• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 66
  • 14
  • 12
  • 9
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 140
  • 140
  • 32
  • 27
  • 24
  • 23
  • 18
  • 18
  • 17
  • 16
  • 15
  • 14
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Novel approaches to plasmonic enhancement applications: upconverters, 2D materials and tweezers

Seyed Shariatdoust, Mirali 31 August 2021 (has links)
In this thesis, the local field enhancement from multiple plasmonic structures were studied in different experiments. A new approach was applied to enhance the emission from upconverting nanoparticles to harvest energy from photons below the bandgap. A novel nanofabrication method was introduced to make double nanoholes for use in optical trapping, which was implemented to observe the nonlinear response from 2D materials and the enhanced emission from upconverting single nanoparticles. This method makes a large amount of apertures and is inexpensive. Selective plasmon-enhanced emission from erbium-doped nanoparticles using gold nanorods was demonstrated. Upconversion nanoparticles were excited with a dual-wavelength source of 1520~nm and 1210~nm simultaneously. The power dependence of the observed upconversion emission confirmed the contribution of both excitation bands in the upconversion process. Gold nanorods with resonances at 980~nm and 808~nm were implemented to selectively enhance the upconversion emission in order to harvest light with Si and GaAs solar cells, respectively. I also used colloidal lithography to fabricate double nanoholes which were plasmonic structures used for protein and nanoparticle trapping. This bottom-up technique enabled the fabrication of a large number of structures at low cost. Plasma etching of polystyrene nanoparticles using this technique tuned the cusp separation of double nanoholes down to 10~nm. The smaller cups separation enables to have more confined field in the gap which can be used in plasmonic sensing and plasmon enhanced upconversion processes. This technique can be used to fabricate plasmonic structures for nanoparticle trapping, spectroscopy, and sensing. In the next project, hexagonal boron nitride nanoflakes were trapped in a double nanohole fabricated with the colloidal lithography method. A second harmonic signal was detected at 486.5~nm where the particle was trapped and pumped with an ultra-low power laser at 973~nm. The power dependence measurements supported the second order process for second harmonic generation. Finite-difference time-domain (FDTD) simulations showed a 500-fold field intensity enhancement at the fundamental wavelength and a 450-fold enhancement in the Purcell factor at the second harmonic generation wavelength. This scheme is promising for ultra-fast imaging nonlinear optics technologies. In the last project, colloidal lithography double nanoholes were used to trap upconverting nanocrystals. Colloidal lithography double nanoholes with 32~nm cusp separation achieved 50 times larger emission compared to rectangular apertures. FDTD simulations showed the largest field enhancement in the aperture with the largest upconversion enhancement. 1550~nm emission from the trapped nanoparticle can be used as single-photon source. / Graduate
62

Nano-pince optique intégrée contrôlée par plasmon de surface localisé pour le piégeage de nanoparticules / Integrated localized surface plasmon nano-tweezers for nanoparticles trapping

