• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 23
  • 2
  • Tagged with
  • 81
  • 44
  • 42
  • 38
  • 22
  • 21
  • 21
  • 21
  • 17
  • 15
  • 15
  • 15
  • 13
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Growth and Scaling during Development and Regeneration

Werner, Steffen 19 August 2016 (has links) (PDF)
Life presents fascinating examples of self-organization and emergent phenomena. In multi-cellular organisms, a multitude of cells interact to form and maintain highly complex body plans. This requires reliable communication between cells on various length scales. First, there has to be the right number of cells to preserve the integrity of the body and its size. Second, there have to be the right types of cells at the right positions to result in a functional body layout. In this thesis, we investigate theoretical feedback mechanisms for both self-organized body plan patterning and size control. The thesis is inspired by the astonishing scaling and regeneration abilities of flatworms. These worms can perfectly regrow their entire body plan even from tiny amputation fragments like the tip of the tail. Moreover, they can grow and actively de-grow by more than a factor of 40 in length depending on feeding conditions, scaling up and down all body parts while maintaining their functionality. These capabilities prompt for remarkable physical mechanisms of pattern formation. First, we explore pattern scaling in mechanisms previously proposed to describe biological pattern formation. We systematically extract requirements for scaling and highlight the limitations of these previous models in their ability to account for growth and regeneration in flatworms. In particular, we discuss a prominent model for the spontaneous formation of biological patterns introduced by Alan Turing. We characterize the hierarchy of steady states of such a Turing mechanism and demonstrate that Turing patterns do not naturally scale. Second, we present a novel class of patterning mechanisms yielding entirely self-organized and self-scaling patterns. Our framework combines a Turing system with our derived principles of pattern scaling and thus captures essential features of body plan regeneration and scaling in flatworms. We deduce general signatures of pattern scaling using dynamical systems theory. These signatures are discussed in the context of experimental data. Next, we analyze shape and motility of flatworms. By monitoring worm motility, we can identify movement phenotypes upon gene knockout, reporting on patterning defects in the locomotory system. Furthermore, we adapt shape mode analysis to study 2D body deformations of wildtype worms, which enables us to characterize two main motility modes: a smooth gliding mode due to the beating of their cilia and an inchworming behavior based on muscle contractions. Additionally, we apply this technique to investigate shape variations between different flatworm species. With this approach, we aim at relating form and function in flatworms. Finally, we investigate the metabolic control of cell turnover and growth. We establish a protocol for accurate measurements of growth dynamics in flatworms. We discern three mechanisms of metabolic energy storage; theoretical descriptions thereof can explain the observed organism growth by rules on the cellular scale. From this, we derive specific predictions to be tested in future experiments. In a close collaboration with experimental biologists, we combine minimal theoretical descriptions with state-of-the-art experiments and data analysis. This allows us to identify generic principles of scalable body plan patterning and growth control in flatworms. / Die belebte Natur bietet uns zahlreiche faszinierende Beispiele für die Phänomene von Selbstorganisation und Emergenz. In Vielzellern interagieren Millionen von Zellen miteinander und sind dadurch in der Lage komplexe Körperformen