• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 9
  • 5
  • 2
  • 1
  • Tagged with
  • 54
  • 54
  • 38
  • 29
  • 15
  • 15
  • 14
  • 12
  • 11
  • 11
  • 9
  • 9
  • 8
  • 8
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Limit order books, diffusion approximations and reflected SPDEs : from microscopic to macroscopic models

Newbury, James January 2016 (has links)
Motivated by a zero-intelligence approach, the aim of this thesis is to unify the microscopic (discrete price and volume), mesoscopic (discrete price and continuous volume) and macroscopic (continuous price and volume) frameworks of limit order books, with a view to providing a novel yet analytically tractable description of their behaviour in a high to ultra high-frequency setting. Starting with the canonical microscopic framework, the first part of the thesis examines the limiting behaviour of the order book process when order arrival and cancellation rates are sent to infinity and when volumes are considered to be of infinitesimal size. Mathematically speaking, this amounts to establishing the weak convergence of a discrete-space process to a mesoscopic diffusion limit. This step is initially carried out in a reduced-form context, in other words, by simply looking at the best bid and ask queues, before the procedure is extended to the whole book. This subsequently leads us to the second part of the thesis, which is devoted to the transition between mesoscopic and macroscopic models of limit order books, where the general idea is to send the tick size to zero, or equivalently, to consider infinitely many price levels. The macroscopic limit is then described in terms of reflected SPDEs which typically arise in stochastic interface models. Numerical applications are finally presented, notably via the simulation of the mesocopic and macroscopic limits, which can be used as market simulators for short-term price prediction or optimal execution strategies.
42

Financial time series analysis with competitive neural networks

Roussakov, Maxime 08 1900 (has links)
No description available.
43

Modelo da dinâmica de um livro de ordens para aplicações em high-frequency trading

Nunes, Gustavo de Faro Colen 01 February 2013 (has links)
Submitted by Gustavo de Faro Colen Nunes (gustavocolennunes@gmail.com) on 2013-02-28T19:45:35Z No. of bitstreams: 1 MODELO DA DINÂMICA DE UM LIVRO DE ORDENS PARA APLICAÇÕES EM HIGH-FREQUENCY TRADING.pdf: 1769569 bytes, checksum: fcb41165f230caf02656cf7b8a709951 (MD5) / Approved for entry into archive by Suzinei Teles Garcia Garcia (suzinei.garcia@fgv.br) on 2013-02-28T21:30:40Z (GMT) No. of bitstreams: 1 MODELO DA DINÂMICA DE UM LIVRO DE ORDENS PARA APLICAÇÕES EM HIGH-FREQUENCY TRADING.pdf: 1769569 bytes, checksum: fcb41165f230caf02656cf7b8a709951 (MD5) / Made available in DSpace on 2013-03-01T11:06:28Z (GMT). No. of bitstreams: 1 MODELO DA DINÂMICA DE UM LIVRO DE ORDENS PARA APLICAÇÕES EM HIGH-FREQUENCY TRADING.pdf: 1769569 bytes, checksum: fcb41165f230caf02656cf7b8a709951 (MD5) Previous issue date: 2013-02-01 / As operações de alta frequência (High-Frequency Trading - HFT) estão crescendo cada vez mais na BOVESPA (Bolsa de Valores de São Paulo), porém seu volume ainda se encontra muito atrás do volume de operações similares realizadas em outras bolsas de relevância internacional. Este trabalho pretende criar oportunidades para futuras aplicações e pesquisas nesta área. Visando aplicações práticas, este trabalho foca na aplicação de um modelo que rege a dinâmica do livro de ordens a dados do mercado brasileiro. Tal modelo é construído com base em informações do próprio livro de ordens, apenas. Depois de construído o modelo, o mesmo é utilizado em uma simulação de uma estratégia de arbitragem estatística de alta frequência. A base de dados utilizada para a realização deste trabalho é constituída pelas ordens lançadas na BOVESPA para a ação PETR4. / High-frequency trading (HFT) are increasingly growing on BOVESPA (São Paulo Stock Exchange), but their volume is still far behind the volume of similar operations performed on other internationally relevant exchange markets. The main objective of this work is to create opportunities for future research and applications in this area. Aiming at practical applications, this work focuses on applying a model that governs the dynamics of the order book to the Brazilian market. This model is built based in the information of the order book alone. After building the model, a high frequency statistical arbitrage strategy is simulated to validate the model. The database used for this work consists on the orders posted on the equity PETR4 in BOVESPA.
44