Ecarnot, Aurore 19 December 2018 (has links)
Les travaux de cette thèse portent sur la conception et la réalisation de nanopinces optiques intégrées basées sur l’utilisation du champ proche pour piéger des nanoparticules de taille inférieure à 1 µm.Le dispositif proposé exploite l’existence d’un couplage fort entre un guide d'onde SOI et une chaîne d’ellipses d’or afin d’exciter efficacement des plasmons de surface localisés et ainsi créer une énergie potentielle suffisamment intense pour piéger des billes de polystyrène.Des simulations par la méthode FDTD permettent d’optimiser la géométrie de la structure et d’extraire des valeurs de constante de raideur et de potentiel d’énergie de piégeage. L’efficacité ainsi que la stabilité de piégeage du système sont évaluées en présence de particules de taille comprise entre 20 nm et 1 µm. Les travaux mettent en évidence qu’avec une simple ou une double chaîne plasmonique, des billes de polystyrène sont piégées de manière efficace lorsqu’elles ont une dimension comprise entre 50 et 250 nm de rayon avec une puissance incidente de 10 mW. Utiliser seulement deux ellipses d’or au-dessus d’un guide d’onde SOI localise mieux le champ électrique entre elle. Cette structure peut alors être utilisée comme capteurs et détecter le changement d’indice optique du milieu environnant ou encore la variation de la taille de la bille à piéger. Le piégeage de billes métalliques de dimension supérieure à 15 nm de rayon est également présenté. Il est aussi possible de concevoir des dispositifs permettant de contrôler la position d’une particule piégée le long d’une chaîne d’ellipses d’or en faisant varier la longueur d’onde de la lumière injectée dans le guide.Des dispositifs de piégeage sont fabriqués en salle blanche en exploitant les résultats obtenus par simulation et sont caractérisés sur un banc d'optique guidée. Des mesures de transmission optique détermine la longueur d'onde de résonance de la chaîne plasmonique, qui se traduit par une forte diminution de la transmission. Des expériences de piégeage optique mettent en évidence la possibilité de piéger de manière stable des nanoparticules diélectriques. Le suivi de la trajectoire des particules en fonction du temps permet de tracer des histogrammes de position et ainsi d’extraire les valeurs de l'énergie potentielle et de la constante de raideur du piège. Ces valeurs, déterminées expérimentalement, sont plus faibles que celles attendues par simulation. Cet écart peut être expliqué par la présence de vibrations mécaniques du banc de caractérisation optique.Ce dispositif de piégeage ouvre des perspectives d’applications dans le domaine des capteurs tout intégrés de taille nanométrique à faible puissance incidente. / This work is focused on the conception and the realisation of an integrated nano-tweezers based on the near field effect to trap nanoparticles smaller than 1 µm.The proposed device exploits the strong coupling between a SOI waveguide and a gold elliptic chain to excite the localized surface plasmon and to create a deep energy potential well to trap polystyrene beads.FDTD simulations are used to optimize the geometry of the structure and to extract the stiffness values and the potential energy. The efficiency and the trapping stability are evaluated with particles having size between 20 nm and 1 $upmu$m. This work shows that polystyrene beads with a radius between 50 and 250 nm are efficiently trapped thanks to single and double plasmonic chain with an injected power of 10 mW. The electric field is more localized when two gold elliptic nanocylinders on top of a SOI waveguide are considered. This structure can be used as a sensor to detect the shift of the optical index or the variation of the bead size. The tweezing of metallic beads having radius higher than 15 nm is also presented. It is also possible to control the position of the trap particle along a gold elliptic chain by varying the injected wavelength into the waveguide.Trapping device are fabricated in clean-room based on the simulations results of the geometry optimisation and are characterized on an optical bench. Optical measurements of transmission enable to determine the resonance wavelength of the plasmonic chain. Optical trapping experiment highlight the efficient tweezing of dielectric nanoparticles. With time resolved tracking method of the particle, position histograms can be plotted to extract potential energy and stiffness value. These experimentals results are not as good as the simulations results which can be explain by mechanic vibrations of the optical bench.This trapping device opens news applications in all integrated nanometric sensors with a small injected power.
63

Optical Orbital Angular Momentum from 3D-printed Microstructures for Biophotonics Applications

Reddy, Innem V.A.K. 11 1900 (has links)
This work aims to implement 3D microstructures that generate light with orbital angular momentum towards applications in Biophotonics. Over the past few decades, 3D printing has established itself as the most versatile technology with effortless adaptability. Parallel to this, the concept of miniaturiza tion has seen tremendous growth irrespective of the field and has become an estab lished trend motivated by the need for compact, portable and multi-function devices. Therefore, when these two concepts get together, i.e., 3D printing of miniaturized objects, it could lead to an exciting path with endless opportunities. When it comes to optics, miniaturized 3D printing offers the potential to create compact optical micro-systems and exhibits a way to manufacture freeform µ-optics. In particular, two-photon lithography (TPL) is a cutting edge 3D printing technology that has re cently demonstrated groundbreaking solutions for optics as it offers high resolution with a great degree of flexibility. With a TPL 3D printer, it is possible to fabricate complex µ-optical elements and employ them for compelling applications. In recent years, light with orbital angular momentum (OAM), or ”twisted” light, has captured the interests of several researchers due to its inspiring applications. Tra ditionally, to generate OAM beams, one would require bulk, table-top optics, restrict ing their applications to over-the-table setup. An alternative approach of OAM beam generation is through µ-structures over the fiber, as they can open up new opportu nities, especially in Bioscience, and facilitate in-vivo operations. In particular, this probe-like setup can be used for processes such as optical trapping, high-resolution microscopy, etc. Hence, I propose the development of a novel approach with un precedented capabilities for generating OAM beams right from single-mode optical fibers, by transforming its Gaussian-like output beam by using complex 3D printed microstructures. In this document, I will showcase designs and results on generating Bessel beams (both zeroth- and high-order) and high-NA converging beams (with and without OAM) for optical trapping from the fiber. Remarkably, I achieved the first-ever fiber-based high-order Bessel beam generation and the first-ever fiber optical tweezers with OAM.
64