auszubilden und zu unterhalten. Dies verlangt nach einer zuverlässigen Kommunikation zwischen den Zellen auf verschiedenen Längenskalen. Einerseits ist stets eine bestimmte Zellanzahl erforderlich, sodass der Körper intakt bleibt und seine Größe erhält. Anderseits muss für einen funktionstüchtigen Körper aber auch der richtige Zelltyp an der richtigen Stelle zu finden sein. In der vorliegenden Dissertation untersuchen wir beide Aspekte, die Kontrolle von Wachstum sowie die selbstorganisierte Ausbildung des Körperbaus. Die Dissertation ist inspiriert von den erstaunlichen Skalierungs- und Regenerationsfähigkeiten von Plattwürmern. Diese Würmer können ihren Körper selbst aus winzigen abgetrennten Fragmenten -wie etwa der Schwanzspitze- komplett regenerieren. Darüberhinaus können sie auch, je nach Fütterungsbedingung, um mehr als das 40fache in der Länge wachsen oder schrumpfen und passen dabei alle Körperteile entsprechend an, wobei deren Funktionalität erhalten bleibt. Diese Fähigkeiten verlangen nach bemerkenswerten physikalischen Musterbildungsmechanismen. Zunächst untersuchen wir das Skalierungsverhalten von früheren Ansätzen zur Beschreibung biologischer Musterbildung. Wir leiten daraus Voraussetzung für das Skalieren ab und zeigen auf, dass die bekannten Modelle nur begrenzt auf Wachstum und Regeneration von Plattwürmern angewendet werden können. Insbesondere diskutieren wir ein wichtiges Modell für die spontane Entstehung von biologischen Strukturen, das von Alan Turing vorgeschlagen wurde. Wir charakterisieren die Hierarchie von stationären Zuständen solcher Turing Mechanismen und veranschaulichen, dass diese Turingmuster nicht ohne weiteres skalieren. Daraufhin präsentieren wir eine neuartige Klasse von Musterbildungsmechanismen, die vollständig selbstorgansierte und selbstskalierende Muster erzeugen. Unser Ansatz vereint ein Turing System mit den zuvor hergeleiteten Prinzipien für das Skalieren von Mustern und beschreibt dadurch wesentliche Aspekte der Regeneration und Skalierung von Plattwürmern. Mit Hilfe der Theorie dynamischer Systeme leiten wir allgemeine Merkmale von skalierenden Mustern ab, die wir im Hinblick auf experimentelle Daten diskutieren. Als nächstes analysieren wir Form und Fortbewegung der Würmer. Die Auswertung des Bewegungsverhaltens, nachdem einzelne Gene ausgeschaltet wurden, ermöglicht Rückschlüsse auf die Bedeutung dieser Gene für den Bewegungsapparat. Darüber hinaus wenden wir eine Hauptkomponentenanalyse auf die Verformungen des zweidimensionalen Wurmkörpers während der natürlichen Fortbewegung an. Damit sind wir in der Lage, zwei wichtige Fortbewegungsstrategien der Würmer zu charakterisieren: eine durch den Zilienschlag angetriebene gleichmässige Gleitbewegung und eine raupenartige Bewegung, die auf Muskelkontraktionen beruht. Zusätzlich wenden wir diese Analysetechnik auch an, um Unterschiede in der Gestalt von verschiedenen Plattwurmarten zu untersuchen. Grundsätzlich zielen alle diese Ansätze darauf ab, das Aussehen der Plattwürmer mit den damit verbundenen Funktionen verschiedener Körperteile in Beziehung zu setzen. Schlussendlich erforschen wir den Einfluss des Stoffwechsels auf den Zellaustausch und das Wachstum. Dazu etablieren wir Messungen der Wachstumsdynamik in Plattwürmern. Wir unterscheiden drei Mechanismen für das Speichern von Stoffwechselenergie, deren theoretische Beschreibung es uns ermöglicht, das beobachtete makroskopische Wachstum des Organismus mit dem Verhalten der einzelnen Zellen zu erklären. Basierend darauf leiten wir Vorhersagen ab, die nun experimentell getestet werden. In enger Zusammenarbeit mit Kollegen aus der experimentellen Biologie führen wir minimale theoretische Beschreibungen mit modernsten Experimenten und Analysetechniken zusammen. Dadurch sind wir in der Lage, Grundlagen sowohl der skalierbaren Ausbildung des Körperbaus als auch der Wachstumskontrolle bei Plattwürmern herauszuarbeiten.
62

