• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 70
  • 27
  • 5
  • Tagged with
  • 104
  • 104
  • 56
  • 27
  • 22
  • 20
  • 16
  • 16
  • 16
  • 15
  • 13
  • 12
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Étude de la formation et de l'activité catalytique de nanoparticules  durant les premiers instants de la croissance de nanotubes de carbone par dépôt chimique en phase vapeur assisté par aérosol / Study on the formation and catalytic activity of nanoparticles in early stages of carbon nanotubes growth under aerosol-assisted chemical vapor deposition

Ma, Yang 30 June 2016 (has links)
De par leurs propriétés remarquables, les nanotubes de carbone (NTCs) reçoivent beaucoup d’attention et de nombreuses recherches sont menées sur ces matériaux depuis les dernières décennies. Le nombre d'applications envisagées mais aussi la quantité demandée de NTCs augmentent chaque année. Pour atteindre une production à grande échelle et contrôlée, il est nécessaire d'avoir une bonne compréhension des mécanismes de croissance des NTCs. Dans ce manuscrit, la formation ainsi que l'activité catalytique de nanoparticules (NPs) par dépôt chimique en phase vapeur assisté par aérosol (CVD) sont étudiées expérimentalement, pour analyser le processus d'évolution des NPs et leur relation avec les NTCs.Dans le chapitre 1, nous présentons une introduction générale sur des structures, les méthodes de synthèse, les propriétés et les applications envisagées des NTCs, ainsi que l’état de l’art concernant l’étude des mécanismes de croissance des NTCs.Dans le chapitre 2, nous décrivons le système de dépôt chimique en phase vapeur avec catalyseur flottant, ainsi que les méthodes de diagnostic in-situ/ex-situ utilisées dans cette étude. La technique d’incandescence induite par laser (LII) est particulièrement importante dans ce chapitre, car cette technique nous permet de réaliser un diagnostic in situ sur la quantité/taille des NPs déposées pendant le processus de synthèse.Dans le chapitre 3, nous présentons l'évolution des NPs lors de la synthèse ainsi que les influences des différents paramètres de CVD (température, quantité de carbone/catalyseur, composition du gaz, etc.) sur les gouttelettes et les NPs respectivement. Un modèle pour la formation de NPs est proposé à la fin de ce chapitre.Dans le chapitre 4, les résultats des expériences sur l'évolution de la composition du gaz sont révélés. Ces résultats donnent des informations concernant les réactions chimiques ayant lieu dans la phase gazeuse lors de la synthèse des NTCs.Dans le chapitre 5, une étude détaillée de l'influence des paramètres de CVD sur les produits NTCs est menée, et les relations entre les NPs et les NTC sont discutées.Pour finir, des conclusions générales ainsi que les perspectives prévues pour les travaux futurs sont présentées. / Due to the outstanding properties in various aspects, carbon nanotubes (CNTs) received worldwide attentions and intensive investigations are carried out in the last decades. While the number of applications as well as the quantity demanded of CNTs are increasing year after year, to achieve large scale production of the desired structures in a controlled way, it is highly required having a clear understanding about the CNTs growth mechanism. In this study, the formation and catalytic activity of nanoparticles (NPs) under aerosol-assisted chemical vapor deposition (CVD) is experimentally investigated, aiming to study the NPs evolution process and their relation with the CNTs products.In chapter 1, we provide a general review of CNTs structures, synthesis methods, properties as well as applications. Moreover, the current situation of CNTs growth mechanism study is presented.In chapter 2, the floating catalyst chemical vapor deposition synthesis system, and the in-situ/ex-situ diagnostic methods used in this study are introduced. Laser induced incandescence technique (LII) is particularly explained in this chapter, which permits to achieve an in-situ diagnostic of the NPs quantity/size during the synthesis process.In chapter 3, the evolution of NPs during the synthesis is presented, in which the influences of different CVD parameters (temperature, carbon/catalyst quantity, gas composition etc.) on the droplets as well as on the NPs are investigated respectively. A NPs formation model is proposed based on the NPs variation information at the end of this chapter.In chapter 4, the experimental results of the gas composition evolution in chemical vapor deposition reactor are revealed, which reflect the gas phase chemical reactions information during the CNTs synthesis.In chapter 5, a detailed investigation about the influence of CVD parameters on the CNTs products is explained. And the relation between the NPs and CNTs is discussed.In the end, general conclusions are formed according to works and perspectives are provided for the improvement of the future work.
62