Calibration of an Optical Trap: A Tool for Manipulating Microscopic Particles

Chakraborty, Debalina 05 June 2023 (has links)
No description available.
65

A Single Molecule Perspective on Protein-DNA Condensates

Renger, Roman 22 December 2020 (has links)
Biomolecular condensates are dynamic intracellular structural units or distinct reaction spaces that can form by condensation of their constituents from the cytoplasm or the nucleoplasm. It is generally not clear yet, how dynamic, continuum-like condensate properties relevant for large-scale intracellular organisation emerge from the interplay of proteins and nucleic acids on the level of few individual molecules. With this work, we expand the portfolio of methods to investigate the role of protein-nucleic acid interactions in biomolecular condensates by introducing optical tweezers-based mechanical micromanipulation of single DNA molecules combined with confocal fluorescence microscopy to the field. We used this approach to characterise how the two landmark proteins1 Fused in Sarcoma and Heterochromatin Protein 1 form condensates with single DNA molecules. Fused in Sarcoma (FUS) is a key protein for various aspects of the nucleic acid metabolism and evidence is accumulating that biomolecular condensation is crucial for both, its physiological functions and its role in pathological aggregate formation. In this thesis, we directly visualised the formation of FUS condensates with single molecules of ssDNA and dsDNA. We showed that the formation of these microcondensates is based on nucleic acid scaffolding. We explored their mechanical properties and found that the mechanical tension that (FUS dsDNA) condensates can withstand or exert is in the range below 2 pN. We further demonstrated that already on this fundamental scale and with limited amounts of constituent molecules, dynamic properties like shape relaxations, reminiscent of viscoelastic materials, can emerge. Heterochromatin Protein 1 (HP1) is a prototypic chromatin organising factor that is in particular involved in the formation of dynamically compacted heterochromatin domains. HP1 forms biomolecular condensates and compacts DNA strands in vitro. In this work, we measured the influence of HP1 on the mechanical properties of individual DNA molecules and demonstrated the response of HP1-DNA condensates to different environmental conditions. We contributed a methodological framework to characterise viscoelastic-like systems on the single molecule level. Taken together, our optical tweezers-based approach revealed structural and mechanical properties of prototypic protein-DNA condensates and hence helped to elucidate mechanisms underlying their formation in unprecedented spatiotemporal and mechanical detail. We anticipate that this method can become a valuable tool to investigate how large-scale intracellular organisation based on protein-nucleic acid condensation emerges from interactions between individual building blocks.
66

Diseño y caracterización experimental de sistemas de atrapamiento y manipulación de micro-objetos mediante técnicas ópticas, térmicas y acústicas