Models of spatial representation in the medial entorhinal cortex

D'Albis, Tiziano 23 July 2018 (has links)
Komplexe kognitive Funktionen wie Gedächtnisbildung, Navigation und Entscheidungsprozesse hängen von der Kommunikation zwischen Hippocampus und Neokortex ab. An der Schnittstelle dieser beiden Gehirnregionen liegt der entorhinale Kortex - ein Areal, das Neurone mit bemerkenswerten räumlichen Repräsentationen enthält: Gitterzellen. Gitterzellen sind Neurone, die abhängig von der Position eines Tieres in seiner Umgebung feuern und deren Feuerfelder ein dreieckiges Muster bilden. Man vermutet, dass Gitterzellen Navigation und räumliches Gedächtnis unterstützen, aber die Mechanismen, die diese Muster erzeugen, sind noch immer unbekannt. In dieser Dissertation untersuche ich mathematische Modelle neuronaler Schaltkreise, um die Entstehung, Weitervererbung und Verstärkung von Gitterzellaktivität zu erklären. Zuerst konzentriere ich mich auf die Entstehung von Gittermustern. Ich folge der Idee, dass periodische Repräsentationen des Raumes durch Konkurrenz zwischen dauerhaft aktiven, räumlichen Inputs und der Tendenz eines Neurons, durchgängiges Feuern zu vermeiden, entstehen könnten. Aufbauend auf vorangegangenen theoretischen Arbeiten stelle ich ein Einzelzell-Modell vor, das gitterartige Aktivität allein durch räumlich-irreguläre Inputs, Feuerratenadaptation und Hebbsche synaptische Plastizität erzeugt. Im zweiten Teil der Dissertation untersuche ich den Einfluss von Netzwerkdynamik auf das Gitter-Tuning. Ich zeige, dass Gittermuster zwischen neuronalen Populationen weitervererbt werden können und dass sowohl vorwärts gerichtete als auch rekurrente Verbindungen die Regelmäßigkeit von räumlichen Feuermustern verbessern können. Schließlich zeige ich, dass eine entsprechende Konnektivität, die diese Funktionen unterstützt, auf unüberwachte Weise entstehen könnte. Insgesamt trägt diese Arbeit zu einem besseren Verständnis der Prinzipien der neuronalen Repräsentation des Raumes im medialen entorhinalen Kortex bei. / High-level cognitive abilities such as memory, navigation, and decision making rely on the communication between the hippocampal formation and the neocortex. At the interface between these two brain regions is the entorhinal cortex, a multimodal association area where neurons with remarkable representations of self-location have been discovered: the grid cells. Grid cells are neurons that fire according to the position of an animal in its environment and whose firing fields form a periodic triangular pattern. Grid cells are thought to support animal's navigation and spatial memory, but the cellular mechanisms that generate their tuning are still unknown. In this thesis, I study computational models of neural circuits to explain the emergence, inheritance, and amplification of grid-cell activity. In the first part of the thesis, I focus on the initial formation of grid-cell tuning. I embrace the idea that periodic representations of space could emerge via a competition between persistently-active spatial inputs and the reluctance of a neuron to fire for long stretches of time. Building upon previous theoretical work, I propose a single-cell model that generates grid-like activity solely form spatially-irregular inputs, spike-rate adaptation, and Hebbian synaptic plasticity. In the second part of the thesis, I study the inheritance and amplification of grid-cell activity. Motivated by the architecture of entorhinal microcircuits, I investigate how feed-forward and recurrent connections affect grid-cell tuning. I show that grids can be inherited across neuronal populations, and that both feed-forward and recurrent connections can improve the regularity of spatial firing. Finally, I show that a connectivity supporting these functions could self-organize in an unsupervised manner. Altogether, this thesis contributes to a better understanding of the principles governing the neuronal representation of space in the medial entorhinal cortex.
63

