11 |
Quantification des gaz générés lors du fonctionnement d'une batterie Li-ion : effet des conditions opératoires et rôle de l'électrolyte / Quantification of gas generation during cycling of Li-ion batteries : effect of operating conditions and function of electrolyteXiong, Bao Kou 15 February 2018 (has links)
Le fonctionnement des batteries lithium-ion, qu’il soit normal ou dans des conditions abusives, est accompagné d’une génération de gaz en particulier lors des premiers cycles. Celle-ci est intrinsèque au dispositif et est soumise à de nombreux paramètres tels que les matériaux d’électrodes utilisés, l’électrolyte ou encore les conditions opératoires. Cette génération de gaz est délétère : elle conduit à l’augmentation de la pression interne des batteries et pose donc des problèmes de sécurité. Cette étude vise à quantifier les volumes de gaz générés et à comprendre les mécanismes liés à la surpression dans les batteries. A cet effet, le format de batterie « pouch cell » a été adopté tout au long de ce travail de thèse. L’électrolyte choisi est le mélange EC:PC:3DMC + 1 mol.L-1 LiPF6. La première partie de ce travail est dédiée à la mise au point d’un protocole expérimental basé sur (i) l’analyse des matériaux d’électrodes (NMC, LFP, Gr, et LTO), (ii) la solubilité de gaz (O2, H2) comparées à (CO2, CH4) par PVT, et (iii) la quantification des volumes de gaz générés durant le cyclage en pouch cell, corrélée aux performances électrochimiques. Une analyse préalable en demi-piles et en dispositifs complets Gr//NMC et LTO//LFP a également été réalisée afin d’anticiper les performances attendues en pouch cells. Une analyse critique des données (de la littérature et de nos mesures) a permis de définir une procédure optimisée pour obtenir des résultats reproductibles et comparables lors des mesures de volume en pouch cells. La seconde partie de cette thèse consiste en la quantification du volume de gaz produit au cours du cyclage des pouch cells Gr//NMC, Gr//LFP, LTO//LFP et LTO//NMC. Ainsi, les tensions de fin de charge, l’effet du sel et de la température ont été discutés pour dégager les paramètres déterminants dans la génération de gaz en particulier lors de la formation de la SEI. Enfin, une analyse de la composition du gaz récupéré a été effectué par GC-MS et FTIR. A partir de résultats obtenus, des mécanismes ont été proposés et discutés. / The functioning of lithium-ion batteries, may it be under normal use or under abusive conditions, is accompanied by gas generation, especially during the first cycles. This extent of gas generation is dependent on the choice of electrode materials, the electrolyte, and the operating conditions. This gas generation is detrimental: the build-up of pressure leads to the over-pressure in the battery, raising serious concerns. This study is aimed at understanding the fundamental mechanisms governing these reactions. To do so, the « pouch cell » configuration was adopted throughout this thesis. The electrolyte we worked on is the mixture EC:PC:3DMC + 1 mol.L-1 LiPF6. The first chapter of this work is dedicated to development of an experimental protocol based on (i) the analysis of the electrodes materials (NMC, LFP, Gr and LTO), (ii) the gas solubilities (O2, H2) compared to (CO2, CH4) by PVT method, and (iii) the quantification of the volume of generated gases during the cycling of pouch cells which was correlated to the electrochemical performances. A preliminary analysis of half-cells and full cells Gr//NMC and LTO//LFP were also conducted to foresee the performances of the pouch cells. A critical analysis of data taken from the literature and from our own experiments enabled the optimization of a proper procedure to get reproducible and comparable results. The second part of this thesis consists in the quantification of the volume of gases generated during the cycling of Gr//NMC, Gr//LFP, LTO//LFP and LTO//NMC pouch cells. In that respect, the voltages of the end of charge and the effect of salt and of temperature were discussed to figure out the essential parameters in the gas generation and in particular during the formation of SEI. Lastly, a compositional analysis of gases was performed using GC-MS and FTIR. Based on those results, a mechanism is proposed and discussed herein.