Analyse des améliorations des propriétés électroniques des matériaux carbonés par interaction d'espèces chimiques : Approche numérique combinée à la spectroscopie Raman / Analysis of the improvements in the electronic properties of carbon materials by interaction with chemical species : Computational approach combined with Raman spectroscopy

Tristant, Damien 19 September 2016 (has links)
Pour analyser les améliorations des propriétés électroniques des matériaux carbonés, une approche par la théorie de la fonctionnelle de la densité appuyée par la spectroscopie Raman a été utilisée. Le cœur de ce travail est l’étude du dopage dans le but d’ouvrir de nouvelles voies pour la conception de matériaux à nanocomposants innovants. Ces nouvelles structures sont des fibres dont la brique élémentaire est un nanotube de carbone ou des polymères chargés en nanocarbone avec des molécules optimisant la conduction électrique. Une brève introduction est présentée sur les espèces non-covalentes, conduisant aux meilleurs résultats reportés dans la littérature, à savoir : le potassium, l’iode et les super acides. Les composés d’intercalation du graphite par des atomes de potassium sont analysés en premier. Le fort transfert de charge de l’alcalin influence directement les propriétés optiques du graphène conduisant à une signature Raman singulière avec un changement de forme lorsque l’énergie d’excitation est le double du déplacement du niveau de Fermi dû au dopage. Ensuite, une étude théorique exhaustive du dopage à l’iode est réalisée sur une monocouche de graphène. L’analyse des propriétés thermodynamiques montre qu’une augmentation progressive du taux de recouvrement des molécules engendre d’abord une transition de phase du mode d’adsorption de l’iode et se termine par la formation de complexes polyiodure. Ces complexes, via un fort transfert d’électrons, conduisent à l’augmentation de la densité d’états électronique au niveau de Fermi. Cette étude est étendue aux nanotubes de carbone, où un transfert de charge très important est obtenu après interaction soit avec des molécules d’acide chlorosulfonique par réaction d’oxydo-réduction, soit avec des molécules d’iode. Lors de la circulation d’un fort courant électrique dans ces fibres, l’effet Joule produit une désorption des dopants et réduit la conductivité électrique. Ce phénomène s’explique par le nombre de canaux de conduction disponibles déduit des signatures Raman combinée à des calculs de transport électronique. Les températures locale et moyenne sont extraites des données Raman et de transport respectivement. Ce travail constitue un ensemble cohérent de résultats pouvant servir de base pour améliorer les propriétés de transport. / To analyze the improvements in electronic properties of carbon-based materials, an approach based on the density functional theory supported by Raman spectroscopy was used. The heart of this work is the study of doping in order to open up new paths for the design of innovative materials from nanodevices. These new structures are fibers whose the main component is a carbon nanotube or nanocarbon loaded polymers with molecules, optimizing electrical conduction. A brief introduction is presented on non-covalent species, leading to the best results reported in the literature, namely potassium, iodine and super acids. The graphite intercalation compounds by potassium atoms are analyzed first. The large charge transfer of the alkali directly influences the optical properties of graphene, resulting in a unique Raman signature with a shape change when the excitation energy is twice the shift of the Fermi level due to doping. Then, an exhaustive theoretical study of iodine doping is performed on a monolayer of graphene. Analysis of thermodynamic properties shows that a gradual increase in the recovery rate of the molecules, initially generates a phase transition of iodine adsorption mode, and ends with the formation of polyiodide complexes. These complexes, via a strong electron transfer, lead to the increase of the density of states at the Fermi level. This study is extended to carbon nanotubes, where a very large charge transfer is obtained after interacting either with chlorosulfonic acid molecules by redox reaction, or with iodine molecules. When there is a flow of a large electric current in these fibers, the Joule effect produces a desorption of dopants and reduces the electrical conductivity. This phenomenon is explained by the available number of conduction channels deducted from combined Raman signatures and electronic transport calculations. The local and average temperatures are extracted from Raman and transport data respectively. This work constitutes a coherent set of results as a basis for improving the transport properties.
63

Nanostructures de carbone dédiées aux interconnexions hautes fréquences / Carbon nanostructure dedicated to high frequency interconnects