Architektura pro rekonstrukci knihy objednávek s nízkou latencí / Low-Latency Architecture for Order Book Building

Závodník, Tomáš January 2016 (has links)
Information technology forms an important part of the world and algorithmic trading has already become a common concept among traders. The High Frequency Trading (HFT) requires use of special hardware accelerators which are able to provide input response with sufficiently low latency. This master's thesis is focused on design and implementation of an architecture for order book building, which represents an essential part of HFT solutions targeted on financial exchanges. The goal is to use the FPGA technology to process information about an exchange's state with latency so low that the resulting solution is effectively usable in practice. The resulting architecture combines hardware and software in conjunction with fast lookup algorithms to achieve maximum performance without affecting the function or integrity of the order book.
45

Modélisation du carnet d’ordres, Applications Market Making / Limit order book modelling, Market Making Applications

Lu, Xiaofei 04 October 2018 (has links)
Cette thèse aborde différents aspects de la modélisation de la microstructure du marché et des problèmes de Market Making, avec un accent particulier du point de vue du praticien. Le carnet d’ordres, au cœur du marché financier, est un système de files d’attente complexe à haute dimension. Nous souhaitons améliorer la connaissance du LOB pour la communauté de la recherche, proposer de nouvelles idées de modélisation et développer des applications pour les Market Makers. Nous remercions en particuler l’équipe Automated Market Making d’avoir fourni la base de données haute-fréquence de très bonne qualité et une grille de calculs puissante, sans laquelle ces recherches n’auraient pas été possible. Le Chapitre 1 présente la motivation de cette recherche et reprend les principaux résultats des différents travaux. Le Chapitre 2 se concentre entièrement sur le LOB et vise à proposer un nouveau modèle qui reproduit mieux certains faits stylisés. A travers cette recherche, non seulement nous confirmons l’influence des flux d’ordres historiques sur l’arrivée de nouveaux, mais un nouveau modèle est également fourni qui réplique beaucoup mieux la dynamique du LOB, notamment la volatilité réalisée en haute et basse fréquence. Dans le Chapitre 3, l’objectif est d’étudier les stratégies de Market Making dans un contexte plus réaliste. Cette recherche contribueà deux aspects : d’une part le nouveau modèle proposé est plus réaliste mais reste simple à appliquer pour la conception de stratégies, d’autre part la stratégie pratique de Market Making est beaucoup améliorée par rapport à une stratégie naive et est prometteuse pour l’application pratique. La prédiction à haute fréquence avec la méthode d’apprentissage profond est étudiée dans le Chapitre 4. De nombreux résultats de la prédiction en 1- étape et en plusieurs étapes ont retrouvé la non-linéarité, stationarité et universalité de la relation entre les indicateurs microstructure et le changement du prix, ainsi que la limitation de cette approche en pratique. / This thesis addresses different aspects around the market microstructure modelling and market making problems, with a special accent from the practitioner’s viewpoint. The limit order book (LOB), at the heart of financial market, is a complex continuous high-dimensional queueing system. We wish to improve the knowledge of LOB for the research community, propose new modelling ideas and develop concrete applications to the interest of Market Makers. We would like to specifically thank the Automated Market Making team for providing a large high frequency database of very high quality as well as a powerful computational grid, without whom these researches would not have been possible. The first chapter introduces the incentive of this research and resumes the main results of the different works. Chapter 2 fully focuses on the LOB and aims to propose a new model that better reproduces some stylized facts. Through this research, not only do we confirm the influence of historical order flows to the arrival of new ones, but a new model is also provided that captures much better the LOB dynamic, notably the realized volatility in high and low frequency. In chapter 3, the objective is to study Market Making strategies in a more realistic context. This research contributes in two aspects : from one hand the newly proposed model is more realistic but still simple enough to be applied for strategy design, on the other hand the practical Market Making strategy is of large improvement compared to the naive one and is promising for practical use. High-frequency prediction with deep learning method is studied in chapter 4. Many results of the 1-step and multi-step prediction have found the non-linearity, stationarity and universality of the relationship between microstructural indicators and price change, as well as the limitation of this approach in practice.
46