|
12 |
Temperature Optimization and Internal Chemical Changes on Cathode Material During Solution Discharge Step in Lithium-Ion Battery Recycling / Temperaturoptimering och inre kemiska förändringar på katodmaterial under lösningsurladdningssteget vid återvinning av litiumjonbatteriKarli, Berfu January 2021 (has links)
Sammanfattning på svenska: I nutiden, forskning och innovationer båda från akademi och industri försätter för att minska effekterna från klimatförändring. Ett av många viktiga område där utvecklingen fortsätter är litiumjonbatterier (LIB). På grund av den ökade energiförbrukningen i många områden (främst transporter) har ökat fossila bränsleförbrukningar och orsakat behovet av energi att lagras mer. Samhället kan inte bara fokusera på global miljövänlig batteriproduktion för att lösa detta problem. Samtidigt är det nödvändigt att koncentrera på hur man utvärderas begagnade batterierna som vi redan har. Återvinning av litiumjonbatterier har därför börjat få en ökad betydelse. Utmaningar för batteri återvinning är energi kravet för steg på processen och andra processer kan orsaka att skadliga ämnen släpps ut i naturen. Därför är det mycket viktigt att veta hur ett batteri påverkas av interna och externa förändringar från första till sista steget i återvinning och hur detta kommer att påverka de andra stegen. Detta examensarbete fokuserar på lösningsbaserade urladdningssteget i LIB-återvinning och syftar till att hitta den optimal temperatur genom att utforska möjliga förändringar som observerats på katodmaterialet. Inom ramen för projektet planerades temperaturoptimeringsstudien att göras genom att kombinera kemiska förändringar både inom och utanför batteriet i lösningsurladdningen. Detta är med en diskussion om särskilt fokus på att uppnå en hållbar återhämtning och kvaliteten på katodmaterialet. / In today's world, where global warming is felt in every sense, Research & Development (R&D) studies are continuing rapidly both in companies and in research networks to minimize its effects. One of the most important areas where developments continue is on lithium-ion batteries (LIBs). The increased energy consumption in many areas (mainly transportation), has increased fossil fuel consumption and caused the need for energy to be stored more. In this sense, focusing on only global-environmentally friendly battery production is insufficient to solve this problem. At the same time, it is necessary to concentrate on how to evaluate the used batteries that we already have. Therefore, lithium-ion battery recycling has begun to gain importance. Challenges for battery recycling are that some of the processes require energy inputs and others can generate harmful substances that require containment. Therefore, it is very important to know how a battery is affected by internal and external changes from the first to the last stage of recycling and how this will affect the other stages. This master thesis focuses on the solution discharge step in LIB recycling and aims to find the optimum temperature range for the discharge step of LIB recycling by exploration of the possible changes observed on the cathode material. In the scope of the project, the temperature optimization study was done by combining the chemical changes both inside and outside of the battery in the solution discharge. This is with a discussion of a particular focus on achieving a sustainable recovery and the quality of cathode material.
|
13 |
Analyzing the Performance of Lithium-Ion Batteries for Plug-In Hybrid Electric Vehicles and Second-Life ApplicationsJanuary 2017 (has links)
abstract: The automotive industry is committed to moving towards sustainable modes of transportation through electrified vehicles to improve the fuel economy with a reduced carbon footprint. In this context, battery-operated hybrid, plug-in hybrid and all-electric vehicles (EVs) are becoming commercially viable throughout the world. Lithium-ion (Li-ion) batteries with various active materials, electrolytes, and separators are currently being used for electric vehicle applications. Specifically, lithium-ion batteries with Lithium Iron Phosphate (LiFePO4 - LFP) and Lithium Nickel Manganese Cobalt Oxide (Li(NiMnCo)O2 - NMC) cathodes are being studied mainly due to higher cycle life and higher energy density values, respectively. In the present work, 26650 Li-ion batteries with LFP and NMC cathodes were evaluated for Plug-in Hybrid Electric Vehicle (PHEV) applications, using the Federal Urban Driving Schedule (FUDS) to discharge the batteries with 20 A current in simulated Arizona, USA weather conditions (50 ⁰C & <10% RH). In addition, 18650 lithium-ion batteries (LFP cathode material) were evaluated under PHEV mode with 30 A current to accelerate the ageing process, and to monitor the capacity values and material degradation. To offset the high initial cost of the batteries used in electric vehicles, second-use of these retired batteries is gaining importance, and the possibility of second-life use of these tested batteries was also examined under constant current charge/discharge cycling at 50 ⁰C.
