• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 58
  • 10
  • 6
  • Tagged with
  • 74
  • 74
  • 71
  • 69
  • 52
  • 49
  • 37
  • 37
  • 37
  • 23
  • 23
  • 22
  • 22
  • 21
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Advances in Organic Displays and Lighting: Towards Planar Lithographic Integration of Organic Light-Emitting Diodes

Krotkus, Simonas 31 May 2017 (has links)
This work focusses on the advances of organic light-emitting diodes (OLEDs) for large area display and solid-state-lighting applications. OLED technology has matured over the past two decades, aided by the rapid advances in development of the novel material and device concepts. State-of-the-art OLEDs reach internal efficiencies of 100% and device lifetimes acceptable for commercial display applications. However, further improvements in the blue emitter stability and the device performance at the high brightness are essential for OLED technology to secure its place in the lighting market. As the current passing through the device increases, a rapid decrease in OLED efficiency, so-called efficiency roll-off, takes place, which hinders the use of OLEDs wherever high brightness is required. In addition, white OLEDs comprising multiple emitter molecules suffer from the emission colour change as the operating conditions are varied or as the devices age. Despite side-by-side structuring of the monochrome OLEDs could in principle circumvent most of bespoke issues, the limitations imposed by the shadow mask technique, employed to structure vacuum deposited films, renders such approach impractical for fabrication of the devices on a large scale. In order to address these issues, photolithographic patterning of OLEDs is implemented. Highly efficient state-of-the-art devices are successfully structured down to tens of micrometers with the aid of orthogonal lithographic processing. The latter is shown to be a promising alternative for the shadow mask method in order to fabricate the full-colour RGB displays and solid-state-lighting panels. Photo-patterned devices exhibit a virtually identical performance to their shadow mask counterparts on a large scale. The high performance is replicated in the microscale OLEDs by a careful selection of functional layer sequence based on the investigation of the morphological stability and solubility of vacuum deposited films. Microstructured OLEDs, fabricated in several different configurations, are investigated and compared to their large area counterparts in order to account for the observed differences in charge transport, heat management and exciton recombination in bespoke devices. The role of the Joule heat leading to the quenching of the emissive exciton states in working devices is discussed. Structuring the active OLED area down to 20 micrometer is shown to improve the thermal dissipation in such devices, thus enabling the suppression of the efficiency roll-off at high brightness in white-emitting electroluminescent devices based on side-by-side patterned OLEDs.:List of Publications 1 1 Introduction 5 2 Organic Semiconductors 9 2.1 Molecular Bonding 9 2.1.1 Intramolecular Interactions 10 2.1.2 Intermolecular Interactions 17 2.2 Optical Properties of Organic Semiconductors 23 2.2.1 Excited State Dynamics 26 2.3 Energy Transfer in Organic Solids 27 2.3.1 Förster Energy Transfer 29 2.3.2 Dexter Energy Transfer 30 2.4 Charge Transport Phenomena 31 2.4.1 Polarization and Energetic Disorder 31 2.4.2 Charge Transport Models 33 3 Electromagnetic Field Propagation in Layered Media 35 3.1 Maxwell's Equations 35 3.1.1 Wave Character of Electromagnetic Field 37 3.1.2 Energy of Electromagnetic Field 38 3.1.3 Boundary Conditions of Electromagnetic Fields 39 3.2 Reflection and Refraction of Plane Waves 40 3.2.1 Total Internal Reflection 43 3.3 Guided Optical Waves 44 3.3.1 Modes of Planar Waveguide 45 3.3.2 Multilayer Waveguides 49 3.3.3 Mode Coupling 53 3.4 EM Field in Presence of Charges 55 3.4.1 Volume Plasmons 58 3.4.2 Surface Plasmon Polaritons 58 3.4.3 Localized Plasmons 62 4 Organic Light-Emitting Diodes 65 4.1 Principle of Operation 65 4.1.1 Electroluminescence Efficiency 66 4.1.2 Charge Injection and Transport 66 4.1.3 Radiative Efficiency 68 4.1.4 Excited State Formation 69 4.1.5 Organic Emitters 71 4.1.6 Light Extraction 73 4.1.7 Efficiency Loss Mechanisms 74 4.2 Applications of OLEDs 76 4.2.1 Information Displays 76 4.2.2 Solid-State Lighting 77 4.2.3 OLED Based Sensors 77 4.3 OLED Structuring 79 4.3.1 Shadow Mask Patterning 79 4.3.2 Serial Printing 80 4.3.3 Unconventional Patterning Techniques 80 4.3.4 Photolithographic Patterning of OLEDs 81 4.3.5 Orthogonal Processing of Organic Semiconductors 83 5 Materials and Methods 87 5.1 Organic Functional Materials . 