Spelling suggestions: "subject:"eperon"" "subject:"hyperon""
81 |
Survival Strategies Of SALMONELLASandeepa, M E 07 1900 (has links)
The genus Salmonella includes facultative intracellular pathogens. Salmonella enterica serovar Typhi (S. Typhi) causes typhoid fever in humans killing about 2,00,000 people globally every year. Salmonella enterica serovars Typhimurium (S. Typhimurium) and Enteritidis (S. Enteritidis) cause food poisoning in humans. Salmonellae also cause disease in animals of economic importance like poultry and cattle. Treatment of diseases
caused by these notorious pathogens is becoming more and more difficult because of the emergence of drug resistant strains. Thus, it is vital to understand the virulence mechanisms of Salmonella which can lead us to potential drug targets and also help us design effective vaccines. Salmonella has evolved many strategies to enter the host, to evade intracellular and extracellular antimicrobial activities of the host and to extract nutrition in the stringent and hostile environment of the host. These strategies have enabled Salmonella to survive and multiply in the host making it a successful pathogen. Present study deals with four such survival strategies of Salmonella. S. Typhimurium causes a systemic disease in mice that is similar to typhoid fever caused by serovar Typhi in humans. This serves as a good model system to study and understand the pathogenesis of Salmonellae. This model system has been used throughout this study. In the present thesis attempts have been made to identify some novel survival strategies of Salmonella. The thesis is divided into five chapters.
Chapter 1 gives an introduction into the basic biology of these notorious pathogens. The diseases caused by Salmonellae are introduced in this chapter. Typhoid fever is discussed in detail covering its epidemiology, clinical features, diagnosis, treatment and prevention. Next section covers the virulence determinants of Salmonella. In this section, Salmonella pathogenicity islands are discussed in detail. This chapter concludes with an overview of molecular pathogenesis of Salmonella covering its invasion strategy and its dangerous life inside the host cell. Salmonella stays and multiplies inside a specialized endosomal compartment of the host cell known as Salmonella-containing vacuole (SCV). It is believed that Salmonella multiplies inside SCV resulting in single big vacuole containing multiple bacteria.
The results of Chapter 2 challenge this notion. Using transmission electron microscopy and confocal laser scanning microscopy we show that SCV also divides along with the division of Salmonella resulting in multiple SCVs containing single bacterium per vacuole. We also show that this division is mediated by the molecular motor dynein. This chapter concludes with a discussion on the advantages of SCV division with respect to Salmonella. Successful intracellular pathogens must have some strategy either to avoid lysosomal fusion or to endure the toxic molecules of lysosomes. In case of Salmonella, it is well accepted that SCV-lysosome fusion is blocked. However, the exact mechanism of this process is still unclear.
The results of Chapter 3 enhance our understanding of this issue. This chapter explores an interesting possibility of Salmonella reducing the lysosomal number and thereby reducing the chances of SCV-lysosome fusion. Using flowcytometry and confocal laser scanning microscopy, we show that Salmonella decreases the number of acidic lysosomes in murine macrophages. Thus, our results suggest that there is an imbalance in the ratio of vacuoles to acidic lysosomes which decreases the probability of SCV-lysosome fusion thereby helping Salmonella avoid lysosomes. Multicellular organisms use various defense strategies to protect themselves from microbial infections; production of antimicrobial peptides (AMPs) is one of them. Being cationic in nature, AMPs interact and cause pores in the bacterial membrane eventually killing the bacteria. Pathogenic micro-organisms like Salmonella have evolved many strategies to counteract the AMPs they encounter upon their entry into the host systems. S Typhimurium genome has a gene cluster consisting of yejA, yejB, yejE and yejF genes which encode a putative ABC transporter.
Chapter 4 deals with the detailed characterization of these genes. Our study shows that these genes constitute an operon. We have deleted the yejF gene which encodes the ATPase component of this putative ABC transporter. The ΔyejF strain showed increased sensitivity to AMPs like protamine, melittin, polymyxin B and human defensins and was compromised to proliferate inside activated macrophages and epithelial cells. In murine typhoid model, the ΔyejF strain displayed decreased virulence when infected intragastrically. These findings suggest that the putative transporter encoded by the yejABEF operon is involved in counteracting AMPs and contributes to the virulence of Salmonella. An important biochemical property of Salmonella that distinguishes it from the closely related E. coli is its inability to ferment lactose. In E. coli, lactose fermentation is carried out by the products of lac operon which is regulated by a repressor encoded by lacI. Salmonella does not have the lac operon and lacI. It has been proposed that S.enterica has lost lac region (lacI and lacZYA) during its evolution.