The capacity degradation rate under the PHEV test protocol for batteries with NMC-based cathode (16% over 800 cycles) was twice the degradation compared to batteries with LFP-based cathode (8% over 800 cycles), reiterating the fact that batteries with LFP cathodes have a higher cycle life compared to other lithium battery chemistries. Also, the high frequency resistance measured by electrochemical impedance spectroscopy (EIS) was found to increase significantly with cycling, leading to power fading for both the NMC- as well as LFP-based batteries. The active materials analyzed using X-ray diffraction (XRD) showed no significant phase change in the materials after 800 PHEV cycles. For second-life tests, these batteries were subjected to a constant charge-discharge cycling procedure to analyze the capacity degradation and materials characteristics. / Dissertation/Thesis / Masters Thesis Materials Science and Engineering 2017
|
14 |
MANGANESE-BASED THIN FILM CATHODES FOR ADVANCED LITHIUM ION BATTERYZhimin Qi (8070293) 14 January 2021 (has links)
<p>Lithium ion batteries have been regarded as one of the most promising and intriguing
energy storage devices in modern society since 1990s. A lithium ion battery
contains three main components, cathode, anode, and electrolyte, and the
performance of battery depends on each component and the compatibility between
them. Electrolyte acts as a lithium ions conduction medium and two electrodes
contribute mainly to the electrochemical performance. Generally, cathode is the
limiting factor in terms of capacity and cell potential, which attracts significant
research interests in this field.Different
from conventional slurry thick film cathodes with additional electrochemically
inactive additives, binder-free thin film cathode has become a promising
candidate for advanced high-performance lithium ion batteries towards applications
such as all-solid-state battery, portable electronics, and microelectronics.
However, these electrodes generally require modifications to improve the
performance due to intrinsically slow kinetics of cathode materials. </p>
<p>In
this thesis work, pulsed laser deposition has been applied to design thin film
cathode electrodes with advanced nanostructures and improved electrochemical
performance. Both single-phase nanostructure designs and multi-phase
nanocomposite designs are explored. In terms of materials, the thesis focuses
on manganese based layered oxides because of their high electrochemical performance.
In Chapter 3 of the nanocomposite cathode work, well dispersed Au nanoparticles were introduced into highly
textured LiNi<sub>0.5</sub>Mn<sub>0.3</sub>Co<sub>0.2</sub>O<sub>2 </sub>(NMC532)
matrix to act as localized current collectors and decrease the charge transfer resistance.
To further develop this design, in Chapter 4, tilted Au pillars were incorporated
into Li<sub>2</sub>MnO<sub>3</sub> with more effective conductive Au
distribution using simple one-step oblique angle pulsed laser deposition. In
Chapter 5, the same methodology was also applied to grow 3D Li<sub>2</sub>MnO<sub>3</sub>
with tilted and isolated columnar morphology, which largely increase the lithium
ion intercalation and the resulted rate capability. Finally, in Chapter 6, direct
cathode integration of NMC532 was attempted on glass substrates for potential
industrial applications. </p>
|
15 |
A Multinuclear Magnetic Resonance Study of Alkali Ion Battery Cathode MaterialsHurst, Chelsey January 2019 (has links)
The need for highly efficient energy storage devices has been steadily increasing due to growing energy demands. Research in electrochemical energy storage in the form of batteries has consequently become crucial. Currently, the most commercialized battery technology is the lithium ion battery (LIB). Concerns over the relatively limited global lithium supply, however, have led to the development of sodium ion batteries (SIBs). Solid-state nuclear magnetic resonance (ssNMR) spectroscopy is an ideal technique for analyzing battery materials as it can potentially distinguish between different ions within the material.