87 5.1.1 Hole Injection/Transport Layers 87 5.1.2 Electron Blocking Materials 88 5.1.3 Hole Blockers and Electron Transport Materials 88 5.1.4 Emitter Systems 90 5.1.5 Substrate and Electrodes 90 5.2 Device Fabrication 92 5.2.1 Vacuum Deposition 92 5.2.2 Photolithographic Structuring 92 5.3 Measurements 94 5.3.1 OLED Characterisation 94 5.3.2 Optical and Morphological Inspection 95 5.3.3 Calcium Conductance Test 95 5.3.4 Time-of-flight Spectroscopy 96 6 Orthogonal Patterning of Organic Semiconductor Films and Devices 97 6.1 Patterned Organic Films 97 6.2 Patterned Alq3 Based OLEDs 100 6.2.1 Direct Emitter Patterning 100 6.2.2 Cathode as Protection Layer 102 6.2.3 Impact of O2 Plasma Treatment 104 6.3 Summary 107 7 Photolithographic Structuring of State-of-the-Art p-i-n OLEDs for Full-Colour RGB Displays 109 7.1 Studied OLED Structures 109 7.2 HFE Compatibility Study 110 7.2.1 HFE Immersion Study 110 7.2.2 LDI-TOF-MS Analysis 112 7.3 Large area OLEDs 114 7.4 Microscale Devices 118 7.5 Bilayer Processing on p-i-n OLEDs 122 7.6 Summary 126 8 White Light from Photo-structured OLED Arrays 129 8.1 Fabrication of Micro-OLED Array 129 8.1.1 Structuring Procedure 130 8.1.2 Optical Device Optimisation 130 8.1.3 Choice of Hole Blocking and Electron Transport Layers 134 8.2 Performance of Microstructured Devices 143 8.2.1 Colour Temperature Tuning 143 8.2.2 Compatibility with Photo-patterning 145 8.2.3 Colour Stability 150 8.3 Summary 154 9 Efficiency Roll-off and Emission Colour of Microstructured OLEDs 155 9.1 Photolithographic Control of the Subunit Dimension 155 9.2 Control of the Emission Colour 156 9.3 Suppression of Efficiency Roll-off in Microscale Devices 157 9.4 Thermal Management in OLEDs 159 9.5 Modelling Impact of Joule Heat on Roll-off Characteristics 162 9.6 Summary 164 10 Conclusions and Outlook 165 10.1 Conclusions 165 10.2 Outlook 167 List of Abbreviations 171 List of Figures 173 List of Tables 177 Acknowledgements 179 Bibliography 181 / Die vorliegende Arbeit beschäftigt sich mit den neusten Errungenschaften von organischen Licht-emittierenden Dioden (OLEDs) für großflächige Beleuchtungs- und Displayanwendungen. Die OLED-Technologie hat sich in den letzten zwei Jahrzehnten, begünstigt von neuartigen Material- und Bauteilkonzepten, weit entwickelt. Im aktuellen Stand der Technik erreichen OLEDs sowohl interne Effizienzen von 100% als auch Lebensdauern die für die kommerzielle Nutzung in Displays ausreichend sind. Nichtsdestotrotz sind weitere Verbesserungen für die Stabilität blauer Emitter und die Leistungsfähigkeit bei hohen Leuchtstärken erforderlich, damit die OLED Technologie ihren Platz auf dem Markt behaupten kann. Mit steigender Stromstärke, die durch ein solches Bauteil fließt, sinkt die Effizienz rapide (der sogenannte Effizienz-Roll-Off), was die Nutzung von OLEDs verhindert, wann immer hohe Leuchtstärken erforderlich sind. Zusätzlich verändern weiße OLEDs ihre Farbkomposition durch die unterschiedliche Alterung der unterschiedlichen Emittermoleküle oder veränderte Einsatzbedingungen. Obwohl die laterale Strukturierung nebeneinander aufgebrachter, monochromer OLEDs diese Probleme umgehen könnte, ist diese Herangehensweise durch die aktuelle Schattenmasken-Technologie limitiert, welche zur Strukturierung vakuumprozessierter Dünnschichten eingesetzt wird, und somit unpraktikabel für die Massenproduktion. Um diese Problemstellungen zu umgehen, wird hier die photolithographische Strukturierung von OLEDs angewendet. Mithilfe der orthogonalen Lithographie können hocheffiziente Bauteile damit erfolgreich auf Größenordnungen von 10 Mikrometer strukturiert werden. Dies zeigt, dass die orthogonale Prozessierung eine vielversprechende Alternative für die Schattenmasken-Technologie darstellt und für die Herstellung von RGB-Displays und Beleuchtungspanelen geeignet ist. Photostrukturierte Bauteile zeigen dabei eine nahezu identische Leistungsfähigkeit zu solchen, die großffächig mittels Schattenmasken hergestellt wurden. Diese hohe Leistungsfähigkeit kann hierbei durch eine sorgfältige Auswahl der einzelnen funktionellen Schichten erreicht