Muñoz Pérez, Francisco Misael 11 April 2024 (has links)
Tesis por compendio / [ES] La necesidad de confinar y manipular micro-objetos tiene aplicaciones en múltiples áreas de la ciencia y tecnología. Actualmente, existen diversas técnicas para lograr este objetivo, y una de las más destacadas es el uso de las llamadas pinzas ópticas, que se han convertido en una herramienta ampliamente utilizada en laboratorios de todo el mundo. Este trabajo de investigación se centra en el fascinante campo del atrapamiento y manipulación de micro-objetos, con un enfoque destacado en la combinación de elementos ópticos difractivos y la técnica de pinzas ópticas. Esta combinación permite un aumento de la versatilidad de los sistemas experimentales de pinzas ópticas. Los avances presentados en esta tesis tienen aplicaciones en una amplia gama de campos, desde la nanotecnología hasta la biología celular. Como lentes difractivas implementadas en los sistemas de pinzas ópticas, se introducen las lentes difractivas Kinoform basadas en la secuencia aperiódica m-Bonacci. Estas lentes permiten atrapar múltiples partículas simultáneamente y manipularlas tridimensionalmente en dos planos focales diferentes, lo que amplía significativamente las posibilidades de investigación y desarrollo en diversas disciplinas. Además, se aborda la generación de múltiples trampas ópticas mediante lentes Kinoform cuadrifocales basadas en otra secuencia aperiódica conocida como Silver Mean, permitiendo atrapar partículas en cuatro planos focales de manera simultánea. Este avance mejora significativamente la versatilidad de los sistemas de pinzas ópticas. Adicionalmente el uso de vórtices multiplexados en un sistema de pinzas ópticas, permite atrapar de manera independiente múltiples partículas y transferir momento angular. Estos avances abren nuevas posibilidades en la construcción de micromotores y aplicaciones de micro-ensamblaje. Un efecto asociado a las trampas ópticas es la generación de microburbujas, en la actualidad estas se han convertido en objeto de estudio debido a la facilidad de generación y a sus posibles aplicaciones como agentes de transporte de partículas o micro-objetos. Aprovechando este efecto en esta tesis se implementa una técnica de atrapamiento que emplea fuerzas termoforéticas en la captura y manipulación de microburbujas en líquidos. Esto constituye otro avance importante en el campo del atrapamiento tridimensional. Por último, se desarrolla un laboratorio virtual utilizando COMSOL Multiphysics para simular el atrapamiento acústico, lo que permite a los estudiantes interactuar con el sistema y comprender mejor este fenómeno. Este enfoque educativo proporciona herramientas valiosas para la comprensión y análisis de la manipulación de partículas, lo que beneficia a los estudiantes de pre-grado y grado interesados en este campo. En conjunto, todos estos avances representan contribuciones significativas en el campo del atrapamiento y manipulación de partículas, en particular a través de las pinzas ópticas, promoviendo el progreso tecnológico y científico en diversas disciplinas y brindando oportunidades educativas para futuras generaciones de investigadores y científicos. A lo largo del desarrollo de esta tesis, se han creado nuevos elementos difractivos que superan ciertas limitaciones y aumentan las capacidades de las pinzas ópticas, abriendo nuevas perspectivas de aplicación para tecnologías preexistentes. / [CA] La necessitat de confinar i manipular microobjectes té aplicacions a múltiples àrees de la ciència i la tecnologia. En l'actualitat, hi ha diverses tècniques per assolir aquest objectiu, i una de les més destacades és l'ús de les anomenades pinces òptiques, que han esdevingut una eina molt utilitzada en laboratoris de tot el món. Aquest treball de recerca se centra en el fascinant camp de la captura i la manipulació de microobjectes, destacant la combinació d'elements òptics difractius i la tècnica de les pinces òptiques. Aquesta combinació permet augmentar la versatilitat dels sistemes experimentals de pinces òptiques. Els avenços presentats en aquesta Tesi tenen aplicacions en una àmplia gamma de camps, des de la nanotecnologia a la biologia cel·lular. Com a lents difractives implementades en sistemes de pinces òptiques, es presenten les lents difractives Kinoform basades en la seqüència aperiòdica m-Bonacci. Aquestes lents permeten atrapar simultàniament múltiples partícules i manipular-les tridimensionalment en dos plans focals diferents, fet que amplia significativament les possibilitats de recerca i desenvolupament en diverses disciplines. A més, s'aborda la generació de múltiples trampes òptiques utilitzant lents Kinoform quadrifocals basades en una altra seqüència aperiòdica coneguda com a Silver Mean, que permet atrapar partícules en quatre plans focals simultàniament. Aquest avenç millora significativament la versatilitat dels sistemes de pinces òptiques. A més, l'ús de vòrtexs multiplexats en un sistema de pinces òptiques permet atrapar múltiples partícules de manera independent i transferir el moment angular. Aquests avenços obren noves possibilitats en la construcció de micromotors i aplicacions de microassemblatge. Un