The most typical cathode for commercial LIBs are the family of NMC layered oxides with the general form Li[NixMnyCo1-x-y]O2, which consist of Li layers between sheets of transition metals (TMs). The pj-MATPASS NMR technique, in conjunction with Monte Carlo simulations, was applied to investigate the ionic arrangement within TM layers of NMC622 (Li[Ni0.6Mn0.2Co0.2]O2), which revealed the presence of ion clustering in the pristine form of this material.
This thesis also investigated the promising SIB cathode, Na3V2(PO4)2F3 (NVPF). NVPF has the capability to produce energy densities comparable to those of LIBs and is well understood from a structural standpoint, however ion dynamics within the material are still undetermined. A series of materials have, therefore, been synthesized with the general form, Na3V2-xGax(PO4)2F3 (where x = 0, 1, and 2), where diamagnetic Ga3+ was introduced into the structure to enable the establishment of a structural correlation with observed Na-ion dynamics. It, therefore, became possible to explore ionic site exchange using 23Na ssNMR. Density functional theory (DFT) calculations have also been performed alongside ssNMR to confirm chemical shift assignments and provide structural insight. Additionally, electron paramagnetic resonance (EPR) spectroscopy was also used to investigate the paramagnetic nature of NVPF and its variants. Insights into the ionic arrangement and very fast Na-ion dynamics within these materials were revealed. / Thesis / Master of Science (MSc) / The need for highly efficient energy storage devices, especially in the form of batteries, has been steadily increasing due to growing energy demands. Presently, the most commercialized types of batteries are lithium ion batteries (LIBs). Concerns over the relatively limited global lithium supply, however, have led to the development of sodium ion battery (SIB) alternatives. Various solid-state nuclear magnetic resonance (ssNMR) techniques have been employed in this thesis to investigate both LIB and SIB cathode materials. The LIB cathode Li[Ni0.6Mn0.2Co0.2]O2 was examined with a combination of ssNMR and Monte Carlo simulations, and it was found that ion clustering occurs in the pristine form of these materials. The promising family of SIB cathodes, Na3V2-xGax(PO4)2F3, was studied by a combination of ssNMR, ab initio calculations, and EPR, which allowed for a correlation to be established between the crystal structure and the fast ion dynamics within these materials.
|
16 |
THERMAL MANAGEMENT TECHNOLOGIES OF LITHIUM-ION BATTERIES APPLIED FOR STATIONARY ENERGY STORAGE SYSTEMS : Investigation on the thermal behavior of Lithium-ion batteriesAli, Haider Adel Ali, Abdeljawad, Ziad Namir January 2020 (has links)
Batteries are promising sources of green and sustainable energy that have been widely used in various applications. Lithium-ion batteries (LIBs) have an important role in the energy storage sector due to its high specific energy and energy density relative to other rechargeable batteries. The main challenges for keeping the LIBs to work under safe conditions, and at high performance are strongly related to the battery thermal management. In this study, a critical literature review is first carried out to present the technology development status of the battery thermal management system (BTMS) based on air and liquid cooling for the application of battery energy storage systems (BESS). It was found that more attention has paid to the BTMS for electrical vehicle (EV) applications than for stationary BESS. Even though the active forced air cooling is the most commonly used method for stationary BESS, limited technical information is available. Liquid cooling has widely been used in EV applications with different system configurations and cooling patterns; nevertheless, the application for BESS is hard to find in literature.To ensure and analyze the performance of air and liquid cooling system, a battery and thermal model developed to be used for modeling of BTMS. The models are based on the car company BMW EV battery pack, which using Nickel Manganese Cobalt Oxide (NMC) prismatic lithium-ion cell. Both air and liquid cooling have been studied to evaluate the thermal performance of LIBs under the two cooling systems.According to the result, the air and liquid cooling are capable of maintaining BESS under safe operation conditions, but with considering some limits. The air-cooling is more suitable for low surrounding temperature or at low charging/discharge rate (C-rate), while liquid cooling enables BESS to operate at higher C-rates and higher surrounding temperatures. However, the requirement on the maximum temperature difference within a cell will limits the application of liquid cooling in some discharge cases at high C-rate. Finally, this work suggests that specific attention should be paid to the pack design. The design of the BMW pack is compact, which makes the air-cooling performance less efficient because of the air circulation inside the pack is low and liquid cooling is more suitable for this type of compact battery pack.