werden, welche auf Untersuchung von morphologischer Stabilität und Löslichkeit dieser Schichten basiert. Mikrostrukturierte OLEDs in verschiedenen Konfigurationen werden mit ihren großflächigen Gegenstücken verglichen, um beobachtete Abweichungen im Ladungstransport, der Wärmeverteilung, sowie der Exzitonenrekombination zu erklären. Die Rolle der Joule'schen Wärme, die zur Auslöschung der emittierenden Exzitonenzustände führt, wird hier diskutiert. Die thermische Dissipation kann dabei verbessert werden, indem die aktive Fläche der OLED auf 20 Mikrometer herunterstrukturiert wird. Folglich kann der Effizienz-Roll-Off bei hohen Leuchtstärken in lateral strukturierten weißen elektrolumineszenten Bauteilen unterdrückt werden.:List of Publications 1 1 Introduction 5 2 Organic Semiconductors 9 2.1 Molecular Bonding 9 2.1.1 Intramolecular Interactions 10 2.1.2 Intermolecular Interactions 17 2.2 Optical Properties of Organic Semiconductors 23 2.2.1 Excited State Dynamics 26 2.3 Energy Transfer in Organic Solids 27 2.3.1 Förster Energy Transfer 29 2.3.2 Dexter Energy Transfer 30 2.4 Charge Transport Phenomena 31 2.4.1 Polarization and Energetic Disorder 31 2.4.2 Charge Transport Models 33 3 Electromagnetic Field Propagation in Layered Media 35 3.1 Maxwell's Equations 35 3.1.1 Wave Character of Electromagnetic Field 37 3.1.2 Energy of Electromagnetic Field 38 3.1.3 Boundary Conditions of Electromagnetic Fields 39 3.2 Reflection and Refraction of Plane Waves 40 3.2.1 Total Internal Reflection 43 3.3 Guided Optical Waves 44 3.3.1 Modes of Planar Waveguide 45 3.3.2 Multilayer Waveguides 49 3.3.3 Mode Coupling 53 3.4 EM Field in Presence of Charges 55 3.4.1 Volume Plasmons 58 3.4.2 Surface Plasmon Polaritons 58 3.4.3 Localized Plasmons 62 4 Organic Light-Emitting Diodes 65 4.1 Principle of Operation 65 4.1.1 Electroluminescence Efficiency 66 4.1.2 Charge Injection and Transport 66 4.1.3 Radiative Efficiency 68 4.1.4 Excited State Formation 69 4.1.5 Organic Emitters 71 4.1.6 Light Extraction 73 4.1.7 Efficiency Loss Mechanisms 74 4.2 Applications of OLEDs 76 4.2.1 Information Displays 76 4.2.2 Solid-State Lighting 77 4.2.3 OLED Based Sensors 77 4.3 OLED Structuring 79 4.3.1 Shadow Mask Patterning 79 4.3.2 Serial Printing 80 4.3.3 Unconventional Patterning Techniques 80 4.3.4 Photolithographic Patterning of OLEDs 81 4.3.5 Orthogonal Processing of Organic Semiconductors 83 5 Materials and Methods 87 5.1 Organic Functional Materials . 87 5.1.1 Hole Injection/Transport Layers 87 5.1.2 Electron Blocking Materials 88 5.1.3 Hole Blockers and Electron Transport Materials 88 5.1.4 Emitter Systems 90 5.1.5 Substrate and Electrodes 90 5.2 Device Fabrication 92 5.2.1 Vacuum Deposition 92 5.2.2 Photolithographic Structuring 92 5.3 Measurements 94 5.3.1 OLED Characterisation 94 5.3.2 Optical and Morphological Inspection 95 5.3.3 Calcium Conductance Test 95 5.3.4 Time-of-flight Spectroscopy 96 6 Orthogonal Patterning of Organic Semiconductor Films and Devices 97 6.1 Patterned Organic Films 97 6.2 Patterned Alq3 Based OLEDs 100 6.2.1 Direct Emitter Patterning 100 6.2.2 Cathode as Protection Layer 102 6.2.3 Impact of O2 Plasma Treatment 104 6.3 Summary 107 7 Photolithographic Structuring of State-of-the-Art p-i-n OLEDs for Full-Colour RGB Displays 109 7.1 Studied OLED Structures 109 7.2 HFE Compatibility Study 110 7.2.1 HFE Immersion Study 110 7.2.2 LDI-TOF-MS Analysis 112 7.3 Large area OLEDs 114 7.4 Microscale Devices 118 7.5 Bilayer Processing on p-i-n OLEDs 122 7.6 Summary 126 8 White Light from Photo-structured OLED Arrays 129 8.1 Fabrication of Micro-OLED Array 129 8.1.1 Structuring Procedure 130 8.1.2 Optical Device Optimisation 130 8.1.3 Choice of Hole Blocking and Electron Transport Layers 134 8.2 Performance of Microstructured Devices 143 8.2.1 Colour Temperature Tuning 143 8.2.2 Compatibility with Photo-patterning 145 8.2.3 Colour Stability 150 8.3 Summary 154 9 Efficiency Roll-off and Emission Colour of Microstructured OLEDs 155 9.1 Photolithographic Control of the Subunit Dimension 155 9.2 Control of the Emission Colour 156 9.3 Suppression of Efficiency Roll-off in Microscale Devices 157 9.4 Thermal Management in OLEDs 159 9.5 Modelling Impact of Joule Heat on Roll-off Characteristics 162 9.6 Summary 164 10 Conclusions and Outlook 165 10.1 Conclusions 165 10.2 Outlook 167 List of Abbreviations 171 List of Figures 173 List of Tables 177 Acknowledgements 179 Bibliography 181
52

