• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 72
  • 52
  • 36
  • 14
  • 5
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 216
  • 216
  • 32
  • 31
  • 29
  • 27
  • 24
  • 21
  • 19
  • 19
  • 16
  • 16
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Rôle de la structure du génome viral sur la réplication du virus de l’hépatite C

Rance, Elodie 02 1900 (has links)
No description available.
192

Influência do exercício físico no remodelamento cardíaco, estresse oxidativo e vias de sinalização das MAPK e do NF-κB de ratos espontaneamente hipertensos / Influence of physical exercise on cardiac remodeling, oxidative stress, MAPK and NF-kB pathways signaling in spontaneously hypertensive rats

Pagan, Luana Urbano 02 March 2018 (has links)
Submitted by Luana Urbano Pagan null (luanapagan@alunos.fmb.unesp.br) on 2018-03-13T18:51:41Z No. of bitstreams: 1 Tese Doutorado 1 fev 2018 - Luana Urbano Pagan.pdf: 2756763 bytes, checksum: 6b255d0ba5900dbacc830d74916982d2 (MD5) / Approved for entry into archive by ROSANGELA APARECIDA LOBO null (rosangelalobo@btu.unesp.br) on 2018-03-16T19:35:20Z (GMT) No. of bitstreams: 1 pagan_lu_dr_bot.pdf: 2756763 bytes, checksum: 6b255d0ba5900dbacc830d74916982d2 (MD5) / Made available in DSpace on 2018-03-16T19:35:20Z (GMT). No. of bitstreams: 1 pagan_lu_dr_bot.pdf: 2756763 bytes, checksum: 6b255d0ba5900dbacc830d74916982d2 (MD5) Previous issue date: 2018-03-02 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Introdução: A sobrecarga de pressão causada pela hipertensão arterial sistêmica (HAS) pode gerar mudança na arquitetura do colágeno, favorecer a fibrose, bem como o desbalanço entre a produção de espécies reativas de oxigênio (ERO) e a capacidade antioxidante. Aumento das ERO pode gerar ativação de vias sinalizadoras como a do fator nuclear kappa B (NF-kB) e das proteínas quinases ativadas por mitógenos (MAPK). Alterações dessas vias contribuem para o processo de remodelamento cardíaco causado pela HAS. O exercício físico desempenha importante papel na atenuação dos fatores de risco cardiovascular como a HAS. Dessa forma, o objetivo desse estudo foi avaliar a influência do treinamento físico sobre o remodelamento cardíaco de ratos espontaneamente hipertensos (SHR) na fase que antecede o desenvolvimento de insuficiência cardíaca. Métodos: Foram constituídos quatro grupos experimentais de ratos: normotensos Wistar (W) sedentários (W-SED, n=27); W exercitados (W-EX, n=31); SHR sedentários (SHR-SED, n=27); e SHR exercitados (SHR-EX, n=32). A partir de 13 meses de idade, os animais dos grupos exercitados foram submetidos a protocolo de exercício em esteira, cinco dias por semana, durante quatro meses. A avaliação estrutural e funcional in vivo do coração foi realizada por ecocardiograma. A função miocárdica in vitro foi avaliada em preparações de músculo papilar isolado do ventrículo esquerdo (VE). Amostras de tecido do VE foram obtidas para análises bioquímicas, histológicas e moleculares. A avaliação do colágeno miocárdico total foi realizada pela histologia e por quantificação de hidroxiprolina. O tamanho dos miócitos foi medido em cortes histológicos do VE. A atividade das enzimas antioxidantes foi quantificada por espectrofotometria. A atividade da NADPH oxidase foi avaliada pela redução da lucigenina. A quantificação proteica dos colágenos I e III, lisil oxidase, vias MAPK e NF-kB, e inibidores teciduais 1 e 2 das metaloproteinases foi realizada por Western blot. A atividade das metaloproteinases foi realizada por zimografia. As comparações entre os grupos foram realizadas por análise de variância (ANOVA) complementada pelo teste de Bonferroni (distribuição normal), ou o teste de Kruskal-Wallis complementado pelo teste de Dunn (distribuição não normal). Resultados: A pressão arterial sistólica foi maior nos grupos SHR. Os grupos exercitados apresentaram maior capacidade física. Os sinais de insuficiência cardíaca foram maiores nos grupos hipertensos em relação aos controles, e o grupo SHR-EX apresentou menor prevalência de derrame pleural e taquipneia em comparação ao SHR-SED. O ecocardiograma mostrou reduções da espessura da parede do VE, espessura relativa do VE, diâmetro do átrio esquerdo e melhora do relaxamento no grupo SHR-EX vs. SHR-SED. O estudo da função miocárdica in vitro mostrou melhor performance no grupo SHR-EX (derivada positiva da tensão desenvolvida) vs. SHR-SED. O grupo SHR-EX mostrou maior atividade das enzimas antioxidantes em comparação SHR-SED. A produção de hidroperóxido de lipídeo, diâmetros dos miócitos, expressões proteicas da JNK fosforilada e da IkB total foram maiores nos grupos hipertensos. A quantificação de hidroxiprolina, malondialdeído, atividade