efecte associat a les trampes òptiques és la generació de microbombolles, actualment aquestes s'han convertit en objecte d'estudi a causa de la facilitat de generació i de les seves potencials aplicacions com a agents de transport de partícules o microobjectes. Aprofitant aquest efecte, aquesta Tesi implementa una tècnica d'atrapament que utilitza forces termoforètiques en la captura i manipulació de microbombolles en líquids. Això constitueix un altre avenç important en el camp de l'atrapament tridimensional. Finalment, es desenvolupa un laboratori virtual utilitzant COMSOL Multiphysics per simular l'atrapament acústic, cosa que permet als estudiants interactuar amb el sistema i comprendre millor aquest fenomen. Aquest enfocament educatiu proporciona eines valuoses per a la comprensió i l'anàlisi de la manipulació de partícules, cosa que beneficia els estudiants de grau i postgrau interessats en aquest camp. En conjunt, tots aquests avenços representen contribucions significatives al camp de l'atrapament i la manipulació de partícules, particularment a través de pinces òptiques, promovent el progrés tecnològic i científic en diverses disciplines i proporcionant oportunitats educatives per a futures generacions d'investigadors i científics. Al llarg del desenvolupament d'aquesta Tesi, s'han creat elements difractius nous que superen certes limitacions i augmenten les capacitats de les pinces òptiques, obrint noves perspectives d'aplicació per a tecnologies preexistents. / [EN] The need to confine and manipulate micro-objects has applications in multiple areas of science and technology. Currently, there are several techniques to achieve this goal, and one of the most prominent is the use of the so-called optical tweezers, which have become a widely used tool in laboratories around the world. This research work focuses on the fascinating field of micro-object capture and manipulation, highlighting the combination of diffractive optical elements and the optical tweezers technique. This combination allows to increase the versatility of the experimental optical tweezers systems. The advances presented in this thesis have applications in a wide range of fields, from nanotechnology to cell biology. As diffractive lenses implemented in optical tweezers systems, Kinoform diffractive lenses based on the aperiodic m-Bonacci sequence are presented. These lenses allow multiple particles to be trapped simultaneously and manipulated three-dimensionally in two different focal planes, which significantly expands the possibilities for research and development in various disciplines. In addition, the generation of multiple optical traps is addressed using quadrifocal Kinoform lenses based on another aperiodic sequence known as Silver Mean, which allows particles to be trapped in four focal planes simultaneously. This advance significantly improves the versatility of optical tweezer systems. In addition, the use of multiplexed vortices in an optical tweezer system allows multiple particles to be trapped independently and angular momentum to be transferred. These advances open up new possibilities in micromotor construction and microassembly applications. One effect associated with optical traps is the generation of microbubbles, currently these have become an object of study due to the ease of generation and their potential applications as transport agents for particles or micro-objects. Taking advantage of this effect, this thesis implements an trapping technique that employs thermophoretic forces in the capture and manipulation of microbubbles in liquids. This constitutes another important advance in the field of three-dimensional trapping. Finally, a virtual laboratory is developed using COMSOL Multiphysics to simulate acoustic trapping, allowing students to interact with the system and better understand this phenomenon. This educational approach provides valuable tools for the understanding and analysis of particle manipulation, benefiting undergraduate and graduate students interested in this field. Taken together, all of these advances represent significant contributions to the field of particle trapping and manipulation, particularly through optical tweezers, promoting technological and scientific progress in various disciplines and providing educational opportunities for future generations of researchers and scientists. Throughout the development of this thesis, new diffractive elements have been created that overcome certain limitations and increase the capabilities of optical tweezers, opening new application perspectives for pre-existing technologies. / We acknowledge the financial support from Ministerio de Ciencia e Innovación (grants PID2019-107391RB-I00 and PID2022-1142407NB-I00), Generalitat Valenciana (grant PROMETEO/2019/048 and CI-PROM/2022/30), and Universitat Politècnica de València (PAID-01-20-25), Spain. We acknowledge the financial support from CONACyT (grant A1-S-28440). / Muñoz Pérez, FM. (2024). Diseño y caracterización experimental de sistemas de atrapamiento y manipulación de micro-objetos mediante técnicas ópticas, térmicas y acústicas [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/203436 / Compendio
67