Selbstorganisierte Nanostrukturen in katalytischen Oberflächenreaktionen

Hildebrand, Michael 25 June 1999 (has links)
In der vorliegenden Arbeit werden Musterbildungsphänomene auf Submikrometerskalen in reaktiven Adsorbaten auf einkristallinen Katalysatoroberflächen theoretisch untersucht. Da auf solch kleinen Skalen Fluktuationen nicht mehr vernachlässigt werden können, wird eine mesoskopische Theorie entwickelt, die zwischen mikroskopischen Gittermodellen und Reaktions-Diffusions-Systemen vermittelt. Sie beschreibt die Dynamik lokal gemittelter Adsorbatbedeckungen im Rahmen eines Kontinuumsmodells unter Berücksichtigung interner Fluktuationen. Dieser Ansatz wird auf verschiedene Systeme angewendet, in denen sich Muster auf Längenskalen ausbilden, die kleiner als die charakterist ische Diffusionslänge sind, die typischerweise im Mikrometerbereich liegt. Wie beispielsweise in kürzlich durchgefh hrten Experimenten mit einem vergleichsweise schnellen Rastertunnelmikroskop beobachtet wurde, können attraktive Adsorbat-Adsorbat-Wech sel wirkungen zu verschiedenen Mustern auf Nanometerskalen führen. Hier wird zunächst eine einzelne Adsorbatspezies betrachtet. In Abwesenheit von Nichtgleichgewichtsreaktionen können hinreichend starke attraktive laterale Adsorbatwechselwirkungen einen Phasenh bergang erster Ordnung in der Adsorbatbedeckung induzieren. Die mesoskopische Entwicklungsgleichung wird auf die Modellierung der Kinetik dieses Phasenh bergangs angewendet. Berücksichtigt man zusätzlich eine Nichtgleichgewichtsreakti on, so können sich stationäre räumlich periodische Mikrostrukturen aufgrund der Konkurrenz zwischen dem Phasenh bergang und der Reaktion ausbilden. Die Vorraussetzungen für deren Auftreten und ihre charakteristischen Eigenschaften werden hier detailliert analysiert. Unter anderem werden alternierende Wechselwirkungen diskutiert und der Einfluß globaler Kopplung durch die Gasphase auf die Musterbildung wird betrachtet. Außerdem wird gezeigt, da8 die Mikrostrukturen auch durch vergleichsweise starke interne Fluktuationen nicht zerstört werden. Im nächsten Schritt wird ein hypothetisches Modell für zwei verschiedene Adsorbatspezies untersucht, in dem ein ähnlicher Mechanismus zur Bildung von laufenden und stehenden Wellenmustern auf der Nanoskala führt. Werden vergleichsweise starke interne Fluktuationen berücksichtigt, so brechen diese Wellenmuster auf und man beobachtet eine komplexe Dynamik miteinander wechselwirkender Wellenfragmente. Im letzten Beispiel wird anhand der Analyse eines einfachen Modells gezeigt, da8 sich auf Skalen unterhalb der Diffusionslänge selbstorganisierte Mikroreaktoren in einer einzelnen reaktiven Adsorbatspezies ausbilden können, ohne daß die Teilchen miteinander wechselwirken. Sie entsprechen lokalisierten Strukturen, die aufgrund des Zusammenspiels einer Nichtgleichgewichtsreaktion, der Diffusion und eines adsorbatinduzierten strukturellen Phasenh bergangs in der Substratoberfläche entstehen. / Nanoscale pattern formation in reactive adsorbates on single crystal surfaces is investigated theoretically. Because on such small scales fluctuations become important, a mesoscopic theory for the adsorbate coverage is developed, which aims at providing a link between microscopic lattice models and reaction-diffusion equations. It describes the dynamics for the locally averaged adsorbate coverages in a continuum model taking into account internal fluctuations. This approach is applied to several systems, where patterns on scales smaller than the characteristic diffusion length, which typically lies in the micrometer range, can be formed. As has been observed e.g. in recent experiments with fast scanning tunneling microscopy, a variety of nanoscale patterns can result from the presence of attractive adsorbate-adsorbate interactions. Here, at first a single species of such an adsorbate is considered. In the absence of nonequilibrium reactions, strong enough attractive lateral interactions can induce a first-order phase transition in the adsorbate coverage. The mesoscopic evolution equation is applied to model the kinetics of this phase transition. If additionally a nonequilibrium reaction is present, stationary spatially periodic microstructures may arise as a result of the competition of the attractive lateral interactions and the reactions. The conditions for their appearance and their properties are investigated in detail, e.g. alternating lateral interactions are discussed and the influence of global coupling through the gas phase is analyzed. Furthermore, it is shown that they are not destroyed by relatively strong internal fluctuations. In the next step, a hypothetical model for two different reactive adsorbate species is investigated, where a similar mechanism leads to the formation of nanoscale traveling and standing waves. In the presence of relatively strong internal fluctuations these waves break up and a complex dynamics of interacting wave fragments is observed. In the last example, it is shown in the analysis of a simple model that self-organized nonequilibrium microreactors with submicrometer sizes may spontaneously develop in a single reactive adsorbate species without attractive lateral interactions. They represent localized structures resulting from the interplay between reaction, diffusion and an adsorbate-induced structural transformation of the surface.
64