Chapter 5 deals with the evolutionary and physiological significance behind the loss of lac region by S.enterica. We show that expression of LacI in S. enterica suppresses its virulence by interfering with the expression of SPI-2 virulence genes. We also observed that the genome of S. bongori which does not have the virulence genes of SPI-2 has a homologue of LacI. Our results suggest that presence of lacI has probably hindered the acquisition of virulence genes of SPI-2 in S. bongori, whereas absence of lacI has facilitated the same in S. enterica making it a successful systemic pathogen. Thus, lacI has played a remarkable role in the evolution of Salmonella virulence. Brief summary of four studies that are not directly related to survival strategies of Salmonella are included in Appendix. First two studies analyze molecular evolution of SPIs to understand the mechanism of host specificity in Salmonella and the last two studies explore the signaling of lipopolysaccharide (LPS) derived from Salmonella.
|
82 |
Produção e caracterização de mutantes do operon gum de Xylella fastidiosa. / Production and characterization of gum operon mutants of Xylella fastidiosa cvc strain.Leonardo Cesar de Almeida Souza 07 February 2003 (has links)
A Xylella fastidiosa é uma bactéria gram.negativa, fastidiosa, que vive limitada ao xilema de plantas causando várias doenças de importância econômica como a doença de Pierce em videiras nos Estados Unidos e a Clorose Variegada dos Citros (CVC) no Brasil. A CVC tem afetado severamente a citricultura do estado de São Paulo pondo em risco milhares de empregos e milhões de dólares em geração de divisas. O sequenciamento do genoma de X. fastidiosa revelou genes envolvidos em possíveis mecanismos de patogenicidade dessa bactéria, entre eles um operon possivelmente envolvido na produção de um exopolissacarídeo extracelular denominado goma fastidiana. Supõe.se que esse exopolissacarídeo seja o responsável pela manutenção dos biofilmes bacterianos que causam a oclusão dos vasos xilemáticos levando ao surgimento dos sintomas da CVC. Para estudar esse operon, denominado operon gum, foram construídos vetores para a inativação dos genes gumB, gumD e gumF por duas estratégias: mutagênese por inserção.deleção e mutagênese por troca alélica. A mutagênese por inserção.deleção envolve a integração via recombinação homóloga com uma permuta.de um plasmídeo contendo uma cópia truncada do gene alvo. A mutagênese por troca alélica, por sua vez, envolve duas permutas e se caracteriza pela troca do gene alvo selvagem por uma cópia interrompida por um marcador de seleção. Nenhum mutante gum foi obtido usando.se a estratégia de troca alélica, todavia, mutantes para os genes gumB e gumF foram obtidos com sucesso pela estratégia de mutagênese por inserção.deleção. Nenhum mutante para o gene gumD foi obtido, sugerindo que essa mutação possa ser letal para a célula. A análise de células e colônias desses mutantes crescidos em meio sólido ou em suspensão não mostrou diferenças morfológicas em relação a linhagem selvagem. A inativação dos genes gumB e gumF não influenciou a capacidade de X. fastidiosa se aderir a vidro. Com o uso do gene repórter CAT, que codifica para a enzima clorafenicol acetil transferase a qual confere à bactéria resistência ao antibiótico clorafenicol foi possível verificar que a glicose não influencia na expressão desse operon ao nível de transcrição. Com o uso desse gene reporter, também foi possível identificar uma região transcrita a partir de um promotor não caracterizado, localizada na fita antisenso do operon gum. A comparação do perfil cromatográfico de proteínas solúveis totais dos mutantes e da linhagem selvagem mostrou diferenças significativas nesses pefis, indicando um efeito pleiotrópico dessas mutações. O estudo da função dos genes gumB e gumF na patogenicidade de X. fastidiosa foi impossibilitado por se ter verificado recentemente que a linhagem usada na construção dos mutantes não coloniza a planta eficientemente para a indução de sintomas em citros e tabaco em condições experimentais após inoculação mecânica. / Xylella fastidiosa is a fastidious, xylem restricted, gram.negative bacteria, that causes several economically important diseases as Pierce's disease of grapevine in USA and the Citrus Variegated Chlorosis (CVC) in Brasil. CVC affects severely the São Paulo State citriculture jeopardizing thousands of jobs and millions of dollars of incomes. The genome sequence of X. fastidiosa has revealed several genes possibly involved in the pathogenicity mechanisms of this bacterium, among them, an operon containing nine genes possibly involved in the synthesis of an exopolisaccharide named fastidian gum. This gum is possibly involved in the bacterial biofilm maintenance that causes the xylem occlusion leading to CVC symptoms development. To study this operon, named gum operon, vectors were constructed to inactivate the gumB, gumD and gumF genes by two strategies, insertion.duplication mutagenesis and allelic exchange mutagenesis. The insertion.duplication mutagenesis involves the integration a whole plasmid containing a truncated copy of the target gene by homologous recombination with one crossing over. The allelic exchange mutagenesis involves homologous recombination with two crossing overs that substitutes the wild.type copy of the target gene by a truncated copy interrupted by a selectable marker gene. No gum mutant was obtained using the allelic exchange strategy; however gumB and gumF mutants were obtained by insertion-duplication mutagenesis strategy. GumD mutant was not obtained, suggesting that the mutation in this gene is lethal to the cell. Analysis of cells and colonies of these mutants growing in solid media and in suspension hasn't reveal any morphological difference to the wild.type strain. The disruption of the gumB and gumF genes does not influenced the adhesion capacity of X. fastidiosa to the glass, used as a substrate. Using the reporter gene CAT, wich codes for cloramphenicol acetil transferase enzime confering resistance to cloramphenicol, we verified that glucose has no influence in the expression of this operon at the transcription level. Using this reporter gene, we also identified a transcribed region directed by a non characterized promoter, localized in the antisense strand of the gum operon. A comparison between the soluble protein profile of the mutants and the wild.type strain, obtained by liquid chromatography, showed significative differences, indicating a pleiotropic effect of these mutations. The study of the function of the gumB and gumF genes in the pathogenicity of X. fastidiosa was not concluded because we verified recently that the strainm, used to generate the mutants, do not colonize the plants efficiently to induce symptoms in citrus and tobacco plants after mechanical inoculation.
