Spelling suggestions: "subject:"nilpotent"" "subject:"nilpotente""
51 |
Ga-actions on Complex Affine ThreefoldsHedén, Isac January 2013 (has links)
This thesis consists of two papers and a summary. The papers both deal with affine algebraic complex varieties, and in particular such varieties in dimension three that have a non-trivial action of one of the one-dimensional algebraic groups Ga := (C, +) and Gm := (C*, ·). The methods used involve blowing up of subvarieties, the correspondances between Ga - and Gm - actions on an affine variety X with locally nilpotent derivations and Z-gradings respectively on O(X) and passing from a filtered algebra A to its associated graded algebra gr(A). In Paper I, we study Russell’s hypersurface X , i.e. the affine variety in the affine space A4 given by the equation x + x2y + z3 + t2 = 0. We reprove by geometric means Makar-Limanov’s result which states that X is not isomorphic to A3 – a result which was crucial to Koras-Russell’s proof of the linearization conjecture for Gm -actions on A3. Our method consist in realizing X as an open part of a blowup M −→ A3 and to show that each Ga -action on X descends to A3 . This follows from considerations of the graded algebra associated to O(X ) with respect to a certain filtration. In Paper II, we study Ga-threefolds X which have as their algebraic quotient the affine plane A2 = Sp(C[x, y]) and are a principal bundle above the punctured plane A2 := A2 \ {0}. Equivalently, we study affine Ga -varieties Pˆ that extend a principal bundle P over A2, being P together with an extra fiber over the origin in A2. First the trivial bundle is studied, and some examples of extensions are given (including smooth ones which are not isomorphic to A2 × A). The most basic among the non-trivial principal bundles over A2 is SL2 (C) −→ A2, A 1→ Ae1 where e1 denotes the first unit vector, and we show that any non-trivial bundle can be realized as a pullback of this bundle with respect to a morphism A2 −→ A2. Therefore the attention is then restricted to extensions of SL2(C) and find two families of such extensions via a study of the graded algebras associated with the coordinate rings O(Pˆ) '→ O(P ) with respect to a filtration which is defined in terms of the Ga -actions on P and Pˆ respectively.
|
52 |
Tinkertoys for Gaiotto dualityChacaltana Alarcon, Oscar Chacaltana 28 September 2011 (has links)
We describe a procedure for classifying 4D N=2 superconformal theories of the type introduced by Davide Gaiotto. Any punctured curve, C, on which the 6D (2,0) SCFT is compactified, may be decomposed into 3-punctured spheres, connected by cylinders. The 4D theories, which arise, can be characterized by listing the ``matter" theories corresponding to 3-punctured spheres, the simple gauge group factors, corresponding to cylinders, and the rules for connecting these ingredients together. Different pants decompositions of C correspond to different S-duality frames for the same underlying family of 4D \mathcal{N}=2 SCFTs. We developed such a classification for the A_{N-1} and the D_N series of 6D (2,0) theories. We outline the procedure for general A_{N-1} and D_N, and construct, in detail, the classification through A_4 and D_4, respectively. / text
|
53 |
Étude d'un modèle de Gause généralisé avec récolte de proies et fonction de Holling type III généraliséeEtoua, Remy Magloire Dieudonné January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
|
54 |
Derivações localmente nilpotentes e os teoremas de Rentschler e JungAbreu, Kelyane Barboza de 19 February 2014 (has links)
Made available in DSpace on 2015-05-15T11:46:20Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 685495 bytes, checksum: 924951307927847259c1bd0253812600 (MD5)
Previous issue date: 2014-02-19 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The main goal of this work is to furnish a proof of the well-known Rentschler s Theorem,
which describes the structure of the locally nilpotent derivations on the polynomial
ring in two indeterminates (over a field of characteristic zero), up to conjugation by tame
automorphisms. As a central application of this result, we prove Jung s Theorem, concerning
the generators of the group of automorphisms in two variables. Finally, some
examples are discussed, illustrating connections to other important topics. / O principal objetivo deste trabalho é fornecer uma demonstração do bem-conhecido
Teorema de Rentschler, que descreve a estrutura das derivações localmente nilpotentes
sobre o anel de polinômios em duas variáveis (sobre um corpo de característica zero), a
menos de conjugação por automorfismos tame . Como aplicação central deste resultado,
provamos o Teorema de Jung, sobre os geradores do grupo de automorfismos em duas
variáveis. Finalmente, alguns exemplos são discutidos, ilustrando conexões com outros
tópicos importantes.