Optical Tweezers and Its use in Studying Red Blood Cells - Healthy and Infected

Paul, Apurba January 2016 (has links) (PDF)
The experiment discussed in the next chapter was to confirm the aforementioned bystander effect. In the first experiment we separated hosting and non-hosting mRBCs by the percol purification method and then measured the corner frequencies of them. The mean fc of the distribution is almost the same, and this confirms the effect of the parasite on the non-hosting mRBC. In the next experiment, we have incubated nRBCs in the spent media and measured the corner frequency at six-hours intervals to see how the fc changed with the incubation time. The results showed that within 24 hours, the fc of the incubated nRBCs increases to the level of the iRBCs. The fact that nRBCs are getting affected by the spent media indicates that some substances must be released in the spent media which alter the physical properties of the nRBCs. This kind of effect on non-host mRBCs was previously observed by some earlier works [Dondorp97, Sabolovic91a, Bambardekar08]. It has also been recently shown that the rosetting of the host mRBCs to the non-host mRBCs is also activated by the substances released in the medium [Handunnetti89, Wahlgren89], which are also somewhat similar to the bystander effect observed by us. In addition to this, there are reports which suggest that sickle cell disease also shows binding properties [Roseff08, Zhang12] which may be due to the substances released in the medium. So it was already observed that the released substances induced changes in the properties of RBCs, but our study gives a direct confirmation of the same. The next study was to find out the released substances which were responsible for the observed changes above. We incubated infected and uninfected RBCs in different drugs. Then, we measured them to see what kind of changes occur in the corner frequency of the incubated RBCs. The corner frequency of normal RBCs incubated in db-cAMP shows the maximum change. So the released substance that is responsible for the bystander effect may be due to the db-cAMP. All the experiments above were done using samples cultured only in the lab. Since the environment of the blood taken directly from the patient may differ from the one that is cultured in the lab, it is natural to find out if similar kinds of changes can be observed in the clinical sample or not. The study in chapter 6 was targeted to find out the same. We took clinical samples from BMRI for patients having a confirmed malaria infection by both P. falciparum and P. vivax. This also provided us the opportunity to work with the P. vivax infected sample as it is very difficult to culture them in the lab. The results shown in this chapter clearly indicate that similar kinds of changes occur in the clinical sample also. It is worth noting that even though P. vivax infects only immature RBCs (reticulocytes), changes were also observed in P. vivax samples. This gives us another strong confirmation about the previously observed bystander effect. This also indicates that this technique can be used as a tool to diagnose malaria. Although we cannot differentiate between P. falciparum and P. vivax, this technique combined with other well established techniques can give us more confirmation. So, in all the experiment above we have shown an easy and novel technique which can be used to differentiate between normal and malaria-infected RBCs. We have also observed the bystander effect and tried to find out the released substances which are responsible for this effect. We have shown that this technique can use the bystander effect of malaria to identify malaria. It has also been shown that the RBCs taken from the patient sample also show the same changes as the cultured samples, which gives us the possibility that this technique can be used as a diagnostic tool combined with other technique. This technique can also be used in experiments like the effects of drugs and to find out drugs for diseases like malaria. Future outlook 1. We have observed the changes only for malaria. There may be other diseases like sickle cell anemia which can also alter the corner frequency of the distribution of RBCs. We have to find out the specificity of the observed changes. 1 We can directly measure the elasticity of RBCs using dual traps in optical tweezers to find out the effect of different infections and drugs on the rigidity of RBCs and compare the with the data above. 2 We can also study other cells using the same method to see if we can find out any difference between healthy and unhealthy cells.
68

Optical sorting and manipulation of microscopic particles

Milne, Graham January 2007 (has links)
Over the last few decades, the use of light to control and manipulate microscopic particles has become widespread. These methods are enabling new areas of research to flourish across the physical and biological sciences. This thesis describes investigations into both optical trapping and the closely related field of optical sorting. It documents the development of a variety of new techniques. The thesis begins with a short review of optical trapping and existing methods for sorting mixtures of microscopic particles. The first half of this chapter highlights some of the reasons behind optical trapping's rapid growth in popularity. By reviewing an array of methods for sorting particles and discussing the relative merits of each, the case for optical sorting is established. The second chapter describes research into using a spatial light modulator to create three-dimensional optically trapped colloidal structures using the time-sharing technique. Limiting factors inherent in the technology are discussed in detail. The third chapter reviews a sophisticated particle-tracking software package that has proved to be a considerable success. It was developed explicitly with colloidal microscopy in mind and experimental plots produced by the software are used throughout the thesis. Experimental studies have been performed into the behaviour of microscopic particles moving under the influence of two classes of propagation-invariant beams: Mathieu beams and Bessel beams. The Bessel beam studies have been complimented by a theoretical model and have led ultimately to a new method for the static optical sorting of both solid particles and biological cells, with particular emphasis on human blood. The fifth and final chapter describes how re-configurable optical devices can be implemented to spatially separate different colloidal species. A new method for creating arbitrary optical landscapes using an acousto-optic modulator is reported. This new technique is then used to optically sort four particle species simultaneously - the first experimental demonstration of polydisperse optical fractionation. Additionally, experiments are reported that demonstrate controlled, static optical sorting using a spatial light modulator.
69