Simulating market maker behaviour using Deep Reinforcement Learning to understand market microstructure / En simulering av aktiemarknadens mikrostruktur via självlärande finansiella agenter

Marcus, Elwin January 2018 (has links)
Market microstructure studies the process of exchanging assets underexplicit trading rules. With algorithmic trading and high-frequencytrading, modern financial markets have seen profound changes in marketmicrostructure in the last 5 to 10 years. As a result, previously establishedmethods in the field of market microstructure becomes oftenfaulty or insufficient. Machine learning and, in particular, reinforcementlearning has become more ubiquitous in both finance and otherfields today with applications in trading and optimal execution. This thesisuses reinforcement learning to understand market microstructureby simulating a stock market based on NASDAQ Nordics and trainingmarket maker agents on this stock market. Simulations are run on both a dealer market and a limit orderbook marketdifferentiating it from previous studies. Using DQN and PPO algorithmson these simulated environments, where stochastic optimal controltheory has been mainly used before. The market maker agents successfullyreproduce stylized facts in historical trade data from each simulation,such as mean reverting prices and absence of linear autocorrelationsin price changes as well as beating random policies employed on thesemarkets with a positive profit & loss of maximum 200%. Other tradingdynamics in real-world markets have also been exhibited via theagents interactions, mainly: bid-ask spread clustering, optimal inventorymanagement, declining spreads and independence of inventory and spreads, indicating that using reinforcement learning with PPO and DQN arerelevant choices when modelling market microstructure. / Marknadens mikrostruktur studerar hur utbytet av finansiella tillgångar sker enligt explicita regler. Algoritmisk och högfrekvenshandel har förändrat moderna finansmarknaders strukturer under de senaste 5 till 10 åren. Detta har även påverkat pålitligheten hos tidigare använda metoder från exempelvis ekonometri för att studera marknadens mikrostruktur. Maskininlärning och Reinforcement Learning har blivit mer populära, med många olika användningsområden både inom finans och andra fält. Inom finansfältet har dessa typer av metoder använts främst inom handel och optimal exekvering av ordrar. I denna uppsats kombineras både Reinforcement Learning och marknadens mikrostruktur, för att simulera en aktiemarknad baserad på NASDAQ i Norden. Där tränas market maker - agenter via Reinforcement Learning med målet att förstå marknadens mikrostruktur som uppstår via agenternas interaktioner. I denna uppsats utvärderas och testas agenterna på en dealer – marknad tillsammans med en limit - orderbok. Vilket särskiljer denna studie tillsammans med de två algoritmerna DQN och PPO från tidigare studier. Främst har stokastisk optimering använts för liknande problem i tidigare studier. Agenterna lyckas framgångsrikt med att återskapa egenskaper hos finansiella tidsserier som återgång till medelvärdet och avsaknad av linjär autokorrelation. Agenterna lyckas också med att vinna över slumpmässiga strategier, med maximal vinst på 200%. Slutgiltigen lyckas även agenterna med att visa annan handelsdynamik som förväntas ske på en verklig marknad. Huvudsakligen: kluster av spreads, optimal hantering av aktielager och en minskning av spreads under simuleringarna. Detta visar att Reinforcement Learning med PPO eller DQN är relevanta val vid modellering av marknadens mikrostruktur.
47

