• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 12
  • 5
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 86
  • 86
  • 29
  • 19
  • 18
  • 16
  • 14
  • 13
  • 12
  • 11
  • 11
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Remodelage électrique cardiaque dans des modèles murins de cardiomyopathies

Rivard, Katy 10 1900 (has links)
Les cardiomyopathies sont une atteinte du myocarde qui se présente sous différentes formes telles que l’hypertrophie ou la dilatation des chambres cardiaques. Ces maladies du muscle cardiaque peuvent affecter la contraction cardiaque et dégénèrer en insuffisance cardiaque. Aussi, l’hypertrophie et l’insuffisance cardiaques sont associées à une augmentation de la morbidité et de la mortalité cardiovasculaires principalement due au remodelage électrique et à la survenue d’arythmies. De plus, le retard de repolarisation, associé à une diminution des courants K+, est un des troubles cardiaques les plus couramment observés lors de ces pathologies cardiaques. L’angiotensine II (Ang II) et la norépinéphrine, principaux effecteurs du système rénine-angiotensine et du système nerveux sympathique, peuvent tous deux agir directement sur le cœur en liant les récepteurs de type 1 de l’Ang II (AT1) et les récepteurs adrénergiques. L’Ang II et la norépinéphrine sont associées au développement des cardiomyopathies, au remodelage cardiaque et à une prolongation de la durée du potentiel d'action cardiaque. Deux modèles de souris trangéniques surexprimant spécifiquement au niveau cardiaque les récepteurs AT1 (la souris AT1R) ou les récepteurs α1B-adrénergiques (la souris α1B-AR) ont été créés afin d’étudier les effets de ces stimuli sur le cœur. Ces deux modèles de souris développent du remodelage cardiaque, soit de l’hypertrophie chez les souris AT1R (cardiomyopathie hypertrophique) ou une dilatation des chambres cardiaques chez les souris α1B-AR (cardiomyopathie dilatée). Au stade avancé de la maladie, les deux modèles de souris transgéniques sont insuffisants cardiaques. Des données préliminaires ont aussi montré que les souris AT1R et les souris α1B-AR ont une incidence accrue d’arythmies ainsi qu’une prolongation de la durée du potentiel d’action. De plus, ces deux modèles de souris meurent subitement et prématurément, ce qui laissait croire qu’en conditions pathologiques, l’activation des récepteurs AT1 ou des récepteurs α1B-adrénergiques pouvait affecter la repolarisation et causer l’apparition d’arythmies graves. Ainsi, l’objectif de ce projet était de caractériser la repolarisation ventriculaire des souris AT1R et α1B-AR afin de déterminer si la suractivation chronique des récepteurs de l’Ang II ou des récepteurs 1B-adrénergiques pouvait affecter directement les paramètres électrophysiologiques et induire des arythmies. Les résultats obtenus ont révélé que les souris AT1R et les souris α1B-AR présentent un retard de repolarisation (prolongation de l’intervalle QTc (dans l’électrocardiogramme) et de la durée du potentiel d’action) causé par une diminution des courants K+ (responsables de la repolarisation). Aussi, l’incidence d’arythmies est plus importante dans les deux groupes de souris transgéniques comparativement à leur contrôle respectif. Finalement, nous avons vu que les troubles de repolarisation se produisent également dans les groupes de souris transgéniques plus jeunes, avant l’apparition de l’hypertrophie ou du remodelage cardiaque. Ces résultats suggèrent qu’en conditions pathologiques, l’activation chronique des récepteurs de l’Ang II ou des récepteurs α1B-adrénergiques peut favoriser le développement d’arythmies en retardant la repolarisation et cela, indépendamment de changements hémodynamiques ou du remodelage cardiaque. Les résultats de ces études pourront servir à comprendre les mécanismes responsables du développement d’arythmies cardiaques lors du remodelage et de l’insuffisance cardiaques et pourraient aider à optimiser le choix des traitements chez ces patients atteints ou à risque de développer de l’hypertrophie ou du remodelage cardiaque. / Cardiomyopathies are diseases of the myocardium that may have several causes and comes in different forms such as cardiac hypertrophy or dilatation. Cardiomyopathies are often progressive diseases that cause a loss of heart function and lead to heart failure. In addition, hypertrophy and heart failure are associated with increased morbidity and mortality mainly due to electrical remodeling and arrhythmias. Delayed repolarization associated with a decrease of K+ currents, is one of the most common cardiac disorders associated with cardiac remodeling. Angiotensin II (Ang II) and norepinephrine, the main effectors of the renin-angiotensin system and of the sympathetic nervous system, can both act directly on the heart by binding the Ang II type 1 receptor (AT1) and the adrenergic receptors. Ang II and norepinephrine are both associated with the development of cardiomyopathy, cardiac remodeling and prolongation of action potential duration. Two transgenic mouse models overexpressing the AT1 receptors (AT1R mouse) or the α1B-adrenergic receptors (α1B-AR mouse) specifically in the myocardium have been developed to study the effects of these stimuli on the heart. These two mouse models developed cardiac remodeling such as hypertrophy for the AT1R mice (hypertrophic cardiomyopathy) and dilatation of cardiac chambers for α1B-AR mice (dilated cardiomyopathy). In advanced stage of the disease, the two transgenic mouse models exhibit heart failure. Preliminary data showed that both transgenic mouse models experience cardiac arrhythmias and have a prolongation of the action potential duration. Moreover, AT1R and α1B-AR mice die suddenly and prematurely, which suggested that in pathological conditions, activation of the Ang II type 1 receptor or of the α1B-adrenergic receptor may affect repolarization and can be responsible for the incidence of serious arrhythmias causing the death of these mice. Base on these informations, the objective of this project was to characterize the ventricular repolarization in AT1R and α1B-AR mice to see if an increase of the activation of the Ang II type 1 receptor or of the 1B-adrenergic receptor could directly affect electrophysiological parameters and lead to severe arrhythmias. Results showed that both AT1R mice and α1B-AR mice have a delayed ventricular repolarization (prolongation of the QTc interval and action potential duration) caused by a decrease in outward K+ currents (responsible for the repolarization). In addition, the incidence of arrhythmias is higher in both groups of transgenic mice compared with their respective control. Finally, we have seen that repolarization disorders also occur in younger mice of both models of cardiomyopathy that do not present sign of hypertrophy and cardiac remodeling. These results suggest that under pathological conditions, the overactivation of the Ang II type 1 receptor or of the α1B-adrenergic receptor can directly promote the development of arrhythmias by delaying the repolarization independently of hemodynamic variations and pathological phenotype. The results of these studies can be useful to understand the mechanisms underlying the development of cardiac arrhythmias in patients suffering from cardiac hypertrophy or failure and may help to choose the best treatment for these patients.
82