Roux-Levy, Philippe 17 December 2018 (has links)
A extrêmement hautes fréquences, les applications électroniques vont être confrontées à des challenges liés à la réduction des dimensions et la compacité des systèmes. Les limites physiques des matériaux conventionnels étant atteintes, de nouvelles alternatives sont nécessaires dans le domaine du nano-packaging. De nouveaux matériaux ont été étudiés pour remplacer les matériaux conventionnels. Parmi eux, le nanotube de carbone démontre une excellente conductivité électrique et thermique ainsi qu’une résistance physique extraordinaire. Il est donc un candidat de choix pour des applications comme les interconnexions, l’évacuation de chaleur, le blindage électromagnétique ou encore le renforcement structurel. Autant de points capitaux pour le nano-packaging moderne. Dans ce manuscrit, les nanotubes de carbone vont être étudiés en profondeur pour réaffirmer leurs propriétés électroniques et thermiques hors du commun. Nous nous concentrerons ensuite sur l’étude de deux types d’interconnexions à base de nanotubes de carbone : des interconnexions à base de plot en nanotubes de carbone utilisant la technologie Flip-Chip et des interconnexions sans-fil à base de monopole composé de nanotubes de carbone. Enfin, nous étudierons la possibilité de créer des composants passifs Radio-Fréquence à l’aide de structures en nanotubes de carbone. De nouvelles méthodes de fabrication des structures en CNT ont été utilisées au cours de ces travaux de thèse afin d’obtenir une compatibilité avec les technologies CMOS. / At extremely high frequency, electronic applications will have to challenge problems born from the size reduction and compactification of the systems. Physical limits of conventional materials will be reached and so new alternatives are necessary in the nano-packaging field. New materials have been studied to replace conventional materials. Among them, carbon nanotubes have shown extremely high electrical and thermal conductivity as well as extraordinary physical resistance. And so carbon nanotubes are a good candidate for applications such as interconnects, thermal management, electromagnetic shielding or structural reinforcement. All of those applications are capital for modern nano-packaging. In this manuscript, carbon nanotubes will be studied in depths to demonstrate again their incredible electronic and thermal properties. We will then focus on the study of two types of carbon nanotubes based interconnects: carbon nanotubes bumps based interconnects for Flip-Chip applications and wireless interconnects based on carbon nanotubes monopole antenna. Finally, we will study the possibility of creating passive RF components using carbon nanotubes structures. New ways of fabricating the carbon nanotubes structure were used in order to get a fabrication process of the prototype completely compatible with CMOS technologies.
64

Elaboration, characterization and modeling of electroactive materials based on polyurethanes and grafted carbon nanotubes / Elaboration, caractérisation et modélisation de matériaux électroactifs à base de polyuréthanes et de nanotubes de carbone greffés