Pattern Formation in Spatially Forced Thermal Convection / Musterbildung in Thermischer Konvektion unter räumlich variierenden Randbedingungen

Weiß, Stephan 14 October 2009 (has links)
No description available.
65

Nanoscale pattern formation on ion-sputtered surfaces / Musterbildung auf der Nanometerskala an ion-gesputterten Oberflächen

Yasseri, Taha 21 January 2010 (has links)
No description available.
66

Biomembranen an Grenzflächen und in synaptischer Geometrie / Eine Computersimulation / Membranes at borders and in restricted geometries / computer simulations

Binding, Volker 01 November 2000 (has links)
No description available.
67

Pattern selection in the visual cortex / Musterselektion im visuellen Kortex

Kaschube, Matthias 22 December 2005 (has links)
No description available.
68

Symmetry Breaking and Pattern Selection in Models of Visual Development / Symmetriebrechung und Musterselektion in Modellen der visuellen Entwicklung

Reichl, Lars 18 May 2010 (has links)
No description available.
69

Fluctuations and Oscillations in Cell Membranes

Händel, Chris 22 February 2016 (has links)
Zellmembranen sind hochspezialisierte Mehrkomponentenlegierungen, welche sowohl die Zelle selbst als auch ihre Organellen umgeben. Sie spielen eine entscheidende Rolle bei vielen biologisch relevanten Prozessen wie die Signaltransduktion und die Zellbewegung. Aus diesem Grund ist eine genaue Charakterisierung ihrer Eigenschaften der Schlüssel zum Verständnis der Bausteine des Lebens sowie ihrer Erkrankungen. Besonders Krebs steht im engen Zusammenhang mit Veränderungen der biomechanischen Eigenschaften vom Gewebe, Zellen und ihren Organellen. Während Veränderungen des Zytoskeletts von Krebszellen im Fokus vieler Biophysiker stehen, ist die Bedeutung der Biomechanik von Zellmembran weitgehend unklar. Zellmembranen faszinieren Wissenschaftler jedoch nicht nur wegen ihrer biomechanischen Eigenschaften. Sie sind auch Beispiele für eine selbstorganisierte und heterogene Landschaft, in der Prozesse fernab des Gleichgewichtes, wie z.B. räumliche und zeitliche Musterbildungen, auftreten. Die vorgelegte Dissertation untersucht erstmals umfassend die zentrale Rolle der Zellmembran und ihrer molekularen Architektur für die Signalübertragung, die Biomechanik und die Zellmigration. Hierfür werden einfache Modellmembranen aber auch komplexere Vesikel und ganze Zellen mittels etablierter physikalischer Methoden analysiert. Diese reichen von Fourier- Analysen zur Charakterisierung von thermisch angeregten Membranundulationen über Massenspektrometrie und ‘Optical Stretcher’ Messungen von ganzen Zellen bis hin zur Filmwaagentechnik. Des Weiteren wird ein Modellsystem vorgestellt, welches sowohl einen experimentellen als auch einen mathematischen Zugang zum ‘ME-switch’ ermöglicht. Die vorgelegte Dissertation