Troubles du rythme cardiaque dans les modèles murins transgéniques

Le Quang, Khai 10 1900 (has links)
Les maladies cardio-vasculaires sont la première cause de mortalité dans le monde. L’hypertrophie cardiaque est un processus de remodelage provoqué par une surcharge de travail du muscle cardiaque afin de mieux répondre à la demande de l’organisme. Bien que bénéfique à court terme, une hypertrophie trop accentuée conduira à long terme, à une insuffisance cardiaque. L’hypertrophie est associée à un remodelage électrique qui conduit généralement à un allongement du potentiel d’action, une des causes des arythmies ventriculaires et de la mort subite. Généralement, le mécanisme causal est la fibrillation ventriculaire, un trouble du rythme irréversible dont les mécanismes sont complexes et méconnus. Si les conséquences fonctionnelles in vitro des mutations génétiques ou du remodelage ionique sont relativement simples à étudier ou à prévoir, leur rôle dans les mécanismes des troubles du rythme in vivo sont plus difficiles à appréhender. Parmi les nombreux modèles animaux développés pour la recherche sur les troubles du rythme, la souris est de plus en plus utilisée en raison de notre capacité à muter, invalider ou sur-exprimer les gènes d'intérêt chez ces animaux. L'objectif de mon travail de thèse était de mieux comprendre le rôle des canaux ioniques en physiopathologie cardiaque, en particulier dans la survenue des troubles du rythme in vivo. Ces travaux ont permis d'améliorer notre connaissance du rôle des anomalies génétiques impliquant des canaux ioniques et du remodelage ionique dans la physiopathologie des troubles du rythme et pourrait ainsi ouvrir de nouvelles perspectives thérapeutiques dans le traitement anti-remodelage cardiaque et la prévention de la mort subite. / Cardiovascular disease is the leading cause of death in the world each year. If no action is taken to improve cardiovascular health and current trends continue, WHO estimates that 25% more healthy life years will be lost to cardiovascular disease globally by 2020. Cardiac hypertrophy is the consequence of an excessive workload of the heart muscle leading to cardiac remodeling process. As the workload increases, the ventricular walls grow thicker, lose elasticity and eventually may fail to pump with as much force as a healthy heart. Furthermore, hypertrophied myocardium is not physiologically normal and may confer a predisposition to potentially fatal arrhythmias. Generally, the causal mechanism is ventricular fibrillation, a cardiac rhythm disorder which is irreversible but the pathophysiological mechanisms are complex and poorly understood. The functional consequences of mutations or ionic remodeling are relatively simple to study in vitro, but their role in the pathophysiology of arrhythmias in vivo is more difficult to grasp. Among the different animal models developed in cardiac arrhythmias research, the mouse is increasingly used because of our ability to mutate, knock-out or over-express genes of interest. The objective of my thesis was to study the role of ion channels in physiology as well as cardiac pathophysiology, particularly in the involvement of the occurrence of cardiac arrhythmias in vivo. This thesis will improve our understanding of the role of genetic abnormalities involving ionic remodeling in the pathogenesis of the heart and may also open new therapeutic perspectives in the treatment of cardiac remodeling as well as sudden cardiac death. / Thèse en cotutelle avec Université de Nantes - Pays de La Loire - France (2005-2010)
83