Thienoacene dimers based on the thieno[3,2-b] thiophene moiety: synthesis, characterization and electronic properties

Niebel, Claude, Kim, Yeongin, Ruzié, Christian, Karpinska, Jolanta, Chattopadhyay, Basab, Schweicher, Guillaume, Richard, Audrey, Lemaur, Vincent, Olivier, Yoann, Cornil, Jérôme, Kennedy, Alan R., Diao, Ying, Lee, Wen-Ya, Mannsfeld, Stefan, Bao, Zhenan, Geerts, Yves H. 09 January 2020 (has links)
Two thienoacene dimers based on the thieno[3,2-b]thiophene moiety were efficiently synthesized, characterized and evaluated as active hole-transporting layers in organic thin-film field-effect transistors. Both compounds behaved as active p-channel organic semi-conductors showing averaged hole mobility of up to 1.33 cm² V⁻¹ s⁻¹.
53

Nanostrukturierte Fullerenschichten für organische Bauelemente

Deutsch, Denny 19 March 2008 (has links)
Die vorliegende Arbeit behandelt die Herstellung geordneter C60-Schichten, ihre elektrochemische Nanostrukturierung in wässrigen Lösungen und ionischen Flüssigkeiten und den Einsatz geordneter und nanostrukturierter Fullerenschichten in organischen Dünnschichttransistoren. Geordnete C60-Schichten wurden durch thermische Verdampfung im Hochvakuum hergestellt. Als Substratmaterial wurden HOPG (Graphit), Glimmer und einkristallines Silizium verwendet. Die größten einkristallinen Bereiche werden auf HOPG-Substraten erhalten. Die laterale Ausdehnung der C60-Kristallite parallel zu den Graphitstufen kann bis zu 50 µm erreichen, orthogonal zu den Stufen ist das Wachstum durch die Graphitstufen begrenzt. Die elektrochemische Reduktion von C60 -Schichten in wässriger Lösung ist elektrochemisch irreversibel. Die geflossene Ladung beträgt ein Vielfaches der theoretisch möglichen Menge. Durch die Reduktion tritt eine Nanostrukturierung der Schichtoberfläche ein, die Größe der gebildeten Cluster beträgt 20 nm bis 50 nm. Fullerenpolymere und hydriertes C60 sind die chemischen Hauptprodukte der elektrochemischen Nanostrukturierung in wässriger Lösung. Die Reduktion von Fullerenschichten in ionischen Flüssigkeiten ist aufgrund der geschlossenen Schichtoberfläche und des starken Potentialabfalls in der Fullerenschicht zunächst kinetisch gehemmt und setzt erst bei negativeren Potentialen im Bereich der Reduktion zum C60-Dianion ein. Die Reduktion der Fullerenschichten ist elektrochemisch irreversibel, zum Teil aber chemisch reversibel. Es konnte erstmals der Einsatz nanostrukturierter C60 -Schichten als aktives Halbleitermaterial in Feldeffekt-Transistoren gezeigt werden. Für die Verwendung nanostrukturierter Fullerenschichten in Feldeffekt-Transistoren wurde 11-(3-Thienyl-)undecyl-trichlorosilan als Haftvermittler eingesetzt. Die gezeigten Ergebnisse von C60 -Transistoren mit hoher Ladungsträgerbeweglichkeit und der erfolgreichen Verwendung nanostrukturierter Fullerenschichten in Transistorstrukturen zeigen die Möglichkeiten des C60 als aktives Halbleitermaterial auf.
54

Organic Electronic Devices - Fundamentals, Applications, and Novel Concepts

Kleemann, Hans 16 January 2013 (has links)
This work addresses two substantial problems of organic electronic devices: the controllability and adjustability of performance, and the integration using scalable, high resolution patterning techniques for planar thin-film transistors and novel vertical transistor devices. Both problems are of particular importance for the success of transparent and flexible organic electronics in the future. To begin with, the static behavior in molecular doped organic pin-diodes is investigated. This allows to deduce important diode parameters such as the depletion capacitance, the number of active dopant states, and the breakdown field. Applying this knowledge, organic pin-diodes are designed for ultra-high-frequency applications and a cut-off-frequency of up to 1GHz can be achieved using optimized parameters for device geometry, layer thickness, and dopant concentration. The second part of this work is devoted to organic thin-film transistors, high resolution patterning techniques, as well as novel vertical transistor concepts. In particular, fluorine based photo-lithography, a high resolution patterning technique compatible to organic semiconductors, is introduced fielding the integration of organic thin-film transistors under ambient conditions. However, as it will be shown, horizontal organic thin-film transistors are substantially limited in their performance by charge carrier injection. Hence, down-scaling is inappropriate to enlarge the transconductance of such transistors. To overcome this drawback, a novel vertical thin-film transistor concept with a vertical channel length of ∼50nm is realized using fluorine based photo-lithography. These vertical devices can surpass the performance of planar transistors and hence are prospective candidates for future integration in complex electronic circuits.
55