bietet neue Einblicke in wichtige Funktionen von Zellmembranen und zeigt neue therapeutische Perspektiven in der Membran- und Krebsforschung auf.:1 Introduction 2 Background 2.1 The Cell Membrane 2.1.1 Lipids in Cell Membranes 2.1.2 Membrane Proteins 2.1.3 An Overview on Membrane Models 2.1.4 Lipid Rafts 2.2 Model Membranes – An Experimental Access to Cell Membranes 2.2.1 Surface Tension and Thermodynamic Equilibrium 2.2.2 Langmuir Monolayer 2.2.3 The Polymorphism of Langmuir Monolayers 2.2.4 Membrane Vesicles 2.3 Biological Membranes as Semiflexible Shells 2.3.1 Elasticity of Soft Shells 2.3.2 Helfrichs Theory About Bending Deformations 2.3.3 Membrane Undulation 2.4 Membranes in Cell Signaling 2.4.1 Signal Transduction Fundamentals 2.4.2 Phosphoinositides 2.4.3 Phosphatidylinositol Signaling Pathway 2.4.4 The Myristoyl-Electrostatic Switch 2.5 Reaction-Diffusion Systems 2.5.1 Diffusion 2.5.2 Michaelis-Menten Kinetics 2.5.3 Reaction-Diffusion Systems 3 Methods, Materials and Theory 3.1 Optical Microscopy 3.1.1 Fluorescence Microscopy 3.1.2 Phase Contrast Microscopy 3.2 Cell Culture and GPMV Formation 3.2.1 Tumor Dissociation and Cell Culturing of Primary Cells 3.2.2 Cell Lines and Cell Culturing 3.2.3 Preparation of Giant Plasma Membrane Vesicles 3.3 Optical Stretcher 3.4 Fourier Analysis of Thermally Excited Membrane Fluctuations 3.4.1 The Quasi-Spherical Model – Membrane Fluctuations 3.4.2 Determination of the Bending Rigidity 3.5 Mass Spectrometry 3.5.1 MALDI-TOF Mass Spectrometry 3.5.2 ESI Mass Spectrometry 3.6 Migration, Invasion and Cell Death Assays 3.7 Langmuir-Blodgett Technique 3.7.1 Langmuir Troughs and Film Balances 3.7.2 Experimental Setup and Monolayer Preperation 3.7.3 Phospholipids, Dyes and Buffer Solutions 4 Fluctuations in Cell Membranes 4.1 Cell Membrane Softening in Human Breast and Cervical Cancer Cells 4.1.1 Bending Rigidity of Human Beast and Cervical Cell Membranes 4.1.2 MALDI-TOF Analysis of Lipid Composition 4.1.3 Summary and Discussion 4.2 Targeting of Membrane Rigidity – Implications on Migration 4.2.1 ESI Tandem Analysis of Lipid Composition 4.2.2 Biomechanical Behavior of Whole Cells and Membranes 4.2.3 Migration and Invasion Behavior 4.2.4 Summary and Discussion 5 Oscillations in Cell Membranes 5.1 Mimicking the ME-switch 5.1.1 DPPC/PIP2 monolayers at the presence of MARCKS 5.1.2 Lateral organization of PIP2 in DPPC/PIP2 monolayers 5.1.3 Translocation of MARCKS 5.1.4 Phosphorylation of MARCKS by PKC 5.1.5 Summary and Discussion 5.2 Dynamic Membrane Structure Induces Temporal Pattern Formation 5.2.1 Mechanism of the Oscillation 5.2.2 Modeling the ME-switch 5.2.3 Time Evolution 5.2.4 Phase Diagrams and Open Systems 5.2.5 Summary and Discussion 6 Conclusion and Outlook Appendix Bibliography List of Figures List of Abbreviations Acknowledgement
70