Jomaa, Mohamed Hedi 17 June 2015 (has links)
Le besoin de sources d’énergie autonomes connaît un regain d’intérêt de plus en plus important avec la multiplication des équipements portables et le développement des réseaux de capteurs. Au-delà de l’utilisation traditionnelle des batteries, il y a un intérêt évident à générer l’énergie électrique nécessaire au cœur du système lui-même en utilisant le gisement environnemental disponible : gradients thermiques, vibrations mécaniques….Ceci est également rendu possible par la réduction importante de la consommation des composants électroniques observés ces vingt dernières années. Parmi les dispositifs susceptibles d’exploiter le gisement vibratoire, les matériaux électro-actifs occupent une place de choix. Actuellement, on recherche des matériaux légers, pouvant se déposer sur des grandes surfaces et peu coûteux à la réalisation. Ceci ouvre des perspectives séduisantes à l’utilisation de polymères électro-actifs en lieu et place des matériaux céramiques piézoélectriques. Parmi les EAP disponibles, les polyuréthanes (PU) sont des élastomères thermoplastiques d'un grand intérêt pour une vaste gamme d'applications en tant que transducteurs ou actionneurs lorsque l'on considère leur importante déformation sous champ électrique, une énergie spécifique élevée, et leur réponse rapide De plus, ces matériaux sont légers, très souples, présentent de faibles coûts de fabrication, et peuvent être facilement moulés dans n'importe quelle forme souhaitable. Des travaux récents ont montré que l'énergie récoltée peut être augmentée en incorporant des nanotubes de carbone (NTC) dans une matrice de polyuréthane. Cependant, les nanocomposites peuvent ne pas avoir été optimisées, car il est bien connu que les NTC sont difficilement dispersées dans une matrice polymère et que la force d'adhérence interfaciale est généralement médiocre. Une solution pour améliorer à la fois la dispersion et l'adhérence peut consister en greffant des chaînes de polymère sur les surfaces de la NTC. L'objectif principal de cette thèse était de développer des polymères nanocomposites à haute efficacité pour la récupération d'énergie et d'actionnement. La motivation principal était d'utiliser des NTC greffé-polymère pour améliorer la dispersion, l'adhérence interfaciale dans PU, et de comprendre comment cela peut changer les propriétés électroactifs des nanocomposites PU / NTC. En d'autres termes, ce était un projet pluridisciplinaire, y compris une optimisation du processus d'élaboration, caractérisations physiques ˗ notamment les comportements de microstructure, électriques et mécaniques dans une large gamme de fréquences et températures ˗ et la détermination des propriétés électroactifs. Il s’agissait également de développer une modélisation des lois de comportements en s’aidant de l’analyse de la microstructure par imagerie. / Harvesting systems capable of transforming dusty environmental energy into electrical energy have attracted considerable interest throughout the last decade. Several research efforts have focused on the transformation of the mechanical vibration into electrical energy. Most of these research activities deal with classical piezoelectric ceramic materials, but more recently, a promising new type of materials is represented by electroactive polymers (EAPs). Among the various EAPs, polyurethane (PU) elastomers are of great interest due to the significant electrical-field strains, and due to their attractive and useful properties such as flexibility, light weight, high chemical and abrasion resistance, high mechanical strength and easy processing to large area films as well as their ability to be molded into various shapes and biocompatibility with blood and tissues. In addition, it has recently been shown that the incorporation into a PU matrix of nanofillers, such as carbon nanotubes (CNTs), can greatly enhance the expected strain, or the harvested energy. However, it is well known that CNTs are hardly dispersed in a polymeric matrix, and that the interfacial adhesion strength is generally poor. An effective method to improves both dispersion and adhesion may consist in functionalizing CNTs by grafting polymer chains onto their surfaces. The main objective of this thesis was to develop high-efficiency polymers nanocomposites for harvesting energy and actuation. The key motivation was to use polymer-grafted CNTs to improve dispersion, interfacial adhesion in PU, and understand how this can change the electroactive properties of the PU/CNT nanocomposites. In other words, it was a pluridisciplinary project including an optimization of the elaboration process, physical characterizations ˗ including microstructural, electrical and mechanical behaviors in a wide range of frequencies and temperatures ˗ and the determination of the electroactive properties. A comprehensive study was then carried out first on pure PU to understand how their electroactive properties depend on their microstructure, and then on the nanocomposites to understand how the incorporation of functionalized CNT can improve the electromechanical properties.
65

Composites à matrice polymère et nano-renforts flexibles : propriétés mécaniques et électriques.

Dalmas, Florent 18 November 2005 (has links) (PDF)
Cette thèse porte sur la mise en œuvre, la caractérisation microstructurale et l'étude des propriétés macroscopiques de matériaux nanocomposites à matrice polymère (un latex filmogène) renforcée par des nanofibres flexibles à haut facteur de forme. En étudiant deux types de renforts (les nanotubes de carbone et les nanofibrilles de cellulose) et en utilisant deux procédés différents pour l'élaboration des composites, ce travail a permis de mieux comprendre le rôle que jouent les enchevêtrements entre nanofibres et la nature de leurs interactions dans ce type de matériaux. Les propriétés mécaniques aux faibles et grandes déformations, et, dans le cas des renforts nanotubes de carbone, les propriétés élecriques ont été analysées. Une approche de modélisation basée sur la discrétisation des fibres dans un volume représentatif, a permis de discuter l'influence de la tortuosité des fibres et des propriétés électriques des contacts entre fibres sur la percolation électrique.
66