|
83 |
Structural Feature of Prokaryotic Promoters and their Role in Gene ExpressionAditya Kumar, * January 2015 (has links) (PDF)
Transcription initiation is an important step in the process of gene regulation in prokaryotes. Promoters are stretches of DNA sequence that are present in the upstream region of transcription start sites (TSSs), where RNA polymerase and other transcription factors bind to initiate transcription. Recent advancement in sequencing technologies has resulted in huge amount of raw data in the form of whole genome sequences. This sequence data has to be annotated, in order to identify coding, non-coding and regulatory regions. Computational tools are useful for a quick and fairly reliable annotation of many genome sequences. Promoter prediction is an important step in genome annotation process which is needed, not only for the validation of predicted genes, but also for the identification of novel genes, especially those coding for non-coding RNA, which are missed by gene prediction programs. DNA sequence dependent structural properties such as DNA duplex stability, bendability and intrinsic curvature have been found to be associated with promoter regions in all domains of life. The work presented in this thesis focuses on the analysis of these structural features in the promoter regions of published prokaryotic transcriptome data. Furthermore, promoters were predicted using these structural features and their role in gene expression were studied. The organization of thesis is as follows. An overview of transcription machinery of prokaryotes, promoter architecture, available promoter prediction programs and sequence dependent structural features is presented in chapter 1.
Chapter 2 describes the datasets and methods used in entire study.
Structural features of promoters associated with primary and operon TSSs of H.pylori26695 genes and their orthologs (chapter 3)
Promoter regions in genomic sequences from all domains of life show similar trends in their structural properties such as stability, bendability, curvature. This chapter dis-cuss the DNA duplex stability and bendability of various classes of promoter regions (based on the identification of different classes of transcription start sites, viz. primary, secondary, internal, operon TSSs etc, in transcriptome study) of Helicobacter pylori 26695 strain. It is found that the primary TSS and operon associated TSS promoters show significantly strong structural features in their promoter regions. DNA free energy based promoter prediction tool PromPredict has been used to annotate promoters of different classes and very high recall values (80%) are obtained for primary TSS. Orthologous genes from 10 different strains of H. pylori show conservation of structural properties in promoter regions as well as coding regions. PromPredict annotates promoters of orthologous genes with very high recall and precision values. DNA duplex stability of promoter region is conserved in the orthologous genes in 10 different strains of Helicobacter pylori genome.
Sequence dependent structural features of promoters in prokaryotic transcriptome (chapter 4)
Next-generation sequencing studies have revealed that a wide range of transcripts such as primary, internal, antisense and non-coding RNA, are present in the prokaryotic transcriptome and a large fraction of them are functionally involved in various regulatory activities. Identification of promoters associated with different transcripts is important for characterization of transcriptome. The current chapter discusses DNA sequence dependent structural properties like stability, bendability and curvature in the promoter region of six different prokaryotic transcriptomes (Helicobacter pylori, Anabaena, Synechocystis, Escherichia coli, Salmonella and Klebsiella). Using these structural features, promoters associated with different category of transcripts were predicted, which constitute an integral part of the transcriptome. Promoter annotation using structural features is fairly accurate and reliable as compared to motif-based approach since different category of transcripts show poor sequence conservation in the promoter region. Most importantly, it is universal in nature unlike sequence-based approach that is generally organism specific.