da NADPH oxidase, expressões proteicas do colágeno III, lisil oxidase, TIMP-1, JNK total, p38 fosforilada, p65 fosforilada e total e IkB fosforilada não apresentaram diferença entre os grupos. A fração colágena intersticial, a atividade da MMP-2 e a expressão proteica da p38 total, ERK total e fosforilada foram maiores no SHR-SED em comparação com controle. O exercício causou redução da atividade da MMP-2 e da expressão da ERK fosforilada nos ratos hipertensos. Conclusão: O exercício físico em ratos espontaneamente hipertensos atenua o remodelamento cardíaco que está associado à melhora da tolerância ao esforço físico e redução da frequência de sinais de insuficiência cardíaca. Além disso, associa-se ao aumento da atividade das enzimas antioxidantes, diminuição da fosforilação da ERK e da atividade da MMP-2, e atenuação da expressão proteica da ERK total. / Introduction: The pressure overload caused by systemic arterial hypertension (SAH) may change the collagen architecture, induce fibrosis, as well as imbalance between the reactive oxygen species (ROS) production and antioxidant capacity. Increased ROS leads to activation of signaling pathways such as nuclear factor kappa B (NF-kB) and mitogen-activated protein kinases (MAPK). Alterations in these pathways contribute to cardiac remodeling process induced by SAH. Physical exercise plays an important role in mitigating cardiovascular risk factors such as hypertension. Therefore, the aim of this study was to evaluate the influence of physical training, started before clinical evidence of heart failure, on cardiac remodeling in spontaneously hypertensive rats (SHR). Methods: Four experimental groups were used: sedentary (W-SED n=27) and trained (W-EX, n=31) normotensive Wistar rats, and sedentary (SHR-SED, n=27) and exercised (SHR-EX, n=32) hypertensive rats. Rats of the exercise groups underwent a protocol of treadmill exercise five days a week, for four months; exercise started at 13 months of age. Echocardiogram was performed to evaluate in vivo cardiac structures and function. In vitro myocardial function was analyzed in left ventricular (LV) papillary muscle preparations. LV tissue samples were obtained for biochemical, histological, and molecular analysis. Total myocardial collagen was assessed by histology and hydroxyproline quantification. Cardiomyocyte size was measured in LV histological sections. Antioxidant enzymes activity was quantified by spectrophotometry. NADPH oxidase activity was analyzed by reduction of lucigenin. Protein expression of collagen I and III, lysyl oxidase, MAPK and NF-kB, and metalloproteinases tissue inhibitors 1 and 2 was quantified by Western blot. The activity of metalloproteinases was evaluated by zymography. Comparisons between groups were performed by two factors analysis of variance (ANOVA), complemented with the Bonferroni test (normal distribution), or Kruskal-Wallis complemented with Dunn test (non-normal distribution). Results: Systolic blood pressure was higher in the SHR groups. The exercised groups showed greater physical capacity. Prevalence of heart failure signs was higher in the hypertensive groups compared to controls, and the SHR-EX group showed lower prevalence of pleural effusion and tachypnea compared to SHR-SED. Echocardiogram showed lower LV wall thickness, LV relative wall thickness, left atrium diameter, and relaxation time in the SHR-EX group vs. SHR-SED. Myocardial functional study showed better performance in the SHR-EX group (positive derivative of the developed tension) vs. SHR-SED. The SHR-EX group showed higher antioxidant enzymes activity compared to SHR-SED. Lipid hydroperoxide production, myocyte diameters, and phosphorylated JNK and total IkB protein expression were higher in the hypertensive groups. Quantification of hydroxyproline, malondialdehyde, NADPH oxidase activity, and protein expression of collagen III, lysyl oxidase, TIMP-1, total JNK, phosphorylated p38, phosphorylated and total p65, and phosphorylated IkB did not differ between groups. The interstitial collagen fraction, MMP-2 activity, protein expression of total p38, and total and phosphorylated ERK were higher in the SHR-SED group compared to normotensive control. Physical exercise reduced the MMP-2 activity and the phosphorylated ERK expression in hypertensive rats. Conclusion: Physical exercise in spontaneously hypertensive rats attenuates cardiac remodeling associated with improved physical capacity and reduced prevalence of heart failure signs. In addition, it is associated with increased antioxidant enzymes activity, decreased ERK phosphorylation and MMP-2 activity, and attenuation of total ERK protein expression. / FAPESP: 2014/00747-1
193