Two-dimensional colloidal systems : grain boundaries and confinement

Skinner, Thomas Olof Edwin January 2012 (has links)
The behaviour of colloidal particles in two-dimensional (2D) systems is addressed in real space and time using magnetic fields, optical tweezers and optical video microscopy. First, the fluctuations of a grain boundary in a 2D colloidal crystal are analysed. A real space analogue of the capillary fluctuation method is derived and successfully employed to extract the key parameters that characterise the grain boundary. Good agreement is also found with a fluctuation-dissipation based method recently suggested in simulation. Following on from analysis of the interface fluctuations, the properties of the individual grain boundary particles are analysed to investigate the long standing hypothesis that suggests that grain boundary particle dynamics are similar to those in supercooled liquids. The grain boundary particle dynamics display cage breaking at long times, highly heterogeneous particle dynamics and the formation of cooperatively moving regions along the interface, all typical behaviour of a supercooled liquid. Next, the frustration induced by confining colloidal particles inside a pentagonal environment is investigated. The state of the system is adjusted via two separate control parameters: the inter-particle interaction potential and the number density. A gradual crystalline to confined liquid-like transition is observed as the repulsive inter-particle interaction potential is decreased. In contrast, re-entrant orientational ordering and dynamical effects result as the number density of the confined colloidal particles is increased. Finally, the dynamics of colloidal particles distributed amongst a random array of fixed obstacle particles is probed as a function of both the mobile particle and fixed obstacle particle number densities. Increasing the mobile and the obstacle particle number density drives the system towards a glass transition. The dynamics of the free particles are shown to behave in a similar way to the normal glass transition at low obstacle density and more analogous to a localisation glass transition at high obstacle density.
70

Mesure in vivo de la mécanique cellulaire lors de la morphogénèse d'un tissu

Blanc, Olivier 31 May 2013 (has links)
Pendant le développement d'un organisme, les tissus subissent, génèrent des changements morphologiques drastiques nécessaires à l'obtention d'une forme finale ou intermédiaire spécifique et fonctionnelle. On comprend cette acquisition de formes comme un phénomène émergent résultant de l'interaction mécanique entre toutes les cellules composant le tissu. On sait que les structures de protéines du cytosquelette sont capables aussi bien de générer des forces ou de changer les propriétés mécaniques des cellules i.e de changer la réaction de celles-ci à un stress mécanique. Ces phénomènes émergents font l'objet de nombreuses études et mesures aussi bien lors d'expériences in vitro (solution de protéines purifiées) que sur cellules de cultures. Le travail décrit dans cette thèse s'est attaché à mesurer quantitativement les forces et propriétés mécaniques in vivo durant le développement d'un organisme. À terme, ces mesures sont utiles à l'élaboration d'un modèle mécanique qui amènerait une meilleure compréhension des phénomènes morphogénétiques.Pour réaliser ces mesures, un banc de mesures optiques a été développé. Il permet de réaliser des mesures de microrhéologie passives et actives durant l'extension de la bandelette germinale de l'embryon de drosophile. Des mesures quantitatives de viscosité, de raideur et de force jonctionnelle ont été réalisées. / Pendant le développement d'un organisme, les tissus subissent, génèrent des changements morphologiques drastiques nécessaires à l'obtention d'une forme finale ou intermédiaire spécifique et fonctionnelle. On comprend cette acquisition de formes comme un phénomène émergent résultant de l'interaction mécanique entre toutes les cellules composant le tissu. On sait que les structures de protéines du cytosquelette sont capables aussi bien de générer des forces ou de changer les propriétés mécaniques des cellules i.e de changer la réaction de celles-ci à un stress mécanique. Ces phénomènes émergents font l'objet de nombreuses études et mesures aussi bien lors d'expériences in vitro (solution de protéines purifiées) que sur cellules de cultures. Le travail décrit dans cette thèse s'est attaché à mesurer quantitativement les forces et propriétés mécaniques in vivo durant le développement d'un organisme. À terme, ces mesures sont utiles à l'élaboration d'un modèle mécanique qui amènerait une meilleure compréhension des phénomènes morphogénétiques.Pour réaliser ces mesures, un banc de mesures optiques a été développé. Il permet de réaliser desmesures de microrhéologie passives et actives durant l'extension de la bandelette germinale de l'embryon de drosophile. Des mesures quantitatives de viscosité, de raideur et de force jonctionnelle ont été réalisées.

Page generated in 0.0976 seconds