Modelling Charge Carrier Dynamics in Organic Semiconductors

Hofacker, Andreas 13 December 2021 (has links)
Electronic devices made of organic molecules are starting to show their transfomative power in various fields of application today. However, as with most technologies, progress is eventually bounded by how well the inner workings of the components are understood. For electronic devices, as the name suggests, this mostly concerns the behavior of electrons or, more generally, electric charge carriers. To understand and predict device properties, knowledge of the mechanisms that govern the fate of charge carriers is indispensable. In an organic material, those mechanisms are closely related to material properties on a molecular level. Thus, the micro- and macroscale are linked in a complex manner and many questions about these links are still open. This work aims to advance the understanding of three important aspects of the field: the time-evolution of charge carrier states, the mechanism of molecular doping and the efficiency of organic solar cells and photodetectors. All three are strongly affected by a common property of organic materials: disorder. Specifcally, we extend the theoretical framework of describing the time-dependence of charge carrier motion in disordered semiconductors and use it to predict the time-dependence of recombination in organic solar cells. We find that, just as transport, recombination slows down with time, and establish a quantitative method of extracting material characteristics from the measured time-dependence of recombination. To analyze the influence of molecular doping on charge transport, we develop a computational method based on percolation theory. We show that for organic semiconductors, the popular transport energy model can not be used to predict the thermoelectric properties. The latter are important since they are often used to measure the amount of free charges introduced by doping. We are able to accurately model the activation energy of conductivity and study the important length scales and the influence of molecular parameters. Finally, we investigate the consequences of disorder on the performance of solar cells and photodetectors by studying the timescale and efficiency of the separation of photo-generated positive and negative charges. We find that, depending on the conditions, separation can in fact be either enhanced or hindered by disorder effects.
56