Vers une électronique de spin cohérente de phase à base de nanotubes de carbone

Feuillet-Palma, Chéryl 28 May 2010 (has links) (PDF)
Cette thèse se place dans le cadre de la physique mésoscopique et a pour objet l'étude du transport électronique polarisé en spin dans les nanotubes de carbone mono-parois. L'existence d'un déséquilibre entre les populations d'électrons de spin up et ceux de spin down lors de leur diffusion à l'interface entre un métal ferromagnétique et un métal non- magnétique est au coeur du principe de fonctionnement des jonctions tunnel magnétiques et des multi-couches bien connues dans le domaine de l'électronique de spin. Bien que le degré de liberté de spin et l'effet tunnel des électrons soient utilisés dans ces dispositifs, aucun d'entre eux ne tient compte du degré de liberté de phase orbitale de la fonction d'onde électronique. Dans la plupart des dispositifs étudiés jusqu'à présent, cet aspect n'a pas été développé en raison du régime de transport semi-classique des porteurs de charge dans les conducteurs considérés. Dans ce travail, nous étudions des mesures de transport dépendantes du spin dans des circuits à plusieurs réservoirs à base de nanotubes de carbone. Nous observons la présence d'un signal de spin dans la tension non-locale et d'un signal de spin anormale dans la conductance. Ces signaux de spin sont contrôlables par le tension de grille appliquée et ils révèlent qu'à la fois le degré de liberté de phase orbitale et le degré de spin sont conservés dans un nanotube de carbone connecté à plusieurs réservoirs ferromagnétiques. Nous montrons également l'existence d'un phénomène étonnant qui n'a aucun analogue classique et qui est la conséquence de la cohérence de phase orbitale : la présence d'un comportement de type transistor de spin à effet de champ entre les deux contacts normaux avec à proximité deux contacts férromagnétiques en dehors du chemin classique des électrons. Ceci est la réalisation de l'expérience de tête de théoricien pour l'électronique de spin. Nos observations ouvrent la voix pour des dispositifs de l'électronique de spin exploitant ces deux degré de liberté quantique sur le même plan.
67

Morphologie et propriétés électrophysiques de nanocomposites à base de polymères thermoplastiques et de nanotubes de carbone

Levchenko, Volodymyr 28 September 2011 (has links) (PDF)
La thèse détermine les principaux paramètres de la formation des structures de la phase conductrice de nanocomposites polymères chargés avec des nanotubes de carbone (NTC) ou des nanocharges combinées, pour étudier l'influence de la morphologie de la structure hétérogène du composite et l'interaction des nanocharges sur les propriétés électriques, thermophysiques et mécaniques des composites. Les trois types de systèmes polymères ont été étudiés, à savoir: 1) les systèmes ségrégés avec distribution ordonnée de nanocharges, 2) les mélanges polymère conducteur; 3) les composites avec des charges binaires où les nanotubes de carbone ont été combinés avec des composés organo-argileux modifiés (MOC) dans un cas et des nanoparticules métalliques d'autre part. Les résultats sur les composites polymères ségrégés chargés avec des NTC ont montré que dans de tels systèmes, la charge conductrice crée un réseau continu conducteur au sein de la matrice polymère. Cela conduit à un seuil de percolation ultra faible avec la valeur de φc~0,045vol.%. Il a été démontré que les systèmes conducteurs à base de mélanges de polymères ont un seuil de percolation inférieur en raison d'effet de double percolation. Il a été constaté que l'introduction simultanée de composés MOC et de NTC dans la matrice thermoplastique permet une meilleure répartition des nanotubes de carbone, ce qui empêche leur agrégation. Il en résulte une diminution du seuil de percolation des composites. Il a été démontré que la formation de la phase conductrice est plus efficace avec des charges mixtes CNT/nanométal en comparaison avec les charges individuelles
68

Interaction entre les nanotubes de carbone et leur environnement physico-chimique : vers un contrôle des propriétés optiques

Vialla, Fabien 05 March 2014 (has links) (PDF)
Cette thèse est consacrée à l'étude expérimentale par spectroscopie de photoluminescence de nanotubes de carbone nus et fonctionnalisés. Les nanotubes étant formés exclusivement d'atomes de surface, leurs propriétés optiques peuvent être grandement altérées, mais aussi contrôlées, par interaction avec l'environnement physico-chimique. Un dispositif de microscopie confocale à l'échelle de l'objet unique et à température cryogénique est développé pour l'étude de la luminescence de nanotubes déposés sur substrat. La variété des profils spectraux observés est interprétée en terme d'un couplage entre excitons localisés et phonons acoustiques unidimensionnels dont le spectre peut être altéré aux basses énergies. Ce mécanisme explique notamment l'observation originale de raies très fines, de largeur inférieure à 500 µeV. La fonctionnalisation non-covalente des nanotubes par des molécules de colorants (porphyrines) introduit une nouvelle voie d'excitation optique par un transfert d'énergie très efficace. Le suivi physico-chimique de la réaction d'adsorption nous informe sur la couverture et l'affinité des molécules sur les nanotubes. Une étude de photoluminescence sur composés uniques résolue en polarisation montre une forte anisotropie du transfert d'énergie gouvernée par des effets d'antenne à proximité du nanotube. Enfin, le colorant peut être utilisé comme cellule d'absorption de référence pour évaluer la section efficace d'absorption des nanotubes. Une nette évolution avec l'angle chiral de l'espèce est notamment observée pour l'absorption à la résonance optique S22.
69