Study of the modulation of innate immune responses in intestinal epithelial cells by Toxoplasma gondii and its correlation with parasite virulence / Etude de la modulation des réponses immunitaires innées dans les cellules épithéliales intestinales par Toxoplasma gondii, et sa corrélation avec la virulence du parasite

Morampudi, Vijay 28 October 2010 (has links)
Early innate response of intestinal epithelial cells is the first line defense against enteric pathogens. Toxoplasma gondii infections acquired naturally via the peroral route, encounter intestinal epithelial cells early post-infection. Although the population structure of T. gondii is known to be highly clonal, clinical strains of T. gondii have been classified into three genotypes based on their virulence. In this study we investigated whether human intestinal epithelial cell immune response to T. gondii is virulence dependent. We demonstrated distinct virulence of the three T. gondii genotype strains evaluated in human intestinal epithelial cells by their capacity to replicate and induce host cell cytotoxicity. The early host innate mechanisms such as activation of signaling pathways and induction of innate effectors were likewise differentially elicited by the three T. gondii strains. Low levels of TLR dependent NF-kB activation and a failure to rapidly up-regulate innate cytokine and chemokine genes was observed after virulent Type I strain infection. In contrast, early innate response to the less virulent Type II strain was rapid, efficient and led to high levels of IL-8 and IL-6 secretion, whereas response to Type III parasites was intermediate. Early expression of b-defensin 2 gene was suppressed specifically by virulent Type I strain and its activation prior to infection in intestinal epithelial cells led to decreased parasite viability. These findings provide evidence for T. gondii strain virulence dependent down-modulation of early human intestinal epithelial cell innate responses and highlight the importance of these cells in host defense against this infection. / Doctorat en Sciences biomédicales et pharmaceutiques / info:eu-repo/semantics/nonPublished
194