Four essays on the econometric analysis of high-frequency order data

Huang, Ruihong 05 July 2012 (has links)
Diese Arbeit enthält vier Aufsätze über die Beziehungen zwischen Handelsstrategien auf Aktienmärkten und dem Zustand des Marktes. Es werden ökonometrische Methoden angewendet um den Markteinfluss von limit order Platzierungen, die Eigenschaften von limit ordern sowie die Verwendung von versteckten ordern zu analysieren. Im Kapitel 1 quantifizieren wir die Effekte der limit order Platzierung auf Preisquotierungen am Börsenplatzes Euronext. Wir zeigen, dass eine limit order signifikante Informationen enthält und illustrieren inwieweit ihr Einfluss auf den Markt von ihren Charakteristika und dem Zustand des Orderbuchs abhängt. Das Kapitel 2 enthält empirische Resultate über die limit order Aktivität und den Markteinfluss von limit orders an der New Yorker NASDAQ Börse. Wir dokumentieren, dass Marktteilnehmer die Platzierung von limit orders mit kleinen Volumina präferieren, diese aber sofort nach ihrem Einsatz wieder löschen. Basierend auf der geschätzten Marktauswirkung einer limit order schlagen wir eine Methode zur Prognose ihres optimalen Volumens vor. Im Kapitel 3 werden die limit order-Strategien von Marktteilnehmern in intransparenten Märkten untersucht. Wir zeigen, dass die Position der sogenannten versteckten Liquidität im Orderbuch von diversen Variablen abhängt, die den Zustand des Marktes beschreiben. Die Daten suggerieren, dass Händler die Platzierung sogenannter hidden orders im Hinblick auf günstige Liquidität am Markt und dem "picking-off"-Risiko ausbalancieren. Im letzten Kapitel 4 präsentieren wir ein Softwaresystem zur Rekonstruktion von Orderbüchern und zur Extrahierung von Orderflussinformationen aus message stream Daten. Die Basismodule des Systems basieren auf allgemeinen Orderbuch-Ereignissen. Sie sind abstrakt gehalten und können so einfach auf beliebige Märkte mit elektronischen Orderbüchern angewendet werden. / In four essays, this thesis examines the interaction between traders'' strategies and the state of market by the econometric analysis of maket impact of limit order submission, the typical properties of order flow and the traders'' usage of hidden orders. Chapter 1 quantifies short-term and long-term effects of limit order submissions on quotes in Euronext. We show that limit orders have significant information content and the maginitude of their impact on the quotes depends on both the order''s characteritics and the state of limit order books (LOBs). Chapter 2 provides new empirical evidence on order submission activities and market impacts of limit orders at NASDAQ. We find that traders dominantly submit small size limit orders and cancell most of them immediately after submission. Based on the estimated market impact of orders, we propose a method to predict the optimal size of a limit order conditional on its position in the LOB and the desired impact. Chapter 3 analyzes traders'' decisions on using undisclosed orders in opaque markets. Our empirical findings show that market conditions affect traders'' order submission strategies and suggest that traders balance their hidden order placements to compete for the provision of liquidity and protect themselves against picking-off risk. Chapter 4 presents a program framework for reconstructing LOBs as well as extracting order flow information from message stream data. We design the basic modules of the system in an abstract layer based on common order events in limit order markets, so that it can be easily adapted to data at any limit order markets.
48