|
17 |
HETEROGENEOUS BATTERY SYSTEMS IN BATTERY EQUIPPED PASSENGER TRAINSLundin, Emil, Bergelin, Johan January 2021 (has links)
The rise of batteries in the industry, especially Li-ion, is increasing rapidly. Li-ion battery systems are traditionally composed of a particular type of cell chemistry fit to the system needs. Due to the significant differences between chemistries, different cells have different attributes. The thesis explores the potential of a heterogeneous solution to include different cells to find a suitable compromise between different attributes. An electrified passenger train using a homogenous solution was evaluated against a heterogeneous solution consisting of two cell types, NMC and LTO, which have significant differences in attributes. Simulation with models covering the train kinematics, track characteristics, and battery behaviour generates the thesis results. Validation of simulation results includes comparing previous simulations and the new effects of the heterogeneous solution, which indicate a good fit. Verification of the results encompasses a small-scale experiment with a custom-made physical circuit to observe the proposed solution's actual behaviour and verify model validity, which implies the correctness of models and implementation. The results indicate that a heterogeneous solution is possible within the scope of electrified trains. Furthermore, several trade-offs exist between NMC and LTO cells, especially regarding rate capability, safety and capacity, which confirms the potential of heterogeneous battery systems.
|
18 |
Совершенствование механизма ценообразования на гражданскую продукцию предприятий ВПК (на примере ФГУП УЭМЗ) : магистерская диссертация / Perfection of the mechanism of pricing for civil products of enterprises of the military-industrial complex (on the example of FSUE UEMZ)Сотников, С. А., Sotnikov, S. A. January 2017 (has links)
In the dissertation research questions of perfection of the mechanism of pricing on civil products of enterprises of military-industrial complex are considered.
The work analyzes the existing economic-theoretical pricing models, identifies the factors that determine the choice of a particular model, considers the mechanisms and methods of pricing.
Based on the results of the analysis, key problems that hamper effective pricing have been identified, and proposals have been developed to improve the efficiency of the pricing system for civilian products by the example of FSUE UEMZ.
The mechanism of pricing for competitive purchasing methods is proposed, which is characterized by the adjustment of the applied methodological approaches, and the use of a currency settlement forward for hedging currency risks, which makes it possible to increase the efficiency of pricing for civilian products through more flexible price formation directly in the bidding process. / В диссертационном исследовании рассмотрены вопросы совершенствования механизма ценообразования на гражданскую продукцию предприятий ВПК.
В работе проведен анализ существующих экономико-теоретические моделей ценообразования, выявлены факторы, обуславливающие выбор той или иной модели, рассмотрены механизмы и методы ценообразования.
По результатам проведенного анализа выявлены ключевые проблемы, препятствующие эффективному ценообразованию, а так же разработаны предложения по повышению эффективности системы ценообразования на продукцию гражданского назначения на примере ФГУП УЭМЗ.