The Phenomenon Of Blastocyst Hatching : Role Of COX-2 And NF-kB

Roy, Shubhendu Sen 06 1900 (has links) (PDF)
The zona-pellucida (zona, ZP) is an adhesion-refractory, acellular coat enclosing the rapidly growing, free-living mammalian preimplantation embryo which undergoes successive cleavage divisions to form the blastocyst, composed of ICM-cells surrounded by outer TE-cells. For further development, the blastocyst must ‘hatch’ or ‘escape’ out of the zona before it can implant into the endometrium for further development (Fig. 5.1A). Hence, the event of hatching or ‘zona escape’ assumes critical importance for the establishment of a successful pregnancy. The golden-hamster blastocyst offers a very unique paradigm to understand hatching, whereby upon attainment of a fully-expanded state, the blastocyst undergoes a dramatic (and molecularly unexplained) deflation event, followed by appearance of TE-derived dynamic cellular projections called TE-projections, whose appearance in an embryonic-stage and -time dependant manner suggest an intimate association with the hatching phenomenon (Fig. 5.1B). Thirdly, embryo-derived zonalytic proteases have been shown to bring about a focal-lysis of the ZP followed by global zona dissolution. Earlier work in the laboratory had demonstrated the intimate involvement of signaling molecules like LIF, HB-EGF, TGF-β and (ER)-α with hatching (Seshagiri et al., 2002, 2009). Investigations also revealed the involvement of cysteine-proteases of the cathepsin (cts) family, especially cts-L, -B and-P to be involved in zona lysis (Sireesha et al., 2008). In order to achieve a better understanding of mammalian preimplantation development, especially hatching, it was important to investigate the role and impact of other critical regulators of developmental and reproductive physiology. COX-2 is one such key signaling moiety and it was decided to investigate the role, if any, of COX-2 and its derived PGs in hamster peri-implantation events. COX-2 transcripts and immunoreactive COX-2 protein were detected in the different preimplantation stages, from 8-cell onwards. COX-2 protein was abundant in both the ICM and TE, but was especially enriched in the TE-cells of the late blastocyst. In order to investigate the function of this enzyme in preimplantation development and hatching, two very-specific inhibitors of COX-2 catalytic action, NS-398 and CAY-10404, were tested in identical concentrations of 25, 50 and 75 μM on in vitro cultured hamster blastocysts. In order to assess the impact of COX-2 inhibition on an embryo-stage and time-dependant manner, inhibitors were tested on freshly recovered 8-cell embryos or early blastocysts, continuously for 72 h or 48 h, respectively. COX-2-selective inhibitors inhibited hamster blastocyst hatching in a dose-dependant manner with maximum inhibition observed in the 75 μM dose. Surprisingly, there was a profound dose-dependent failure of deflation of late-blastocysts upon inhibitor treatment and embryos which hatched, did so in an inflated state and retained intact zonae in cultures. Moreover, embryos subjected to NS-398 treatment phenocopied those subjected to CAY-10404 treatment. Results demonstrate that the effect of inhibitors, and hence the need for COX-2 mediated signaling events is more pronounced in 8¬cell embryos than with early-blastocysts, indicating that COX-2 dependant molecular and cellular processes required for blastocyst morphogenesis and ZP-lysis may have been initiated prior to compaction and cavitation. The reversal of effects of COX-2 inhibition on hatching with exogenous addition of PGE2 and Iloprost (a stable PGI2 analogue) to inhibitor cultures, show that COX-2-derived eicosanoids could, in effect bring about hamster hatching, which is in agreement with previous reports (Davis et al., 1999) and augment peri-implantation development including hatching (Huang et al., 2003). Additionally, it has been successfully demonstrated that PGE2 was superior to PGI2 in augmenting blastocyst hatching in inhibitor-cultures. In this study, the modulation of critical cts-L, -B, -P proteases in COX-2 mediated hamster zona hatching has been verified by quantifying cts in transcripts in control and inhibitor-subjected embryonic samples which was further substantiated by the decreased intra-embryonal protein levels of cts-L and -P. These results demonstrate that COX-2 mediated signaling components directly and effectively modulate hamster preimplantation development, especially zona-hatching phenomenon by transcriptional-regulation of the critical zonalytic proteases. Another potential hatching-associated molecule i.e., NF-κB which is known to exert a great deal of influence on overall reproductive and developmental biology, was investigated in this study. Its specific effects on mammalian preimplantation development, especially hatching, remain totally uninvestigated. This formed the rationale to investigate the reach and impact of NF-κB signaling network in the modulation of peri-hatching events. Transcripts and immunoreactive NF-κB protein of crucial pathway-components like IKK, IκB-β and RelA were detected from 8-cell embryo to the zona-free blastocyst. In order to ascertain the impact of NF-κB signaling on peri-hatching events, two very-specific inhibitors of the NF-κB pathway, BAY-11-7082 and JSH-23 were employed which acted at two strategic signaling points. In order to assess the impact of NF-κB inhibition on an embryo-stage and time-dependant manner, inhibitors were tested on freshly recovered 8-cell