Growth and Scaling during Development and Regeneration

Werner, Steffen 17 June 2016 (has links)
Life presents fascinating examples of self-organization and emergent phenomena. In multi-cellular organisms, a multitude of cells interact to form and maintain highly complex body plans. This requires reliable communication between cells on various length scales. First, there has to be the right number of cells to preserve the integrity of the body and its size. Second, there have to be the right types of cells at the right positions to result in a functional body layout. In this thesis, we investigate theoretical feedback mechanisms for both self-organized body plan patterning and size control. The thesis is inspired by the astonishing scaling and regeneration abilities of flatworms. These worms can perfectly regrow their entire body plan even from tiny amputation fragments like the tip of the tail. Moreover, they can grow and actively de-grow by more than a factor of 40 in length depending on feeding conditions, scaling up and down all body parts while maintaining their functionality. These capabilities prompt for remarkable physical mechanisms of pattern formation. First, we explore pattern scaling in mechanisms previously proposed to describe biological pattern formation. We systematically extract requirements for scaling and highlight the limitations of these previous models in their ability to account for growth and regeneration in flatworms. In particular, we discuss a prominent model for the spontaneous formation of biological patterns introduced by Alan Turing. We characterize the hierarchy of steady states of such a Turing mechanism and demonstrate that Turing patterns do not naturally scale. Second, we present a novel class of patterning mechanisms yielding entirely self-organized and self-scaling patterns. Our framework combines a Turing system with our derived principles of pattern scaling and thus captures essential features of body plan regeneration and scaling in flatworms. We deduce general signatures of pattern scaling using dynamical systems theory. These signatures are discussed in the context of experimental data. Next, we analyze shape and motility of flatworms. By monitoring worm motility, we can identify movement phenotypes upon gene knockout, reporting on patterning defects in the locomotory system. Furthermore, we adapt shape mode analysis to study 2D body deformations of wildtype worms, which enables us to characterize two main motility modes: a smooth gliding mode due to the beating of their cilia and an inchworming behavior based on muscle contractions. Additionally, we apply this technique to investigate shape variations between different flatworm species. With this approach, we aim at relating form and function in flatworms. Finally, we investigate the metabolic control of cell turnover and growth. We establish a protocol for accurate measurements of growth dynamics in flatworms. We discern three mechanisms of metabolic energy storage; theoretical descriptions thereof can explain the observed organism growth by rules on the cellular scale. From this, we derive specific predictions to be tested in future experiments. In a close collaboration with experimental biologists, we combine minimal theoretical descriptions with state-of-the-art experiments and data analysis. This allows us to identify generic principles of scalable body plan patterning and growth control in flatworms. / Die belebte Natur bietet uns zahlreiche faszinierende Beispiele für die Phänomene von Selbstorganisation und Emergenz. In Vielzellern interagieren Millionen von Zellen miteinander und sind dadurch in der Lage komplexe Körperformen auszubilden und zu unterhalten. Dies verlangt nach einer zuverlässigen Kommunikation zwischen den Zellen auf verschiedenen Längenskalen. Einerseits