|
55 |
Geometrické postupy v řízení robotických hadů / Geometric approach in robotic snake motion controlVechetová, Jana January 2018 (has links)
Tato diplomová práce se zabývá popisem řiditelnosti specifického robotického hada, který se nazývá trident snake robot. Tento robot je řazen mezi neholonomní systémy. Model je převeden do jazyka diferenciální geometrie a řízen pomocí vektorových polí a operace na nich zavedené (Lieova závorka). Je také uvažována aproximace řídicí distribuce. Dále jsou formulovány pohyby hada ve směru vektorových polí a jejich kombinace, které zajišťují základní pohyby v prostoru (rotace a translace). Tyto pohyby jsou na závěr simulovány v prostředí V-REP.
|
56 |
Equidistribution on Chaotic Dynamical SystemsPolo, Fabrizio 25 July 2011 (has links)
No description available.
|
57 |
Complex Dynamics and Bifurcations of Predator-prey Systems with Generalized Holling Type Functional Responses and Allee Effects in PreyKottegoda, Chanaka 15 September 2022 (has links)
No description available.
|
58 |
On the Nilpotent Representation Theory of GroupsMilana D Golich (18423324) 23 April 2024 (has links)
<p dir="ltr">In this article, we establish results concerning the nilpotent representation theory of groups. In particular, we utilize a theorem of Stallings to provide a general method that constructs pairs of groups that have isomorphic universal nilpotent quotients. We then prove by counterexample that absolute Galois groups of number fields are not determined by their universal nilpotent quotients. We also show that this is the case for residually nilpotent Kleinian groups and in fact, there exist non-isomorphic pairs that have arbitrarily large nilpotent genus. We additionally provide examples of non-isomorphic curves whose geometric fundamental groups have isomorphic universal nilpotent quotients and the isomorphisms are compatible with the outer Galois actions. </p>
|
59 |
Loops de Bol 2-nilpotentes e de expoente 2 / 2-nilpotent Bol loops of exponent 2Spohr, Cristina 16 March 2010 (has links)
Neste trabalho estudamos loops de Bol 2-nilpotentes e de expoente 2. Além disso, mostramos que o ideal de aumento de uma álgebra de loop, de um loop finito p-nilpotente em característica p > 0, é nilpotente. Com este resultado conseguimos caracterizar os elementos inversíveis da álgebra de loop de um loop 2-nilpotente sobre um corpo de dois elementos. Provamos também que loops de Bol finitos 2-nilpotentes e de expoente 2 podem ser mergulhados em um loop de Bol à direita de elementos inversíveis de uma álgebra alternativa à direita, sobre um corpo de característica dois. / In this work we study 2-nilpotent Bol loops of exponent 2. Besides, we prove that the augmentation ideal of a loop algebra, of a finite p-nilpotent loop in characteristic p > 0, is nilpotent. With this result we characterized the invertible elements of the loop algebra of a 2-nilpotent loop over a field with two elements. We also proof that 2-nilpotent Bol loops of exponent 2 may be embedded into a right Bol loop of invertible elements of a right alternative algebra, over a field of characteristic 2.
|
60 |
Correspondance de Springer modulaire et matrices de décompositionJuteau, Daniel 11 December 2007 (has links) (PDF)
In 1976, Springer defined a correspondence making a link between the irreducible ordinary (characteristic zero) representations of a Weyl group and the geometry of the associated nilpotent variety. In this thesis, we define a modular Springer correspondence (in positive characteristic), and we show that the decomposition numbers of a Weyl group (for example the symmetric group) are particular cases of decomposition numbers for equivariant perverse sheaves on the nilpotent variety. We calculate explicitly the decomposition numbers associated to the regular and subregular classes, and to the minimal and trivial classes. We determine the correspondence explicitly in the case of the symmetric group, and show that James's row and column removal rule is a consequence of a smooth equivalence of nilpotent singularities obtained by Kraft and Procesi. The first chapter contains generalities about perverse sheaves with Z_l and F_l coefficients.
|
Page generated in 0.0463 seconds