Molecular Doping of Organic Semiconductors: A Conductivity and Seebeck Study

Menke, Torben 19 July 2013 (has links)
This work aims at improving the understanding of the fundamental physics behind molecular doping of organic semiconductors, being a requirement for efficient devices like organic light-emitting diodes (OLED) and organic photovoltaic cells (OPV). The underlying physics is studied by electrical conductivity and thermoelectrical Seebeck measurements and the influences of doping concentration and temperature are investigated. Thin doped layers are prepared in vacuum by thermal co-evaporation of host and dopant molecules and measured in-situ. The fullerene C60, known for its high electron mobility, is chosen as host for five different n-dopants. Two strongly ionizing air-sensitive molecules (Cr2(hpp)4 and W2(hpp)4) and three air-stable precursor compounds (AOB, DMBI-POH and o-MeO-DMBI-I) which form the active dopants upon deposition are studied to compare their doping mechanism. High conductivities are achieved, with a maximum of 10.9 S/cm. Investigating the sample degradation by air-exposure, a method for regeneration is proposed, which allows for device processing steps under ambient conditions, greatly enhancing device fabrication possibilities. Various material combinations for p-doping are compared to study the influence of the molecular energy levels of host (MeO-TPD and BF-DPB) and dopant (F6-TCNNQ and C60F36). Corrections for the only estimated literature values for the dopant levels are proposed. Furthermore, the model system of similar-sized host pentacene and dopant F4-TCNQ is studied and compared to theoretical predictions. Finally, a model is developed that allows for estimating charge carrier mobility, density of free charge carriers, doping efficiency, as well as the transport level position from combining conductivity and Seebeck data.:1 Introduction 2 Fundamentals of Organic Semiconductors 2.1 Conventional Semiconductors 2.2 Organic Semiconductors 2.3 Seebeck Effect 2.4 Correlation of Seebeck Coefficient and Charge Carrier Density 3 Experimental 3.1 Seebeck Setup 3.2 Materials 4 Air-Sensitive n-Dopants in C60 4.1 Conductivity 4.2 Thermoelectric Measurements 4.3 Morphology 4.4 Degradation 4.5 Conclusion 5 Air-Stable n-Dopants in C60 5.1 Conductivity 5.2 Thermoelectric Measurements 5.3 Morphology 5.4 Conclusion for AOB and DMBI-POH 5.5 o-MeO-DMBI-I 6 p-Dopants in Amorphous Hosts 6.1 Conductivity 6.2 Thermoelectric Measurements 6.3 Degradation 6.4 Conclusion 7 Pentacene p-Doped by F4-TCNQ 7.1 Conductivity Changes after Preparation 7.2 Relation of Conductivity to Doping Concentration 7.3 Comparison of Seebeck Energy and Activation Energy 7.4 Conclusion 8 Estimating the Doping Efficiency and the Mobility 8.1 Lower Limit of the Mobility 8.2 Lower Limit of the Doping Efficiency 8.3 Conclusions from Seebeck Measurements 8.4 Assuming a Constant Transport Level 8.5 Applying the Models to p-Doped Data 8.6 Conclusion 9 Summary and Outlook 9.1 Summary 9.2 Outlook / Diese Arbeit untersucht organische Halbleiter und den Einfluss von molekularer Dotierung auf deren elektrische Eigenschaften, mit dem Ziel effizientere Bauelemente wie organische Leuchtdioden oder Solarzellen zu ermöglichen. Mittels Leitfähigkeitsuntersuchungen sowie thermoelektrischen Seebeck-Messungen werden die Einflüsse der Dotierkonzentration sowie der Temperatur auf die elektrischen Eigenschaften dünner dotierter Schichten analysiert. Das Abscheiden der Schichten durch Koverdampfen im Vakuum ermöglicht eine in-situ Analyse. Das Fulleren C60, bekannt für besonders hohe Elektronenbeweglichkeit, wird als Wirt für fünf verschieden n-Dotanden, zwei extrem stark ionisierende luftreaktive (Cr2(hpp)4 und W2(hpp)4) sowie drei luftstabile (AOB, DMBI-POH und o-MeO-DMBI-I), verwendet. Dies ermöglicht Schlüsse auf die unterschiedlichen zugrunde liegenden Dotiermechanismen und das Erreichen von Leitfähigkeiten von bis zu 10.9 S/cm. Für einen der luftreaktiven Dotanden wird die Probendegradation an Luft untersucht und eine Regenerationsmethode aufgezeigt, die Prozessierungsschritte in Luft erlaubt und somit entscheidend für zukünftige Bauelementfertigung sein könnte. Verschiedene p-dotierte Materialkombinationen werden untersucht, um den Einfluss der molekularen Energieniveaus von Wirt (MeO-TPD und BF-DPB) und Dotand (F6-TCNNQ und C60F36) auf die Dotierung zu studieren. Dies ermöglicht Schlussfolgerungen auf die in der Literatur bisher nur abgeschätzten Energieniveaus dieser Dotanden. Ferner werden die Eigenschaften des bereits theoretisch modellierten Paares Pentacen und F4-TCNQ mit den Vorhersagen verglichen und die Abweichungen diskutiert. Abschießend wird ein Modell entwickelt, das die Abschätzung von Dotiereffizienz, Ladungsträgerkonzentration, Ladungsträgerbeweglichkeit sowie der Position des Transportniveaus aus Leitfähigkeits- und Seebeck-Messungen erlaubt.:1 Introduction 2 Fundamentals of Organic Semiconductors 2.1 Conventional Semiconductors 2.2 Organic Semiconductors 2.3 Seebeck Effect 2.4 Correlation of Seebeck Coefficient and Charge Carrier Density 3 Experimental 3.1 Seebeck Setup 3.2 Materials 4 Air-Sensitive n-Dopants in C60 4.1 Conductivity 4.2 Thermoelectric Measurements 4.3 Morphology 4.4 Degradation 4.5 Conclusion 5 Air-Stable n-Dopants in C60 5.1 Conductivity 5.2 Thermoelectric Measurements 5.3 Morphology 5.4 Conclusion for AOB and DMBI-POH 5.5 o-MeO-DMBI-I 6 p-Dopants in Amorphous Hosts 6.1 Conductivity 6.2 Thermoelectric Measurements 6.3 Degradation 6.4 Conclusion 7 Pentacene p-Doped by F4-TCNQ 7.1 Conductivity Changes after Preparation 7.2 Relation of Conductivity to Doping Concentration 7.3 Comparison of Seebeck Energy and Activation Energy 7.4 Conclusion 8 Estimating the Doping Efficiency and the Mobility 8.1 Lower Limit of the Mobility 8.2 Lower Limit of the Doping Efficiency 8.3 Conclusions from Seebeck Measurements 8.4 Assuming a Constant Transport Level 8.5 Applying the Models to p-Doped Data 8.6 Conclusion 9 Summary and Outlook 9.1 Summary 9.2 Outlook
57

Efficiency Roll-Off in Organic Light-Emitting Diodes / Effizienz-Roll-Off in Organischen Leuchtdioden