Montage et caractérisation d’un système de spectroscopie Raman accordable en longueur d’onde utilisant des réseaux de Bragg comme filtre : application aux nanotubes de carbone

Meunier, François 04 1900 (has links)
La spectroscopie Raman est un outil non destructif fort utile lors de la caractérisation de matériau. Cette technique consiste essentiellement à faire l’analyse de la diffusion inélastique de lumière par un matériau. Les performances d’un système de spectroscopie Raman proviennent en majeure partie de deux filtres ; l’un pour purifier la raie incidente (habituellement un laser) et l’autre pour atténuer la raie élastique du faisceau de signal. En spectroscopie Raman résonante (SRR), l’énergie (la longueur d’onde) d’excitation est accordée de façon à être voisine d’une transition électronique permise dans le matériau à l’étude. La section efficace d’un processus Raman peut alors être augmentée d’un facteur allant jusqu’à 106. La technologie actuelle est limitée au niveau des filtres accordables en longueur d’onde. La SRR est donc une technique complexe et pour l’instant fastidieuse à mettre en œuvre. Ce mémoire présente la conception et la construction d’un système de spectroscopie Raman accordable en longueur d’onde basé sur des filtres à réseaux de Bragg en volume. Ce système vise une utilisation dans le proche infrarouge afin d’étudier les résonances de nanotubes de carbone. Les étapes menant à la mise en fonction du système sont décrites. Elles couvrent les aspects de conceptualisation, de fabrication, de caractérisation ainsi que de l’optimisation du système. Ce projet fut réalisé en étroite collaboration avec une petite entreprise d’ici, Photon etc. De cette coopération sont nés les filtres accordables permettant avec facilité de changer la longueur d’onde d’excitation. Ces filtres ont été combinés à un laser titane : saphir accordable de 700 à 1100 nm, à un microscope «maison» ainsi qu’à un système de détection utilisant une caméra CCD et un spectromètre à réseau. Sont d’abord présentés les aspects théoriques entourant la SRR. Par la suite, les nanotubes de carbone (NTC) sont décrits et utilisés pour montrer la pertinence d’une telle technique. Ensuite, le principe de fonctionnement des filtres est décrit pour être suivi de l’article où sont parus les principaux résultats de ce travail. On y trouvera entre autres la caractérisation optique des filtres. Les limites de basses fréquences du système sont démontrées en effectuant des mesures sur un échantillon de soufre dont la raie à 27 cm-1 est clairement résolue. La simplicité d’accordabilité est quant à elle démontrée par l’utilisation d’un échantillon de NTC en poudre. En variant la longueur d’onde (l’énergie d’excitation), différentes chiralités sont observées et par le fait même, différentes raies sont présentes dans les spectres. Finalement, des précisions sur l’alignement, l’optimisation et l’opération du système sont décrites. La faible acceptance angulaire est l’inconvénient majeur de l’utilisation de ce type de filtre. Elle se répercute en problème d’atténuation ce qui est critique plus particulièrement pour le filtre coupe-bande. Des améliorations possibles face à cette limitation sont étudiées. / Raman spectroscopy is a useful and non-destructive tool for material characterization. It uses inelastic light scattering interaction with matter to investigate materials. The major part of the performances in a Raman spectroscopy system comes from two light filter units: the first shapes the light source (usually a laser) and the other attenuates the elastic scattered light in the signal beam. In resonant Raman spectroscopy (RRS), the excitation energy (wavelength) is tuned to match an electronic transition of the sample. When in resonance, the Raman cross section is increased by a factor up to 106. Current RRS setups are limited by filtering devices technology. RRS is a complex technique which, for the moment, remains tedious to implement. This master thesis presents the construction of a tunable Raman spectroscopy system based on volume Bragg gratings light filters. The setup is designed to operate in the near infrared region so as to study carbon nanotubes resonances. Steps leading to the operation of the system are described. They cover conceptualization, fabrication, characterization and optimisation of the setup. Collaboration with a local small company, Photon etc, led to the building of two new light filters that allow to tune easily the excitation wavelength. These filters have been adapted to work with a tunable titanium-sapphire laser (tunable from 700 to 1100 nm) and assembled with a homemade microscope and a detection system combining a CCD camera with a grating spectrometer. This document is arranged as follow: First are presented the theoretical aspects surrounding RRS. Carbon nanotubes (CNT) are than described to illustrate the relevance of such technique applied to material science. Principles behind the use of the Bragg filters are described to be followed by a scientific paper in which the main results of this work are presented. These include the optical characterisation of the filters and measurements with the system. Low frequency limits of the system are demonstrated using a sulphur powder where the 27 cm-1 line is clearly resolved. The tunability of the setup is also demonstrated using a bulk carbon nanotube sample. By changing the excitation wavelength, different nanotube chiralities become resonant, leading to different signals in the Raman spectra. Finally, clarifications regarding the alignment, optimisation and operation of the system are described. Low angular acceptance has been found to be the main drawback of the system leading to attenuation problems especially critical for the notch filter. Possible improvements on this limitation are discussed.
70

