explored in the field of differential geometry for decades. In spite of the availability of geometric definitions which provide the basic background for digital model generation (which in this text is assumed to be equal to design itself), minimal surfaces inspired very few people in their architectural design. This study attempts to look into the wider implications of minimal surfaces for architecture by taking up the challenge of designing and realizing various processes of mold making for the fabrication of such surfaces in concrete. Throughout this study, a gradient of complexity in the definition and digital modeling of minimal surfaces will be included as well as a variety of production methods in a research and fabrication based process, in order to investigate the correlation between what can be designed and what can be produced.
I shall begin with a historical survey of the constructability of surfaces in thin shell concrete to provide background information for the reader. This chapter on the evolution of concrete structures presents a compilation of selected projects to illustrate the progress of thin shell construction throughout the history of architecture. It is here that I review what happened, why, and who made it possible. I draw heavily on published scholarly studies as most of the selected projects are cornerstones of the evolution of architecture and have been discussed by many others.
Here, I simply attempt to remind the reader of the achievements of these projects in order to justify why investigation of the constructability of minimal surfaces may be the next step in the evolutionary process.
After this section, the mathematics of surfaces in the complex plane is discussed based on information retrieved from many excellent resources. Here, the intention is to acquire information related to descriptions of various minimal surface types in differential geometry in order to be able to generate their representations in the digital environment. It would have been impossible to generate digital representations of minimal surfaces without the knowledge acquired through these descriptions.
The last section provides a comparison of ruled surfaces and minimal surfaces meant to reveal the similarities and differences of such surfaces with regard to the principles of digital representation and fabrication. It provides insight into various fabrication techniques and materials to illuminate the design of a making process in which the goal is to know and control every parameter regarding both the design and fabrication of an object. The discussion of the design of a making process for a complexly shaped object provided in this part is followed by discussion of casting prototypes in concrete. In that section, the subject matter is the design and testing of various mold making techniques for the production of concrete prototypes of a selected minimal surface geometry. This section presents an increasing complexity of mold making from a sacrificial mold to a reusable mold.
|
39 |
Variational Convergence and Discrete Minimal SurfacesSchumacher, Henrik 09 December 2014 (has links)
No description available.
|
40 |
Estruturas geômetro-diferenciais na superfície da corda bosônicaMelo, Édypo Ribeiro de [UNESP] 22 February 2013 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:25:34Z (GMT). No. of bitstreams: 0
Previous issue date: 2013-02-22Bitstream added on 2014-06-13T19:32:48Z : No. of bitstreams: 1
melo_er_me_ift.pdf: 447081 bytes, checksum: de98930c32fa22dc471387d087c799b1 (MD5) / Historicamente, as superfícies mínimas foram inicialmente estudadas por Lagrange e Euler no século XVIII. Fisicamente, uma superfície é mínima se ela não pode ser modificada sem consequente aumento de sua área. Tais superfícies desempenham papel fundamental na moderna pesquisa em geometria diferencial. Em física relativística e na teoria de cordas, elas são usadas a fim de descrever a formulação matem´atica de buracos negros e para o estudo de loops de quarks na fronteira do espaço Anti-de-Sitter, sendo estes denominados Wilson loops. Neste trabalho, pretendemos estudar o formalismo necessário para a análise destas superfícies nos espaços Euclideano, Lorentziano e Anti-de-Sitter sob à ótica da teoria de cordas bosônicas / Historically, minimal surfaces were first studied by Lagrange and Euler in the eighteenth century. Physically, a surface is minimal if it cannot be modified without consequent increase in your area. Such surfaces play a fundamental role in the modern research in differential geometry. In relativistic physics and string theory, they are used to describe the mathematical formulation of black holes and for the study of quark loops on the boundary of the Anti-de-Sitter space, called Wilson loops. In this work, we intend to study the necessary formalism for the analysis of surfaces in Euclidean, Lorentzian and Anti-de-Sitter spaces from the perspective of bosonic string theory
|
Page generated in 0.0538 seconds