Les oncogènes NUP98-PHF23 et NUP98-HOXD13 confèrent un potentiel aberrant d’auto-renouvellement aux progéniteurs thymiques

Tardif, Magalie 09 1900 (has links)
No description available.
84

Implication de l'acide docosanoïque (C22 0) et des acides gras à très longue chaîne (acide tétracosanoïque (C24 0), acide hexacosanoïque ( C26 0) dans la maladie d'Alzheimer : aspects biologiques et cliniques / Involvment of docosanoïc acid (C22=0), and of very long chain fatty acids (tetracosanoïc acid (C24=0), hexacosanoïc acid (C26=0) in Alzheimer's disease : biological and clinical aspects

Zarrouk, Amira 19 December 2013 (has links)
Au niveau du cerveau et dans le plasma de malades atteints de maladie d’Alzheimer (MA), l’accumulation de C22:0 et d’acides gras à très longue chaîne (C24:0 ; C26:0), la diminution d’acide docosahexaenoique (C22:6 n-3) et les modifications quantitatives et qualitatives de plasmalogènes suggèrent l’implication de dysfonctions peroxysomales. En fonction de ces constatations, les activités biologiques de C22:0, C24:0 et C26:0 ont été recherchées sur des cellules neuronales humaines SK-N-BE. La lipotoxicité des acides gras (C22:0, C24:0 et C26:0) induit divers effets au niveau des mitochondries (modifications topographiques, morphologiques et fonctionnelles), conduit à une rupture de l’équilibre RedOx (surproduction d’espèces radicalaires de l’oxygène, modification de l’activité des enzymes anti-oxydantes : catalase, SOD, GPx), à une peroxydation lipidique et à une désorganisation du cytosquelette (microfilaments d’actine, tubuline, neurofilaments). Ces acides affectent aussi l’amyloïdogenèse et la tauopathie. L’amyloïde béta favorise aussi l’accumulation intracellulaire de C22:0, C24:0 et C26:0. A fortes concentrations, ces acides gras induisent une mort cellulaire non apoptotique. Par ailleurs, les données immunohistochimiques en relation avec l’expression de marqueurs peroxysomaux (ABCD1, ABCD2, ABCD3, ACOX1 et catalase) au niveau du cerveau de souris transgéniques APP PS1 ΔE9 ainsi que les profil d’acide gras obtenus sur le cerveau et le sang de ces souris suggèrent qu’elles pourraient constituer un bon modèle pour l’étude des relations entre MA et métabolisme peroxysomal. L’étude clinique réalisée sur plasma et érythrocytes de malades déments (MA, démences vasculaires, autres démences) montre une forte accumulation de C22:0, C24:0 et C26:0. Le C26:0 pourrait constituer un excellent biomarqueur de la MA. Le C18:0 à est aussi augmenté ainsi que les acides gras n-6. De forts indices de stress oxydant sont aussi révélés. Dans son ensemble, le travail réalisé suggère que les acides gras (C22:0, C24:0 et C26:0) ainsi que le métabolisme des acides gras en relation avec le métabolisme peroxysomal pourraient contribuer à la neurodégénéréscence associée aux démences incluant la MA / In the brain and in the plasma of patients with Alzheimer’s disease (AD), marked accumulation of C22:0 and of very long chain fatty acids (C24:0 ; C26:0) have been reported. Important decreases of docosahexaenoic acid (DHA; C22:6 n-3) have also been described as well as quantitative and qualitative modifications of plasmalogens. Altogether, these lipid modifications suggest an implication of peroxisomal metabolism disorders in the physiopathology of AD. Therefore, the biological activities of C22:0, C24:0 and C26:0 have been studied on human neuronal cells SK-N-BE. On these cells, the lipotoxicity of fatty acids (C22:0, C24:0 and C26:0) leads to various cellular modifications: topographical, morphological and functional changes at the mitochondrial level, rupture of RedOx equilibrium (overproduction of reactive oxygen species, modification of the activity of enzymes involved in anti-oxidant defenses: catalase, SOD, GPx), lipid peroxidation, cytoskeleton disorganization (actin microfilaments, tubulin, neurofilaments). These fatty acids also favor amyloidogenesis and tauopathy. At elevated concentrations, these fatty acids trigger a non apoptotic mode of cell death. Moreover, data obtained by immunohistochemistry with antibodies raised against peroxisomal components (ABCD1, ABCD2, ABCD3, ACOX1 and catalase) on histological tissue sections of the brain of transgenic mice APP PS1 ΔE9 as well as lipidomic analysis performed on the blood and the brain of these mice suggest that they could constitute interesting model to study the relationships between AD and peroxisomal metabolism. The clinical study performed on the plasma and on the erythrocytes of patients with dementia (AD, vascular dementia, other dementia) revealed an important accumulation of C22:0, C24:0 and C26:0. Hexacosanoic acid (C26:0) might constitute an excellent biomarker of AD. The fatty acid C18:0 and (n-6) fatty acids have also been found at increased concentrations. A strong oxidative stress has also been revealed. Altogether, our data support that the fatty acids (C22:0, C24:0 and C26:0) as well as the fatty acid metabolism depending on the peroxisome might contribute to neurodegeneration leading to various types of dementia including AD
85