Couplage de systèmes magnétiques et mécaniques à échelle moléculaire

Ganzhorn, Marc 13 March 2013 (has links) (PDF)
Dans ce manuscrit, nous présentons d'abord le bloc de construction moléculaire ultime pour les dispositifs de spintronique, les aimants à molécule unique (Chapitre 2). En particulier, nous nous concentrerons sur une molecule de TbPc2 et différentes approches pour sonder son aimantation à l'aide de détecteurs a base de nanotubes de carbone et de mécanismes de couplage différents (flux magnétique, couplage électronique et mécanique). Dans le but de construire un detecteur de torque supramoléculaire capable de sonder le moment magnétique d'un aimant moléculaire, nous allons décrire dans le chapitre 3 un candidat très prometteur, un système nanoélectromécanique (NEMS) à base d'un nanotube de carbone. Nous décrirons d'abord les avantages de NEMS à base de carbone par rapport aux résonateurs classiques à base de silicium. Par la suite, nous présenterons l'état de l'art des NEMS à base de nanotubes de carbone, en nous focalisant en particulier sur deux différents mouvements nanomécaniques, un mode de flexion transverse et un mode de compression longitudinal. Dans le chapitre 4, nous présenterons la mise en oeuvre expérimentale d'un detecteur de torque supramoléculaire basé sur NEMS à nanotubes de carbone et des aimants à molécule unique. Nous décrirons d'abord le processus de fabrication ultra propre et les étapes de la caractérisation d'un NEMS à nanotubes de carbone à températures ambiante et cryogénique. Nous allons ensuite démontrer un procédé de greffage d'une molécule aimants de TbPc2 sur un tel NEMS à nanotube de carbone, qui conserve à la fois les propriétés magnétiques de la molécule et les propriétés mécaniques du résonateur. Dans le chapitre 5, nous allons ensuite procéder à une étude systématique du mode de flexion transverse dans un NEMS à nanotube de carbone. Nous montrerons, que la dissipation de ce mode de vibration induit par l'effet tunnel d'électron unique à travers le nanotube de carbone (considére comme point quantique) dépend essentiellement de l'environnement électronique du nanotube, c'est à dire de la capacité, du couplage entre le nanotube de carbone et les electrodes métalliqes, du courant et de la température. Les résultats indiquent que l'on pourrait atteindre des facteurs de qualité de 10^6 ou plus en choisissant un diélectrique de grille appropriées et/ou en améliorant le couplage entre le nanotube de carbone et les electrodes, ce qui permettrait notamment d'augmenter la sensibilité du NEMS nanotubes de carbone par rapport à un torque magnétique générer par le retournement d'un aimant moléculaire. Dans le chapitre 6, nous démontrons la présence d'un mode de vibration longitudinal quantique dans un NEMS à base de nanotube de carbon fonctionnalisé avec des aimants moléculaires de TbPc2. Nous allons en particulier montrer que la nature quantique des deux systèmes, se traduit par un fort couplage entre le mode de compression longitudinal et l'aimantation d'un aimant moléculaire TbPc2 unique greffé sur la parois du nanotube de carbone. Ce fort couplage permet par la suite de détecter les états de spin nucléaire dans la molécule de TbPc2. Enfin, nous présenterons dans la conclusion de ce manuscrit quelques perspectives pour la détection et la manipulation (coherente) d'un seul spin (nucléaire) à l'aide d'un système mécanique quantique.

Page generated in 0.024 seconds