Role of sequence dependent structural properties in gene expression in prokaryotes (chapter 5)
DNA duplex stability, bendability and intrinsic curvature play crucial roles in the process of transcription initiation. Hence, in order to understand the relationship be-tween these structural features and gene expression, the relative differences in stability, bendability and curvature in the promoter regions of high and low expressed genes were studied. It is found that these features are relatively accentuated in the promoter regions associated with high gene expression as compared to low gene expression. Promoter regions associated with high gene expression are annotated more reliably using DNA structural features, compared to those for low gene expression.
Sequence dependent structural properties in the promoter region of essential and non-essential genes of the prokaryotes (chapter 6)
Essential genes are the minimal possible set of genes required for the survival of organism. These sets of genes can be identified by experiments such as single gene deletion and transposon mediated inactivation. Here, the analysis of DNA duplex stability and bendability in the promoter regions of essential and nonessential genes of prokaryotes is reported. It is found that the average free energy and bendability pro-files are distinct in the promoters regions of essential and nonessential genes. Whole genome promoter predictions using in-house program, PromPredict, for essential and nonessential genes has also been carried out.
Chapter 7 present the summary and conclusion of the entire thesis work followed by future perspectives in the field.
Optimization of PromPredict algorithm and updating PromBase with newly sequenced genomes (Appendix A)
PromPredict is an in-house program, which is based on the relative stability of the DNA in flanking regions. It was found to perform well in predicting promoters across all organisms. In previous studies, it was observed that for organisms having low genomic GC content (<35%), promoter prediction resulted in low precision values, which indicates higher false positive rate. Threshold values of PromPredict algorithm were re-vised in order to optimize the algorithm with low false positive rate. PromBase is a comparative genomics database of microbial genomes. It stores different genomic and structural properties of the microbial genomes. It also displays the predictions obtained from PromPredict in a graphical as well as tabular format. Newly sequenced genomes were downloaded from NCBI and processed using in-house programs and added to the mysql database (back end of the PromBase). Stability profiles for predictions were also added for the RNA coding genes, earlier only profiles for protein coding genes were displayed. Comparative genomics of asymmetric gene orientation in prokaryotes (Appendix B)
Transcription proceeds in 5’ to 3’ direction on the template strand, hence it provides directionality. Prokaryotic genomes show asymmetry in gene orientation on leading and lagging strands. The different phyla of prokaryotes were analyzed in terms of asymmetry in gene orientation. It is found that organisms belonging to a particular phyla known as “Firmicutes”, show high asymmetry in gene orientation, which are known to have different DNA polymerase systems for replication.
|
84 |
Exploring the Evolution of Cellobiose Utilization in Shigella Sonnei And the Conservation of ChbG Orthologs in EukaryotesJoseph, Asha Mary January 2016 (has links) (PDF)
The chb operon constitutes the genes essential for utilization of chitooligosaccharides in Escherichia coli and related species. The six genes of the operon code for a transcriptional regulator (ChbR) of the operon, a permease (ChbBCA), a monodeacetylase (ChbG), and a phospho-beta-glucosidase (ChbF). In the absence of the substrate, the operon is maintained in a transcriptionally repressed state, while presence of the substrate leads to transcriptional activation. Regulation of the chb operon is brought about by the concerted action of three proteins, the negative regulator NagC coded by the nag operon, the dual function regulator ChbR coded by the chb operon and the universal regulatory protein CRP. Mutations that lead to alterations in the regulation of the operon can facilitate utilization of cellobiose, in addition to chitooligosaccharides by E. coli.
The studies presented in Chapter II were aimed at understanding the evolution of cellobiose utilization in Shigella sonnei, which is phylogenetically very close to E. coli. Cel+ mutants were isolated from a Cel- wild type S. sonnei strain. Interestingly, Cel+ mutants arose relatively faster on MacConkey cellobiose agar from the S. sonnei wild type strain compared to E. coli. Similar to E. coli, the Cel+ phenotype in S. sonnei mutants was linked to the chb operon. Deletion of the phospho-β-glucosidase gene, chbF also resulted in loss of the Cel+ phenotype, indicating that ChbF is responsible for hydrolysis of cellobiose in these mutants. Previous work from the lab has shown that acquisition of two classes of mutations is necessary and sufficient to give rise to Cel+ mutants in E. coli. The first class of mutations either within the nagC locus or at the NagC binding site within the chb promoter, lead to NagC derepression. The second class consisting of gain-of-function mutations in chbR enable the recognition of cellobiose as an inducer by ChbR and subsequent activation of the operon. However, in S. sonnei a single mutational event of an IS element insertion resulted in acquisition of this phenotype. Depending on the type and location of the insertion, the mutants were grouped as Type I, and Type II. In Type I mutants an 1S600 insertion between the inherent -10 and -35 elements within the chb promoter leads to ChbR-independent constitutive activation of the operon, while in Type II mutants, an IS2/600 insertion at -113/-114, leads to ChbR-dependent, cellobiose-inducible expression of the operon. The results presented also indicate that in addition to relieving NagC mediated repression, the insertion in Type II mutants also leads to increase in basal transcription from the chb promoter. Constitutive expression of the chb operon also results in utilization of the aromatic β-glucosides salicin and arbutin, in addition to cellobiose in Type I mutants, which indicates the promiscuous nature of permease and hydrolysis enzyme of the chb operon.