β-AMYLOID, CHOLINERGIC TRANSMISSION, AND CEREBROVASCULAR SYSTEM - A DEVELOPMENTAL STUDY IN A TRANSGENIC MOUSE MODEL OF ALZHEIMER’S DISEASE

Kuznetsova, Elena 24 January 2013 (has links)
Grundlage der vorgelegten Arbeit sind die bei der Alzheimerschen Erkrankung beobachtbaren pathologischen Merkmale, wie die progressive Akkumulation von β-Amyloid-Plaques, cholinerger Dysfunktion und zerebrovaskuläre Abnormalitäten. Die in englischer Sprache verfasste Dissertation ist eine tierexperimentelle Studie, die versucht, den Zusammenhang von β-Amyloid, cholinerger Neurotransmission und zerebralem Gefäßsystem bei der Alzheimerschen Erkrankung näher zu charakterisieren. An Hirnmaterial aus der transgenen Maus Tg2576, die die schwedische Mutation des humanen Amyloidpräkursorproteins als Transgen trägt und ab dem 10. Lebensmonat durch humane β-Amyloid-Plaqueablagerungen in der Hirnrinde imponiert, wurden im Altersverlauf (4 bis 18 Monate) immunhistochemische Untersuchungen zur morphologischen Integrität der zerebralen Mikrogefäße, der kortikalen cholinergen Nervterminalen und der intrazerebralen cholinergen neurovaskulären Innervation durchgeführt. Am somatosensorischen Kortex werden beispielhaft die Expression des Glukosetransporters 1 oder Solanum tuberosum Lektin als Kapillarmarker und des vesikulären Acetylcholintransporters als Marker für cholinerge Fasern mittels Immunfluoreszenz und Laser-Scanning Mikroskopie erfasst, einer semiquantitativen Computer-gestützten Bildanalytischen Auswertung unterzogen und mit dem Ausmaß der kortikalen Plaquebeladung korreliert. So konnte gezeigt werden, dass die Dichte der Blutgefäße und cholinergen Fasern im somatosensorischen Kortex von transgenen Tieren mit dem Alter im Vergleich zu nichttransgenen Kontrolltieren abnimmt, was mit einer Reduktion der perivaskulären cholinergen Innervation einhergeht. Die erhobenen Befunde stützen die von J.C. de la Torre und T. Mussivand schon im Jahre 1993 formulierte „vaskuläre Hypothese“, wonach bei der sporadischen Form der Alzheimerschen Erkrankung alters- und Lebensstil-bedingte Schädigungen des zerebralen Gefäßsystems eine zentrale Rolle bei der Manifestierung der Erkrankung spielen.:CHAPTER 1: INTRODUCTION 1.1 Alzheimer’s disease 1 1.2 APP processing and β-amyloid production 2 1.3 Cholinergic dysfunction in Alzheimer’s disease 5 1.4 Cerebrovascular abnormalities in Alzheimer’s disease 8 1.5 Cholinergic innervation of intracortical cerebral microvessels 9 1.6 Transgenic Tg2576 mouse model of Alzheimer’s disease 11 1.7 Aim of study 14 CHAPTER 2: MATERIALS AND METHODS 2.1 Materials 15 2.1.1 Chemical reagents used 15 2.1.2 Biological reagents used 15 2.1.3 Preparation of solutions and buffers 15 2.1.4 Antibodies and reagents used for immunohistochemistry 17 2.1.5 Transgenic animals 19 2.2 Methods 20 2.2.1 Tissue preparation and sampling of sections 20 2.2.2 Immunohistochemistry 20 2.2.2.1 Protocol of immunofluorescent labeling 20 2.2.2.2 Protocol of immunoperoxidase labeling (ABC technique) 21 2.2.2.3 Combination of primary and secondary antibodies 22 2.2.2.4 Protocol of β–amyloid immunolabeling (Formic acid epitope retrieval method) 23 2.2.3 Histochemistry 23 2.2.3.1 Thioflavin S staining 23 2.2.3.2 Nissl staining 23 2.2.3.3 Solanum Tuberosum Lectin (STL) staining 24 2.2.4 Double and triple-coloured immuno-/ histochemical