Three essays on hidden liquidity in financial markets

Cebiroglu, Gökhan 10 April 2014 (has links)
An den Handelsbörsen der Welt, hat der Anteil unsichtbarer Luidität in den letzten Jahren dramatisch zugenommen. Obwohl dieser Trend zunehmend in den Fokus regulatorischer Debatten und akademischer Dikussionen rückt, sind sich Forscher und die Aufsichtsbehörden über die Implikationen und entsprechende regulatorische Maßnahmen uneins. In der vorliegenden Arbeit, werden die damit verbundenen Fragestellungen in drei separaten Kapiteln theoretisch und empirisch untersucht. Mit Hilfe eines speziellen NASDAQ Datensatzes, werden in Kapitel 1 die Marktfaktoren, die unsichtbaren Liquidität begünstigen sowie den Einfluß, den unsichtbare Liquidät auf Märkte ausübt, empirisch ausgewertet. Wir zeigen, daß die Querschnittsvariation unsichtbarer Liquidität entlang des Aktienuniversums in einem hohen Maße durch sichtbare Markteigenschaften erklärt wird. Wir zeigen, daß unsichtbare Order gegenüber sichtbaren Ordern signifikant stärkere Preisfluktuationen hervorrufen. Unsere Resultate geben Grund zu der Annahme, daß Märkte mit hoher unsichtbarer Liquidät volatiler sind und höheren Marktreibungen ausgesetzt sind. In Kapitel 2 entwickeln wir ein strukturelles Handelsmodell und untersuchen die optimale Handelsstrategie mit unsichtbaren Ordern. In diesem Rahmen leiten wir für verschiedene Marktspezifikationen explizite Charakterisierungen der sogenannten optimalen Exposure-Größe her. Unter anderem zeigen wir, daß der Einsatz unsichtbarer Order Transaktionskosten signifikant reduzieren kann. In Kapitel 3 entwickeln wir ein dynamisches, Gleichgewichtsmodell in einem Limitorderbuchmarkt. Innerhalb dieses theoretischen Rahmens können die empirischen Beobachtungen des ersten un zweiten Kapitels rationalisiert werden. Insbesondere zeigen wir daß große versteckte Order Marktineffizienzen hervorrufen und Preisfluktuationen verstärken, indem sie die Koordination zwischen Angebots- und Nachfrageseite schwächen können. / In recent years, the proliferation of hidden liquidity in financial markets has increased dramatically and shifted to the center regulatory debates and market micro-structure panels. Yet investors, scientists and policy makers are at odds about its implications and the adequate regulatory responses. This thesis addresses these issues in three separate chapters on both empirical and theoretical grounds. Chapter 1 provides an empirical investigation of the determinants and impact of hidden order submissions. We report that the cross-sectional variation of hidden liquidity is well explained by observable market characteristics. Second, our results suggest that the hidden orders generate substantial price reactions. Our results suggests that hidden liquidity increases market volatility and trading frictions. Chapter 2 proposes a structural trading model. We investigate trader’s optimal trading strategies with respect to order-exposure in limit order book markets. The optimal exposure size marks a trade-off between costs and benefits of exposure. Our model provides explicit characterizations of the optimal exposure size for various market specifications. Model parameters and exposure strategies are estimated through high-frequency order book data. Our results suggest that hidden orders can substantially enhance trade performance. Chapter 3 develops a dynamic equilibrium model with a public primary market and an off-exchange trading mechanism. Our theory correctly predicts the key findings of chapter one and two. For instance, we show that large hidden orders cause excess returns and increase market volatility and correctly predict the role of the observable market characteristics in the origination of hidden liquidity.
49