This part of the thesis essentially demonstrates the different trajectories taken for the evolution of new metabolic function under conditions of nutrient stress by two closely related species. It emphasizes the significance of the strain background, namely the diversity of transposable elements in the acquisition of the novel function.
The second part of this research investigation, detailed in Chapter III deals with experiments to characterize the eukaryotic orthologs of the last gene of the chb operon. The chbG gene of E. coli codes for a monodeacetylase of chitooligosaccharides like chitobiose and chitotriose. The protein belongs to a highly conserved, but less explored family of proteins called YdjC, whose orthologs are present in many prokaryotes and eukaryotes including mammals. The human YDJC locus located on chromosome 22 is linked to a variety of inflammatory diseases and the transcript levels are relatively high in stem cells and a few cancer cells. In silico analysis suggested that the mammalian YdjC orthologs possess sequence and structural similarity with the prokaryotic counterpart. The full length mouse YdjC ortholog, which is 85% identical to the human ortholog was cloned into a bacterial vector and expressed in a chbG deletion strain of E. coli. The mouse YdjC ortholog could neither promote growth of the strain on chitobiose nor induce transcription from the chb promoter. The purified mouse YdjC ortholog could not deacetylate chitobiose in vitro as well, suggesting that the mouse ortholog failed to complement the function of the E. coli counterpart, ChbG under the conditions tested in this study. In order to characterize the mammalian YdjC orthologs more elaborately, further experimentation was performed in mammalian cell lines. The results indicate that YdjC is expressed in mammalian cell lines of different tissue origin and the expression was seen throughout the cell. Overexpression of mouse Ydjc in a few mammalian cells also resulted in increased proliferation and migration, indicating a direct or indirect role of this protein in cell growth/proliferation. The mammalian orthologs of ChbG therefore appear to have related but distinct activities and substrates compared to the bacterial counterpart that need to be elucidated further.
|
85 |
Zur Struktur und Funktion regulatorischer Elemente des cbb-Regulons in Ralstonia eutropha / Structure and function of regulatory elements of the cbb regulon in Ralstonia eutrophaJeffke, Thomas 31 January 2001 (has links)
No description available.
|
86 |
Sélection indirecte en évolution Darwinienne : Mécanismes et implications / Indirect selection in Darwinian evolution : mechanisms and implicationsParsons, David 08 December 2011 (has links)
Le modèle Aevol est un modèle d'évolution expérimentale in silico développé par Carole Knibbe et Guillaume Beslon pour étudier l'évolution de la structure des génomes. Aevol a permis d'identifier une très forte pression de sélection indirecte vers un certain niveau de variabilité mutationnelle du phénotype : la survie à long terme d'une lignée étant conditionnée à sa capacité à produire des mutations avantageuses sans pour autant produire trop de mutations délétères, un certain compromis entre robustesse et évolvabilité est indirectement sélectionné. Une conséquence de cette pression de sélection indirecte est le rôle central joué par le taux spontané de réarrangements chromosomiques dans la détermination de la structure du génome. Dans ce travail, nous avons modifié le modèle Aevol pour introduire d'une part un processus explicite de régulation de l'expression des gènes et d'autre part, une sensibilité aux similarités entre séquences dans les événements de recombinaison de l'ADN. Nous avons ainsi pu étudier l'effet de ces variations sur la sélection de second-ordre. Nous avons en particulier observé que celle-ci est extrêmement robuste aux choix de modélisation : les effets liés aux réarrangements sont en effet observés de la même façon lorsque les organismes possèdent un réseau de régulation (qui plus est, ces effets sont visibles sur le réseau lui-même), lorsque les réarrangements se produisent préférentiellement entre séquences similaires et lorsque les transferts horizontaux sont possibles. De plus, les effets de cette pression de sélection de second-ordre ne sont pas limités au niveau génomique : de forts taux de réarrangements tendent à donner lieu à des génomes présentant beaucoup d'opérons, très peu d'ARNs non-codants et des réseaux de régulation très simples. Au contraire, chez les organismes ayant évolué avec de faibles taux de réarrangement, la plupart des gènes sont transcrits sur des ARNs monocistroniques. Ces organismes possèdent un grand nombre d'ARNs non-codants et présentent des réseaux de régulation très complexes. Ces effets observés dans le modèle à différents niveaux d'organisation peuvent s'apparenter à de nombreuses caractéristiques observées chez les organismes réels. Ainsi les pressions sélectives indirectes observées grâce au model Aevol permettent de reproduire un large spectre de propriétés biologiques connues en ne modifiant que le seul taux de réarrangements dans le modèle. Ces mécanismes de sélection indirecte apparaissent donc comme de bons candidats pour expliquer ces mêmes observations sur les organismes réels. / The Aevol model is an in silico experimental evolution model that was specifically developped by Carole Knibbe to study the evolution of the structure of the genome. Using Aevol, a very strong second-order selective pressure towards a specific level of mutational variability of the phenotype was revealed: it was shown that since the survival of a lineage on the long term is conditionned