staining of brain sections 24 2.2.5 Microscopy and digital image processing 25 2.2.6 Morphological and morphometric analyses 25 2.2.6.1 Cortical microvessels 25 2.2.6.2 Cortical cholinergic innervation 27 2.2.6.2.1 Total density of VAChT-immunoreactivity 27 2.2.6.2.2 Estimation of the density of varicosities on cholinergic fibres 29 2.2.6.3 Estimation of cholinergic perivascular innervation of cortical microvessels 29 2.2.6.4 Three-dimensional-imaging of vessels innervation 30 2.2.7 Statistical analysis 30 CHAPTER 3: RESULTS 3.1 Developmental and amyloid plaque-related changes in cerebral cortical capillaries in transgenic Tg2576 Alzheimer mice 31 3.1.1 Morphological distribution of brain vessels in the cerebral cortex of wild type mice 31 3.1.2 Microvessel density under plaque burden 33 3.2 Developmental and amyloid plaque-related changes in cholinergic neurotransmission in cholinoceptive target regions of transgenic Tg2576 mice 39 3.2.1 Visualisation of cholinergic nerve terminals in mouse brain 39 3.2.2 VAChT-Expression in wild type and transgenic Tg2576 mice 40 3.3 Role of cholinergic system in β-amyloid-related changes in the cerebrovascular system of transgenic Tg2576 mice 46 3.3.1 Solanum tuberosum lectin (STL) histochemistry in visualisation of brain vessels, β-amyloid, and microglia 46 3.3.1.1 Solanum tuberosum lectin and brain vessels 46 3.3.1.2 Solanum tuberosum lectin and β-amyloid plaques 47 3.3.1.3 Solanum tuberosum lectin staining to visualize glial cells 48 3.3.2 Cholinergic perivascular innervation of cerebral cortical microvessels in transgenic Tg2576 and wild type mice 50 CHAPTER 4: DISCUSSION 4.1 β-Amyloid and brain vascular system: the vascular hypothesis of Alzheimer’s disease 55 4.1.1 Evidences of a role of vascular mechanisms in Alzheimer’s disease 55 4.1.2 Effect of β-amyloid on brain vascular system 57 4.1.3 Effect of ischemia and hypoperfusion on APP processing 59 4.1.4 Effect of β-amyloid on cholinergic function in brain vascular system 59 4.2 Aim of study and main results obtained 61 4.3 Age-related changes in cerebral cortical microvessels in the presence and absence of β-amyloid plaque load 62 4.4 Age-related changes of cholinergic terminals in cholinoceptive target regions in the presence and absence of β-amyloid plaque load 64 4.4.1 VAChT – a reliable marker for detection of cholinergic terminals in cerebral cortex 64 4.4.2 The barrel field of the somatosensory cortex 1 (S1BF) as a model region to reveal age-related changes in cholinergic innervation 65 4.4.3 VAChT expression: morphological and morphometric studies 66 4.5 Age-related changes in cholinergic innervation of cerebral cortical microvessels in the presence and absence of β-amyloid plaque load 69 4.5.1 STL – a mono-marker for detection of cortical vessels, senile amyloid plaques and activated microglia in cerebral cortex 69 4.5.2 Cholinergic perivascular innervation of cerebral cortical microvessels in transgenic Tg2576 mice 70 4.5.3 Quantitation of cholinergic input on cerebral microvessels of mouse brain 71 4.6 Summary and conclusions 75 REFERENCES 77
86

Les mécanismes sous-jacents aux effets pathologiques cardiaques de l’angiotensine II dans le remodelage électrique et contractile entre les sexes

Mathieu, Sophie 10 1900 (has links)
No description available.

Page generated in 0.0598 seconds