Murawski, Caroline 02 November 2015 (has links) (PDF)
The efficiency of organic light-emitting diodes (OLEDs) typically decreases with increasing current density. This so-called roll-off impedes the market entry of OLEDs in high-brightness applications such as general lighting. One of the most important processes causing roll-off is exciton annihilation, which evolves upon high exciton densities. This mechanism is especially pronounced in phosphorescent molecules due to their long triplet lifetime. In order to reduce the roll-off in phosphorescent OLEDs, this thesis focusses on decreasing the local exciton density by modifying the exciton lifetime, the spatial exciton distribution, and the tendency of emitters to form aggregates. The obtained results lead to a deeper understanding of efficiency roll-off and help sustaining the OLED efficiency at high brightness. The emitter lifetime can be influenced by the optical environment around the emitting dipoles through the Purcell effect. In order to study this effect, the distance between emitter and metal cathode is varied for two different OLED stacks. A strong influence of emitter position and orientation on roll-off is observed and explained by modelling the data with triplet-triplet annihilation theory. Furthermore, design principles for optimal high-brightness performance are established by simulating the roll-off as a function of emitter-cathode distance, emissive dipole orientation, and radiative efficiency. Next, a method is developed that allows extracting the spatial exciton distribution. Therefore, a thin sensing layer that locally quenches excitons is introduced into the emission layer at varying positions. The resulting quenching profile is then fitted using a comprehensive theory based on the diffusion equation, which renders the exciton distribution and diffusion length with nanometer resolution. This method is applied to an emission layer comprising an ambipolar host material. Contrary to expectations which suggest that ambipolar materials exhibit broad exciton formation, a narrow emission zone close to the electron transport layer is found. Additional explorations of structures that might broaden the emission zone point to a narrow emission zone in double emission layers and broader exciton formation in mixed emission layers. Previous investigations revealed a strong correlation between emitter aggregation and molecular dipole moment of the emitter. Within this thesis, the range of studied emitters is significantly extended. It is shown that homoleptic emitters show a stronger tendency to form aggregates than heteroleptic compounds. This is probably not only related to their higher dipole-dipole potential, but also to the molecular structure. Systematic analysis of the deposition parameters shows that aggregate formation depends on the underlying material and increases with increasing substrate temperature and decreasing evaporation rate. The two green emitters Ir(ppy)3 and Ir(ppy)2(acac) are additionally studied by means of X-ray diffraction. Both emitters form crystallite grains and exhibit a preferred orientation. Doping the emitters into an amorphous host, both orientation and crystallite formation retain at the investigated doping concentrations above 20 wt%. This result is a first step toward further understanding of the mechanism of transition dipole orientation. / Die Effizienz organischer Leuchtdioden (OLEDs) nimmt üblicherweise mit ansteigender Stromdichte ab. Dieser so genannte Roll-Off erschwert den Markteintritt von OLEDs in Bereichen, die hohe Helligkeiten erfordern, wie beispielsweise in der Beleuchtung. Einer der wichtigsten Prozesse, die zu Roll-Off führen, ist die Annihilation von Exzitonen. Diese nimmt mit steigender Exzitonendichte zu und ist vor allem in phosphoreszenten OLEDs aufgrund der dort vorhandenen langen Triplettlebensdauer ein großer Verlustfaktor. Im Rahmen dieser Dissertation werden Methoden vorgestellt, die mittels Reduzierung der Exzitonendichte den Roll-Off in phosphoreszenten OLEDs verringern können. Dazu gehören die Veränderung der Exzitonenlebensdauer, die Untersuchung der räumlichen Verteilung der Exzitonen und die Erforschung der Bildung von Emitteraggregaten. Die gewonnenen Ergebnisse führen zu einem besseren Verständnis des Effizienz Roll-Offs und helfen, die Effizienz von OLEDs bei hohen Helligkeiten zu verbessern. Die Emitterlebensdauer kann über den Purcell-Effekt durch Veränderung des die emittierenden Dipole umgebenden elektromagnetischen Felds beeinflusst werden. Dieser Effekt wird genutzt, indem der Abstand zwischen Emitter und Metallelektrode für zwei verschiedene OLED-Aufbauten variiert wird. Der Roll-Off ist stark abhängig von der Position und Orientierung des Emitters und kann durch Modellierung der Daten auf Basis von Triplett-Triplett-Annihilation erklärt werden. Durch Simulation des Roll-Offs in Abhängigkeit des Emitter-Kathode-Abstands, der Orientierung und der strahlenden Effizienz der emittierenden Dipole werden Prinzipien zur optimalen Leistung von OLEDs bei hohen Helligkeiten entwickelt. Als nächstes wird eine Methode eingeführt mittels derer die räumliche Exzitonenverteilung extrahiert werden kann. Dafür wird eine dünne Sensorschicht in die Emissionsschicht eingebracht, die lokal Exzitonen auslöscht. Unter Variation der Position des Sensors wird ein Profil der Auslöschungsintensität bestimmt. Die gemessene Intensität wird mittels einer umfassenden Theorie auf Grundlage der Diffusionsgleichung angepasst, wodurch sich die räumliche Verteilung der Exzitonen und die Diffusionslänge mit einer Auflösung von 1nm ergibt. Die Methode wird auf eine Emissionsschicht angewandt, die das ambipolare Matrixmaterial CBP enthält. Entgegen der Erwartung, dass die Exzitonenbildung in ambipolaren Materialien weiter ausgedehnt ist, ist die gemessene Emissionszone sehr schmal und befindet sich an der Grenze zur Elektronentransportschicht. Um eine Verbreiterung des Emissionsprofils zu ermöglichen, werden weitere Strukturen untersucht. Dabei wird eine schmale Emissionszone in Doppelemissionsschichten beobachtet, wohingegen gemischte Emissionsschichten zu einer Verbreiterung der Exzitonenbildung führen können. Vorangegangene Untersuchungen deckten einen Zusammenhang zwischen der Aggregation von Emittermolekülen und dem Dipolmoment des Emitters auf. In dieser Arbeit werden weitere Emittermoleküle untersucht, wobei eine stärkere Aggregation von homoleptischen Emittern im Vergleich zu heteroleptischen festgestellt wird. Dies ist einerseits im höheren Dipol-Dipol-Potential der homoleptischen Verbindungen und andererseits in der Molekülstruktur begründet. Eine systematische Analyse der Herstellungsparameter zeigt, dass die Aggregatbildung von dem darunter liegenden Material abhängt und mit steigender Substrattemperatur und sinkender Verdampfungsrate zunimmt. Die zwei Grünemitter Ir(ppy)3 und Ir(ppy)2(acac) werden zusätzlich mittels Röntgenspektroskopie untersucht. Beide Emitter bilden kristalline Körner und weisen eine bevorzugte Orientierung auf. Sowohl die Kristallbildung als auch die Orientierung bleiben erhalten, wenn die Emitter mit mehr als 20 Gewichtsprozent in das Matrixmaterial CBP dotiert werden. Dieses Ergebnis ist ein erster Schritt zum besseren Verständnis der in vielen Iridium-Emittern beobachteten Orientierung des Übergangsdipolmoments.
58