to its ability to produce beneficial mutations while not loosing those previously found, a specific trade-off between robustness and evolvability is indirectly selected. A consequence of this indirect selective pressure is the central role played by the spontaneous rate of chromosomal rearrangements in determining the structure of the genome. More specifically, it was shown that because some rearrangements (large duplications and large deletions) have an impact not only arround their breakpoints but on the whole sequence between them, non-coding sequences are actually mutagenic for the coding sequences they surround. The consequence is a clear trend for organisms having evolved under high rearrangement rates to have very short genomes with hardly any non-coding sequences while organisms evolving in the context of low rearrangement rates have huge, mostly non-coding genomes. Here, we modified the Aevol model to introduce an explicit regulation of gene expression as well as a sensitivity to sequence similarity in DNA recombination events. We observed that the effects of the second-order pressure mentioned above are very robust to modelling choices: they are similarly observed when gene regulation is made available, when rearrangements occur preferentially between similar sequences and even when a biologically plausible process of horizontal transfer is allowed. Moreover, the effects of this second-order selective pressure are not limited to the genomic level: high rearrangement rates usually lead to genomes that have many polycistronic RNAs, almost no non-coding RNAs and very simple regulation networks. On the contrary, at low rearrangement rates organisms have most of their genes transcribed on monocistronic RNAs, they own a huge number of coding RNAs and present very complex and intricate regulation networks. These astounding effects at different levels of organization can account for many features found on real organisms. Thus, the indirect selective pressure that was identified thanks to the Aevol model allows to reproduce a large panel of known biological properties by changing the sole spontaneous rearrangement rate, making this pressure a good candidate for explaining these observations on real organisms.
|
87 |
Molecular and Evolutionary Analysis of Cyanobacterial Taxonomic MethodsVillanueva, Chelsea Denise 01 January 2018 (has links)
Cyanobacteria are a group of photo-oxygenic bacteria found in nearly every ecosystem, but much cyanobacterial diversity, in various habitats, has yet to be explored. Cyanobacteria are often conspicuous components of photosynthetic flora, providing significant carbon and nitrogen inputs to surrounding systems. As possible primary colonizers of stone substrates not native to this region, cyanobacteria isolated from headstones may provide biogeographically informative data. An exploratory study of lichen-dominated microbial consortia, growing on headstones, was conducted to isolate and identify novel microaerophytic cyanobacteria, and resulted in the establishment of four novel cyanobacterial taxa. Phylogenetic analyses of photobionts in one tripartite lichen revealed two novel taxa: Brasilonema lichenoidesand Chroococcidiopsis lichenoides. Using a total evidence approach, analyzing ecology, morphology, ITS structure, and molecular data two additional taxa were described: Brasilonema geniculosusand Calothrix dumas. Analysis of secondary structures of the Internal Transcribed Spacer (ITS) regions of the 16S-23S operon in cyanobacteria are commonly used in cyanobacterial taxonomy studies and were applied to the identification of the new taxa in this study. However, the relationship between ITS structures, hairpin loops (helices) in a region of non-coding DNA, has not been thoroughly evaluated. The 16S-23S operon is one of many in prokaryotes with multiple copies and there is evidence that operons may vary due to differential selective pressures or drift. A study was undertaken analyzing ITS operons from 224 previously published cyanobacterial taxa for domain inclusion and exclusion, intragenomic heterogeneity of ITS operons, and the possible relevance of variable selective pressures affecting individual domains. Analysis revealed highly variable ITS domain inclusion even in complete sequences, as well as high variation between domains containing two or no tRNA sequences. Recommendations were made to standardize ITS analysis in the future to account for this possible variation. Further study is required to statistically demonstrate to what extent ITS secondary structures correlate with taxonomy.
|
88 |
RNA-Seq and proteomics based analysis of regulatory RNA features and gene expression in Bacillus licheniformisWiegand, Sandra 25 September 2013 (has links)
No description available.
|
89 |
Regulation of Chitin Oligosaccharides Utilization in Escherichia ColiVerma, Subhash Chandra January 2013 (has links) (PDF)
The genome of Escherichia coli harbors several catabolic operons involved in the utilization of a wide variety of natural compounds as carbon sources. The chitobiose (chu) operons of E.coli Is involved in the utilization of chitobiose(disaccharide of N-acety1-D-glucosamine) and cellbiose (disaccharide of glucose) derived from the two most abundant naturally occurring carbon sources on earth, chitin and cellulose respectively. The operon consists of the chbBCARFG genes coding for transport, regulation and hydrolysis functions required to utilize these compounds; the chuyBCA genes code for a multi-subuni PTS transporter ; the chuR codes for a dual function repressor/activator of the operon; the chbF codes for a phospho-glucosidase and the chbG codes for a protein of unknown function.