embryos or early blastocysts, continuously for 72 h or 48 h, respectively. NF-κB-selective inhibitors inhibited blastocyst hatching in a dose-dependent manner. Interestingly, a profound dose-dependent failure of deflation of late-blastocysts upon inhibitor treatment was observed and embryos which hatched did so in an inflated state and also retained intact zonae in cultures. Moreover, embryos subjected to BAY-11-7082 treatment phenocopied those subjected to JSH-23 treatment, indicating specificity of inhibitor action. Time-course experiments demonstrated that the need for efficient NF-κB mediated signaling is distinctively more for 8-cell embryos than early-blastocysts, indicating that NF-κB dependant molecular and cellular processes required for blastocyst morphogenesis and ZP-lysis may have been initiated prior to compaction and cavitation. Moreover, modulation of zonalysins cts-L, -B and -P by NF-κB-signaling, during the event of zona lysis, both by real-time quantitation of its transcripts and intracellular protein levels has been demonstrated. These results demonstrate that NF¬κB mediated signaling components directly and effectively modulate hamster preimplantation development, especially zona-hatching phenomenon by transcriptional-regulation of the critical zonalytic proteases. The profound inhibition of hatching and effects on blastocyst morphogenesis observed by inhibition of COX-2 and NF-κB signaling systems demonstrate a fundamental need of the growing embryo for these critical signaling moieties. Moreover, the underlying similarity of consequences obtained upon inhibition of both signaling networks i.e., NF-κB and COX-2, perhaps indicate a linear mode of signaling between these principles. It remains to be tested, though, if it really is the case. A striking observation made in this study was the detection of immunoreactive signals for critical signaling moieties like ER-α, COX-2 and RelA onto TEPs of the deflated hamster blastocyst, in addition to earlier TEP-localisation of cathepsins. A B C (Figure) ENDOMETRIUM ENDOMETRIUM ENDOMETRIUM Fig 5.1. Schematic representation of the role of molecular and cellular factors in the regulation of concordant phenomena of mammalian blastocyst hatching and endometrial implantation. (A) Depicts a zona-intact well-formed blastocyst. Preimplantation embryo development and blastocyst formation involves close cooperation between several molecular principles (discussed in sections 1.3.1 to 1.3.3), (B) as the embryo prepares to hatch, prior to implantation, it initiates egression from the non-adhesive ZP coat by cathepsin (cts) protease-mediated lysis of zona (pink circles); there is concomitant appearance of cellular principles such as TEPs (undulating projections shown in green). Of interest is the intimate association of hatching-promoting molecules such as COX-2, NF-κB, ER-α, Cts etc. with the TEPs. (C) depicts a zona-free, TEP-rich blastocyst initiating implantation into the maternal endometrium. It is possible, that the embryonic TEPs with the associated hatching-regulatory molecules are also critical for implantation phenomena during the embryo-maternal recognition and implantation during the establishment of early pregnancy. Preliminary results indicate that TEPs could be the site of membrane lipid-rafts, focal points of membrane-based signaling. The definitive role of TEPs in peri-hatching events is yet to be confirmed, but it is presumed that these actin-based undulating structures, harboring several key molecules involved in peri-implantation events in the embryo as well as the maternal uterus could be instrumental in successfully bringing about the concomitant processes of hatching and implantation. Interestingly, during rodent implantation (hamster, guinea-pig, mouse and rat), the blastocyst orients in such a way that the ICM is oriented away from the endometrium and, at least in the hamster, the TEP-carrying abembryonic (mural) pole remains closest to the luminal epithelium (LE) (Gonzales et al., 1996b; Seshagiri et al., 2009; Fig. 5.1C). In contrast, in humans and other primates, the embryonic pole is closest to LE before implantation (Kirby, 1971; Lee and DeMayo, 2004). Although direct evidence is lacking, but these observations gives rise to a possibility that both hatching and implantation could be intimately related to the polar appearance of TEPs in the embryo. Several key signaling molecules like ER-α, LIF, HB-EGF and TGF-β have been already demonstrated to play crucial roles in mammalian hatching. In this thesis, we have exemplified the need for COX-2 mediated prostanoid signaling and the pleotropic NF-κB signaling system in bringing about mammalian blastocyst hatching. How exactly do these molecular entities communicate among themselves and with cellular principles like TEPs thereby effectively enabling peri-implantation development, remain to be understood. Taken together, these results demonstrate, for the first time, the involvement of embryo-derived signaling molecules, like COX-2 and NF-κB in an embryo stage-and time-dependant manner in mammalian peri-implantation events, especially blastocyst hatching. The association of TEPs with key molecules common to embryonic and maternal preparation for hatching and implantation, respectively, indicates towards a molecular and cellular continuity between the concomitant events. These fundamental findings on hamster blastocyst biology have profound clinical implications in the management of human infertility. (For figures pl see the abstract file).
195