Предложен механизм ценообразования для конкурентных способов закупки, отличающийся корректировкой применяемых методических подходов, и использованием валютного расчетного форварда для хеджирования валютных рисков, позволяющий повысить эффективность ценообразования на продукцию гражданского назначения за счет более гибкого формирования цен непосредственно в процессе торгов.
|
19 |
Aging Propagation Modeling and State-of-Health Assessment in Advanced Battery SystemsCordoba Arenas, Andrea Carolina January 2013 (has links)
No description available.
|
20 |
Revêtement en LiAlO2 sur des particules d’un matériau d’électrode positive LiNi0,6Mn0,2Co0,2O2 pour batterie aux ions lithiumTouag, Ouardia 05 1900 (has links)
Des progrès dans les batteries aux ions lithium sont en cours de développement afin de répondre, entre autres, à la demande croissante des hautes densités d'énergie et de puissance pour le réseau électrique et en particulier pour l'application dans les véhicules électriques. Ces derniers remplacent écologiquement les véhicules à moteur à combustion interne et leurs succès est principalement dû à leur efficacité énergétique supérieure, à leurs faibles coûts d'exploitation et à leur profil respectueux de l'environnement par rapport aux véhicules à essence.
Parmi les différents matériaux de cathode, les composés d'intercalation LiNixMnyCo1-x-yO2 (NMC) sont les meilleurs candidats pour des applications dans les batteries aux ions lithium à hautes performances. Des efforts sont en cours pour mettre en oeuvre des matériaux cathodiques à base de NMC riches en nickel pour répondre aux besoins environnementaux et énergétiques. Aussi séduisants soient-ils, ces matériaux de cathode présentent certains inconvénients liés à une forte réactivité, notamment à l'interface avec l'électrolyte. Pour contourner ces problèmes, des modifications de surface sont étudiées comme des solutions accessibles pour protéger le matériau actif et améliorer ses performances. Bien que diverses chimies et stratégies de revêtement soient publiées dans la littérature, notre approche consistant à combiner la synthèse et la modification de surface du matériau actif en une étape est aussi simple qu'efficace. Le présent manuscrit porte sur l’étude de ce composé.
Deux méthodes de revêtement de surface ont été étudiées et leur matériau revêtu résultant a été comparé au matériau non revêtu. Après une caractérisation détaillée de ces matériaux, des études électrochimiques ont été menées afin d’évaluer leurs performances. Enfin, notre NMC622 revêtu de LiAlO2 en une seule étape s'est avéré efficace pour contrer la dégradation de la capacité du NMC et pour améliorer la stabilité structurelle des particules, améliorant ainsi leur cycle de vie. / Advances in lithium-ion batteries are being developed in order to meet, among other things, the increasing demand for high energy and power densities for the electric power grid and especially for application in electric vehicles. The latter are a green replacement for internal combustion engine vehicles, and their success is mostly due to their higher energy efficiency, low operating costs and eco-friendliness compared to gasoline-powered vehicles.
Among various cathode materials, LiNixMnyCo1-x-yO2 (NMC) intercalation compounds are the best candidates for applications in high performance lithium-ion batteries. Efforts are underway to implement nickel-rich NMC-based cathode materials to meet environmental and energy needs. As appealing as they are, these cathode materials present certain drawbacks associated with high reactivity, especially at the interface with the electrolyte. To circumvent these issues, surface modifications are investigated as accessible solutions to protect the active material and enhance its performance. Although various coating chemistries and strategies are published in the literature, our approach of combining synthesis and surface modification of the active material in a single pot is as simple as it is efficient. The following manuscript will be covering the study of this material.
Two methods of surface coating were studied, and their resulting coated material was compared to the uncoated material. After a detailed characterization of these materials, electrochemical studies were carried out to evaluate their performance. Finally, our resulting one pot LiAlO2- coated NMC622 has shown to be effective in counteracting NMC capacity degradation and improving the structural stability of the particles, thereby improving their cycle- life.
|
Page generated in 0.0295 seconds