The chu operon Is regulated by three transcription factors; NagC, a key regulator of the nag genes involved in amino sugar metabolism; ChbR, a dual function operon-specific regulator; and CRP_cAMP. The operon is repressed by NagC and ChbR in the absence of catabolic substrate. In the presence of chitobiose, expression is induced by the abrogation of NagC-mediated repression by GlcNAc-6-P generated by the hydrolysis of chitobiose-6-P and subsequent activation of transcription by ChbR and CPR-cAMP.
Wild type E.coli connot utilize cellbiose due to the inability of cellbiose to induce expression from the operon. The simultaneous presence of a loss of function mutation in nagC and a gain –of-function mutation in chbR is necessary and sufficient to allow cellbiose to induce expression and confer on E.coli the ability to utilize cellbiose.
The activation step by ChbR and CPR-cAMP requires an inducer that is recognized by ChbR. The chemical identity of the inducer and the mechanism of transcriptional activation by ChbR and CPR-cAMP are not understood.
The studies described in the chapter 2 shows that chbG is essential for the utilization of the acetylated sugars chitobiose and chitotriose while it is dispensable for the sugars lacking the acety1group such as cellobiose and chitosan dimer, a disaccharide of N-glucosamine. ChbG is produced as a cytosolic protein and removes one acety1 group from chitobiose and chitotriose thus shows a mono-decetylase activity. Taken together, the observing suggest that ChbG deacetylates chitobiose-6-P and chitotriose-6-P producing the mono-decetylated from of the sugars. The deacetylateion is necessary for their recognition both as inducers by ChbR to activate transcription along with CRP-cAMP and as substractes by phosop-glucosidase ChbF. Cellobiose positive(Cel+) mutants carrying nagC delection and different gain-of-function mutations in chbR are independent of chbG for induction by chitobiose suggesting that the mutations in ChbR can allow it to recognize the acetylated form of chitobiose-6-P. Despite normal induction, the mutants to grow on chitobiose without chbG are consistant with the requirement of deacetylation for hydrolysis by ChbF.
The prediction active site of chbG was validated by demonstrating the loss of chbG function upon alanine substitution of the putative metal binding residues. Vibro cholerace ChbG can complement the function of E.coli ChbG indicating that ChbG is conserved in both the organisms.
The studies presented in chapter 3 address the mechanism of transcriptional activation of the chb operon by ChbR and CPR-cAMP. ChbR and CPR-cAMP function in a synergistic manner in response to the induction signal. The synergy is not because of their cooperative binding to the DNA. The role of CRP as a class I activator via the known mechanism involving interaction between the Activation region1 (AR1) and the C-terminal domain of the alpha subunit of RNA polymerase (CTD) was not crucial for the chb operon. A direct interaction between the two activators in virto was observed. Based on these results and the close spacing of the synergy is due to interaction between the two regulators bound to DNA that is enhanced in the presence of the inducer, binding about an optimal confirmation in ChbR required to interact with RNA polymerase. ChbR contacts different residues in the subunit in response to cellbiose and chitobiose; whereas it utilizes the known residues in the presence cellbiose, it appears to require different and unknown residues for induction in the presence of chitobiose.
In conclusion, the studies reported in chapter 2 and 3 provide an understanding of the regulation of the chitin oligosaccharides utilization in E.coli at different levels. The broad implications of these studies and possible future directions are discussed in chapter 4. ChbG is an evolutionary conserved protein found in both prokaryotes and enkayotes including humans. ChbG homologs have been implicated in inflammatory bowel disorders in humans and development in metazoans. Therefore, the studies on chbG described in this thesis have been broader significance.