Limit theorems for limit order books

Paulsen, Michael Christoph 21 August 2014 (has links)
Im ersten Teil der Dissertation wird ein diskretes stochastisches zustandsabhängiges Modell eines zweiseitigen Limit Orderbuchs als bestehend aus den Zustandsgrößen bester Bidpreis (Geldkurs), bester Askpreis (Briefkurs) und vorhandener Kauf- bzw. Verkaufsdichte definiert. Für eine einfache Skalierung mit zwei Zeitskalen wird ein Grenzwertsatz bewiesen. Die Veränderungen der besten Bid- und Askpreise werden im Sinne des Gesetzes der großen Zahlen skaliert und dies entspricht der langsameren Zeitskala. Das Platzieren bzw. Stornieren der Limitorder findet auf der schnelleren Zeitskala statt. Der Grenzwertsatz besagt, dass die fundamentalen Zustandsgrößen, gegeben Regularitätsbedingungen der einkommenden Order, fast sicher zu einem stetigen Limesmodell konvergieren. Im Limesmodell sind der beste Bidpreis und der beste Askpreis die eindeutigen Lösungen von zwei gekoppelten gewöhnlichen DGLen. Die Kauf- und Verkaufsdichten sind jeweils als eindeutige Lösungen von linearen hyperbolischen PDGLen, die anhand der Erwartungswerte der einkommenden Orderparameter festgelegt sind, gegeben. Die Lösungen sind in geschlossener Form erhältlich. Im zweiten Teil wird ein funktionaler zentraler Grenzwertsatz d.h. ein Invarianzprinzip für ein vereinfachtes Modell eines Limitorderbuches bewiesen. Unter einer natürlichen Skalierung konvergiert der zweidimensionale Preisprozess (Bid- und Askpreis) in Verteilung zu einer Semimartingal reflektierten Brownschen Bewegung in der zugelassenen Preismenge. Gleichzeitig konvergieren die Kauf- und Verkaufsdichten im schwachen Sinn zum Betrag einer zweiparametrischen Brownschen Bewegung. Es wird weiterhin anhand eines Beispiels gezeigt, wie man für das Modell im ersten Teil eine stochastiche PDGL, unter einer starken Stationaritätsannahme für die Orderplatzierungen und -stornierungen, herleiten kann. Im dritten Teil wird ein Mittelungs- bzw. ein Invarianzprinzip für diskrete Banach- bzw. Hilbertraumwertige stochastische Prozesse bewiesen. / In the first part of the thesis, we define a random state-dependent discrete model of a two-sided limit order book in terms of its key quantities best bid [ask] price and the standing buy [sell] volume density. For a simple scaling that introduces a slow time scaling, that is equivalent to the classical law of large numbers, for the bid/ask prices and a faster time scale for the limit volume placements/cancelations, that keeps the expected volume rate over the considered price interval invariant, we prove a limit theorem. The limit theorem states that, given regularity conditions on the random order flow, the key quantities converge in the sense of a strong law of large numbers to a tractable continuous limiting model. The limiting model is such that the best bid and ask price dynamics can be described in terms of two coupled ODE:s, while the dynamics of the relative buy and sell volume density functions are given as the unique solutions of two linear first-order hyperbolic PDE:s with variable coefficients, specified by the expectation of the order flow parameters. In the second part, we prove a functional central limit theorem i.e. an invariance principle for an order book model with block shaped volume densities close to the spread. The weak limit of the two-dimensional price process (best bid and ask price) is given by a semi-martingale reflecting Brownian motion in the set of admissible prices. Simultaneously, the relative buy and sell volume densities close to the spread converge weakly to the modulus of a two-parameter Brownian motion. We also demonstrate an example how to easily derive an SPDE for the relative volume densities in a simple case, when a strong stationarity assumption is made on the limit order placements and cancelations for the model suggested in the first part. In the third and final part of the thesis, we prove an averaging and an invariance principle for discrete processes taking values in Banach and Hilbert spaces, respectively.
50

Econometric Measures of Financial Risk in High Dimensions

Chen, Shi 09 January 2018 (has links)
Das moderne Finanzsystem ist komplex, dynamisch, hochdimensional und oftmals nicht stationär. All diese Faktoren stellen große Herausforderungen beim Messen des zugrundeliegenden Finanzrisikos dar, das speziell für Marktteilnehmer von oberster Priorität ist. Hochdimensionalität, die aus der ansteigenden Vielfalt an Finanzprodukten entsteht, ist ein wichtiges Thema für Ökonometriker. Ein Standardansatz, um mit hoher Dimensionalität umzugehen, ist es, Schlüsselvariablen auszuwählen und kleine Koeffizientenen auf null zu setzen, wie etwa Lasso. In der Finanzmarktanalyse kann eine solche geringe Annahme helfen, die führenden Risikofaktoren aus dem extrem großen Portfolio, das letztendlich das robuste Maß für finanzielles Risiko darstellt, hervorzuheben. In dieser Arbeit nutzen wir penalisierte Verfahren, um die ökonometrischen Maße für das finanzielle Risiko in hoher Dimension zu schätzen, sowohl mit nieder-, als auch hochfrequenten Daten. Mit Fokus auf dem Finanzmarkt, können wir das Risikonetzwerk des ganzen Systems konstruieren, das die Identifizierung individualspezifischen Risikos erlaubt. / Modern financial system is complex, dynamic, high-dimensional and often possibly non-stationary. All these factors pose great challenges in measuring the underlying financial risk, which is of top priority especially for market participants. High-dimensionality, which arises from the increasing variety of the financial products, is an important issue among econometricians. A standard approach dealing with high dimensionality is to select key variables and set small coefficient to zero, such as lasso. In financial market analysis, such sparsity assumption can help highlight the leading risk factors from the extremely large portfolio, which constitutes the robust measure for financial risk in the end. In this paper we use penalized techniques to estimate the econometric measures of financial risk in high dimensional, with both low-frequency and high-frequency data. With focus on financial market, we could construct the risk network of the whole system which allows for identification of individual-specific risk.

Page generated in 0.0612 seconds