INHIBITION OF METABOLISM AND INDUCTION OF APOPTOSIS IN TRIPLE NEGATIVE BREAST CANCER CELLS BY LIPPIA ORIGANOIDES PLANT EXTRACTS.

Vishak Raman (5930177) 15 May 2019 (has links)
<p>According to the Global Cancer Incidence, Mortality, and Prevention (GLOBOCAN) study for 2018, 2,089,000 women will have been diagnosed with breast cancer worldwide, with 627,000 breast cancer-related mortalities. It is estimated that between 15 – 20 % of breast cancer diagnoses are of the triple-negative subtype. Triple-negative breast cancers (TNBCs) do not express the receptors for estrogen, progesterone, and human epidermal growth factor 2, and hence cannot be treated using hormone receptor-targeted therapy. </p> <p>TNBCs are commonly of the basal-like phenotype, with high expression levels of proteins involved in epithelial-mesenchymal transition, extracellular-matrix (ECM) remodeling, cell cycle progression, survival and drug resistance, invasion, and metastasis. 5-year survival rates are significantly lower for TNBC patients, and the disease is characterized by poorer grade at the time of diagnosis as well as higher 5-year distant relapse rates, with a greater chance of lung and CNS metastases. Current treatments for TNBC take the form of aggressive cytotoxic chemotherapy regimens with multiple adverse side-effects. An important goal of on-going studies is to identify new compounds with significant TNBC-specificity, in order to improve patient survival outcomes while preserving a high quality of life during treatment.</p> <p> For several decades, compounds originally isolated from bioactive natural extracts, such as the taxanes and vinca<i> </i>alkaloids, have been at the forefront of chemotherapy. However, due to their non -specific mechanisms of action, treatment with these compounds eventually leads to significant toxicity to normal cells and tissues. Modern transcriptomics, metabolomics, and proteomics tools have greatly improved our understanding of the mechanisms governing cancer initiation and progression, and revealed the considerable heterogeneity of tumor cells. This has allowed for the identification of potential vulnerabilities in multiple cancers, including TNBCs. By leveraging these new technologies and insights with the tremendous diversity of bioactive compounds from organisms that remain unstudied, new classes of onco-drugs targeting pathways specific to TNBC cells could be identified in the near future.</p> <p>Here, we describe the cytotoxic effects of extracts from <i>Lippia origanoides </i>- a species of medicinal shrub native to Central and South America - on TNBC cells. We report that these extracts induce rapid, sustained, and irreversible apoptosis in TNBC cells <i>in vitro</i>, with significantly reduced cytotoxicity against normal mammary epithelial cells. The <i>L. origanoides </i>extracts LOE and L42 exploited two TNBC-specific characteristics to induce apoptosis in these cells: i) inhibiting the constitutively active survival and inflammatory NF-kB signaling pathway, and ii) significantly dysregulating the expression levels of mitochondrial enzymes required to maintain the TCA cycle and oxidative phosphorylation; metabolic pathways that are required for the maintenance of TNBC cell growth and proliferation.</p> <p>Finally, to lay the foundations for future studies on the abilities of these extracts to prevent tumor initiation and inhibit tumor growth <i>in vivo</i>, we also show that the <i>L. origanoides </i>extract, L42, is non-toxic<i> </i>to immunocompetent C57BL/6 mice, and have developed an <i>in vivo </i>model of human TNBC in athymic <i>nu/nu</i> mice. </p> <p>Collectively, our studies are the first to identify the anti-TNBC-specific properties of bioactive extracts from the <i>Lippia </i>species, and reveal that targeting NF-kB signaling and mitochondrial metabolism are potential avenues to new therapeutics against this subtype of breast cancer. Future work in our lab will focus on identifying the bioactive components (BACs) of the extract mediating its apoptotic effects, and shedding light on their protein binding partners within the cell.</p>
196

Étude de la polyubiquitination en lysine 63 dans les effets proinflammatoires de l'angiotensine II in vitro

St-Amant Verret, Myriam 01 1900 (has links)
No description available.
197

超音波応答性マンノース修飾リポソームを利用した腫瘍関連マクロファージ選択的核酸医薬送達に基づくがん治療に関する研究

河野, 裕允 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(薬学) / 甲第18215号 / 薬博第805号 / 新制||薬||237(附属図書館) / 31073 / 京都大学大学院薬学研究科医療薬科学専攻 / (主査)教授 橋田 充, 教授 髙倉 喜信, 教授 佐治 英郎 / 学位規則第4条第1項該当 / Doctor of Pharmaceutical Sciences / Kyoto University / DFAM
198

Elucidating the Molecular and Cellular Mechanism Underlying Cancer Cachexia

He, Wei January 2013 (has links)
No description available.
199

TCDD represses 3'<i>Igh</i>RR activation through an AhR-dependent shift in the NF-κB/Rel protein complexes binding to κB motifs within the hs1,2 and hs4 enhancers

Salisbury, Richard L., Jr. 29 May 2014 (has links)
No description available.
200

Molecular Pharmacology and Preclinical Studies of Novel Small-molecule Targeted Agents for The Treatment of Hepatocellular Carcinoma

Omar, Hany Ahmed Mostafa Mohamed 16 December 2010 (has links)
No description available.

Page generated in 0.0406 seconds