|
90 |
Etude bioinformatique de l'évolution de la régulation transcriptionnelle chez les bactéries / Bioinformatic study of the evolution of the transcriptional regulation in bacteriaJanky, Rekin's 17 December 2007 (has links)
L'objet de cette thèse de bioinformatique est de mieux comprendre l’ensemble des systèmes de régulation génique chez les bactéries. La disponibilité de centaines de génomes complets chez les bactéries ouvre la voie aux approches de génomique comparative et donc à l’étude de l’évolution des réseaux transcriptionnels bactériens. Dans un premier temps, nous avons implémenté et validé plusieurs méthodes de prédiction d’opérons sur base des génomes bactériens séquencés. Suite à cette étude, nous avons décidé d’utiliser un algorithme qui se base simplement sur un seuil sur la distance intergénique, à savoir la distance en paires de bases entre deux gènes adjacents. Notre évaluation sur base d’opérons annotés chez Escherichia coli et Bacillus subtilis nous permet de définir un seuil optimal de 55pb pour lequel nous obtenons respectivement 78 et 79% de précision. Deuxièmement, l’identification des motifs de régulation transcriptionnelle, tels les sites de liaison des facteurs de transcription, donne des indications de l’organisation de la régulation. Nous avons développé une méthode de recherche d’empreintes phylogénétiques qui consiste à découvrir des paires de mots espacés (dyades) statistiquement sur-représentées en amont de gènes orthologues bactériens. Notre méthode est particulièrement adaptée à la recherche de motifs chez les bactéries puisqu’elle profite d’une part des centaines de génomes bactériens séquencés et d’autre part les facteurs de transcription bactériens présentent des domaines Hélice-Tour-Hélice qui reconnaissent spécifiquement des dyades. Une évaluation systématique sur 368 gènes de E.coli a permis d’évaluer les performances de notre méthode et de tester l’influence de plus de 40 combinaisons de paramètres concernant le niveau taxonomique, l’inférence d’opérons, le filtrage des dyades spécifiques de E.coli, le choix des modèles de fond pour le calcul du score de significativité, et enfin un seuil sur ce score. L’analyse détaillée pour un cas d’étude, l’autorégulation du facteur de transcription LexA, a montré que notre approche permet d’étudier l’évolution des sites d’auto-régulation dans plusieurs branches taxonomiques des bactéries. Nous avons ensuite appliqué la détection d’empreintes phylogénétiques à chaque gène de E.coli, et utilisé les motifs détectés comme significatifs afin de prédire les gènes co-régulés. Au centre de cette dernière stratégie, est définie une matrice de scores de significativité pour chaque mot détecté par gène chez l’organisme de référence. Plusieurs métriques ont été définies pour la comparaison de paires de profils de scores de sorte que des paires de gènes ayant des motifs détectés significativement en commun peuvent être regroupées. Ainsi, l’ensemble des nos méthodes nous permet de reconstruire des réseaux de co-régulation uniquement à partir de séquences génomiques, et nous ouvre la voie à l’étude de l’organisation et de l’évolution de la régulation transcriptionnelle pour des génomes dont on ne connaît rien.<p><p>The purpose of my thesis is to study the evolution of regulation within bacterial genomes by using a cross-genomic comparative approach. Nowadays, numerous genomes have been sequenced facilitating in silico analysis in order to detect groups of functionally related genes and to predict the mechanism of their relative regulation. In this project, we combined prediction of operons and regulons in order to reconstruct the transcriptional regulatory network for a bacterial genome. We have implemented three methods in order to predict operons from a bacterial genome and evaluated them on hundreds of annotated operons of Escherichia coli and Bacillus subtilis. It turns out that a simple distance-based threshold method gives good results with about 80% of accuracy. The principle of this method is to classify pairs of adjacent genes as “within operon” or “transcription unit border”, respectively, by using a threshold on their intergenic distance: two adjacent genes are predicted to be within an operon if their intergenic distance is smaller than 55bp. In the second part of my thesis, I evaluated the performances of a phylogenetic footprinting approach based on the detection of over-represented spaced motifs. This method is particularly suitable for (but not restricted to) Bacteria, since such motifs are typically bound by factors containing a Helix-Turn-Helix domain. We evaluated footprint discovery in 368 E.coli K12 genes with annotated sites, under 40 different combinations of parameters (taxonomical level, background model, organism-specific filtering, operon inference, significance threshold). Motifs are assessed both at the level of correctness and significance. The footprint discovery method proposed here shows excellent results with E. coli and can readily be extended to predict cis-acting regulatory signals and propose testable hypotheses in bacterial genomes for which nothing is known about regulation. Moreover, the predictive power of the strategy, and its capability to track the evolutionary divergence of cis-regulatory motifs was illustrated with the example of LexA auto-regulation, for which our predictions are remarkably consistent with the binding sites characterized in different taxonomical groups. A next challenge was to identify groups of co-regulated genes (regulons), by regrouping genes with similar motifs, in order to address the challenging domain of the evolution of transcriptional regulatory networks. We tested different metrics to detect putative pairs of co-regulated genes. The comparison between predicted and annotated co-regulation networks shows a high positive predictive value, since a good fraction of the predicted associations correspond to annotated co-regulations, and a low sensitivity, which may be due to the consequence of highly connected transcription factors (global regulator). A regulon-per-regulon analysis indeed shows that the sensitivity is very weak for these transcription factors, but can be quite good for specific transcription factors. The originality of this global strategy is to be able to infer a potential network from the sole analysis of genome sequences, and without any prior knowledge about the regulation in the considered organism. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
Page generated in 0.0382 seconds