ist stets eine bestimmte Zellanzahl erforderlich, sodass der Körper intakt bleibt und seine Größe erhält. Anderseits muss für einen funktionstüchtigen Körper aber auch der richtige Zelltyp an der richtigen Stelle zu finden sein. In der vorliegenden Dissertation untersuchen wir beide Aspekte, die Kontrolle von Wachstum sowie die selbstorganisierte Ausbildung des Körperbaus. Die Dissertation ist inspiriert von den erstaunlichen Skalierungs- und Regenerationsfähigkeiten von Plattwürmern. Diese Würmer können ihren Körper selbst aus winzigen abgetrennten Fragmenten -wie etwa der Schwanzspitze- komplett regenerieren. Darüberhinaus können sie auch, je nach Fütterungsbedingung, um mehr als das 40fache in der Länge wachsen oder schrumpfen und passen dabei alle Körperteile entsprechend an, wobei deren Funktionalität erhalten bleibt. Diese Fähigkeiten verlangen nach bemerkenswerten physikalischen Musterbildungsmechanismen. Zunächst untersuchen wir das Skalierungsverhalten von früheren Ansätzen zur Beschreibung biologischer Musterbildung. Wir leiten daraus Voraussetzung für das Skalieren ab und zeigen auf, dass die bekannten Modelle nur begrenzt auf Wachstum und Regeneration von Plattwürmern angewendet werden können. Insbesondere diskutieren wir ein wichtiges Modell für die spontane Entstehung von biologischen Strukturen, das von Alan Turing vorgeschlagen wurde. Wir charakterisieren die Hierarchie von stationären Zuständen solcher Turing Mechanismen und veranschaulichen, dass diese Turingmuster nicht ohne weiteres skalieren. Daraufhin präsentieren wir eine neuartige Klasse von Musterbildungsmechanismen, die vollständig selbstorgansierte und selbstskalierende Muster erzeugen. Unser Ansatz vereint ein Turing System mit den zuvor hergeleiteten Prinzipien für das Skalieren von Mustern und beschreibt dadurch wesentliche Aspekte der Regeneration und Skalierung von Plattwürmern. Mit Hilfe der Theorie dynamischer Systeme leiten wir allgemeine Merkmale von skalierenden Mustern ab, die wir im Hinblick auf experimentelle Daten diskutieren. Als nächstes analysieren wir Form und Fortbewegung der Würmer. Die Auswertung des Bewegungsverhaltens, nachdem einzelne Gene ausgeschaltet wurden, ermöglicht Rückschlüsse auf die Bedeutung dieser Gene für den Bewegungsapparat. Darüber hinaus wenden wir eine Hauptkomponentenanalyse auf die Verformungen des zweidimensionalen Wurmkörpers während der natürlichen Fortbewegung an. Damit sind wir in der Lage, zwei wichtige Fortbewegungsstrategien der Würmer zu charakterisieren: eine durch den Zilienschlag angetriebene gleichmässige Gleitbewegung und eine raupenartige Bewegung, die auf Muskelkontraktionen beruht. Zusätzlich wenden wir diese Analysetechnik auch an, um Unterschiede in der Gestalt von verschiedenen Plattwurmarten zu untersuchen. Grundsätzlich zielen alle diese Ansätze darauf ab, das Aussehen der Plattwürmer mit den damit verbundenen Funktionen verschiedener Körperteile in Beziehung zu setzen. Schlussendlich erforschen wir den Einfluss des Stoffwechsels auf den Zellaustausch und das Wachstum. Dazu etablieren wir Messungen der Wachstumsdynamik in Plattwürmern. Wir unterscheiden drei Mechanismen für das Speichern von Stoffwechselenergie, deren theoretische Beschreibung es uns ermöglicht, das beobachtete makroskopische Wachstum des Organismus mit dem Verhalten der einzelnen Zellen zu erklären. Basierend darauf leiten wir Vorhersagen ab, die nun experimentell getestet werden. In enger Zusammenarbeit mit Kollegen aus der experimentellen Biologie führen wir minimale theoretische Beschreibungen mit modernsten Experimenten und Analysetechniken zusammen. Dadurch sind wir in der Lage, Grundlagen sowohl der skalierbaren Ausbildung des Körperbaus als auch der Wachstumskontrolle bei Plattwürmern herauszuarbeiten.

Page generated in 0.0492 seconds