In situ Raman-Spektroskopie an Metallphthalocyaninen: Von ultradünnen Schichten zum organischen Feldeffekttransistor

Ludemann, Michael 06 July 2016 (has links) (PDF)
Im ersten Teil der Arbeit werden Signalverstärkungsmechanismen für Raman-Spektroskopie erschlossen und evaluiert. Die als geeignet bewerteten Methoden finden im zweiten Teil ihre Anwendung zur Untersuchung der vibronischen Eigenschaften von dünnen Manganphthalocyaninschichten, die anschließend mit Kalium interkaliert werden. Hierbei sind verschiedene Phasen identifizierbar, die ein ganzzahliges Verhältnis von Kaliumatomen zu Manganphthalocyaninmolekülen besitzen. Im dritten Teil werden die elektrischen Eigenschaften durch die Verwendung dieses Materialsystems als aktives Medium eines Feldeffekttransistors untersucht.
59

Unravelling nanoscale molecular processes in organic thin films

Bommel, Sebastian 08 September 2015 (has links)
Dünne Filme aus konjugierten Molekülen werden vermehrt in der organischen Optoelektronik, Bio-Sensorik und Oberflächenmodifikationen eingesetzt. Jedoch steckt das nanoskopische Verständnis von elementaren Prozessen bzgl. des molekularen Wachstums, der Film-Stabilität und thermisch-mechanischer Eigenschaften noch in den Kinderschuhen. Im ersten Teil dieser Arbeit nutzen wir Echtzeit in situ spekulare und diffuse Röntgenstreuung in Kombination mit Kinetik-Monte-Carlo Simulationen, um die Nukleation und das Multilagen-Wachstum von C60 zu studieren. Wir quantifizieren einen konsistenten Satz von Energieparametern, die die Oberflächenprozesse während des Wachstums beschreiben: eine effektive Ehrlich-Schwoebel Barriere von EES = 110 meV, eine Oberflächendiffusions-Barriere von ED = 540 meV und die Bindungsenergie von EB = 130 meV. Durch die Analyse der Teilchendynamiken finden wir, dass die laterale Diffusion ähnlich derer von Kolloiden ist, jedoch weist die Stufenkanten-Diffusion eine atom-ähnlichen Schwoebel-Barriere auf. Außerdem haben wir für die erste Monolage ein thermisch-aktiviertes Dewetting nach dem Wachstum von C60 auf Mica mit einer effektiven Aktivierungsbarriere von (0.33 ± 0.14) eV für die Aufwärts-Diffusion beobachtet. Im zweiten Teil der Arbeit untersuchen wir die thermomechanischen Eigenschaften der supra-molekularen Anordnung von dem organischen Halbleiter PTCDI-C8. Temperaturabhängige GIXD-Experimente decken einen außergewöhnlich großen positiven und negativen thermischen Expansionskoeffizienten der Kristallstruktur auf. Die Moleküle vollführen kooperative rotierende Bewegungen als Reaktion auf die Temperaturänderung, die zu dieser anomalen thermischen Expansion führen. Unsere Beschreibung der Bewegungen einzelner adsorbierter Moleküle während des Wachstums und der kooperativen Bewegungen einzelner Moleküle in supra-molekularen Ensembles auf der molekularen Skala wird die weitere Arbeit auf dem Weg zu funktionalen molekularen dünnen Filmen beleben. / Thin films of conjugated molecules are increasingly used in organic optoelectronics, biosensing and surface modification. However, nanoscopic understanding of elementary processes regarding the molecular film growth, the stability of these films and regarding the thermal and mechanical properties of supra-molecular assemblies are in its infancy. In the first part of this thesis we use real-time in situ specular and diffuse X-ray scattering in combination with kinetic Monte Carlo simulations to study C60 nucleation and multilayer growth. We quantify a consistent set of energy parameters, which describe the surface processes during growth, yielding an effective Ehrlich-Schwoebel barrier of EES = 110 meV, a surface diffusion barrier of ED = 540 meV and a binding energy of EB = 130 meV. Analysing the particle-resolved dynamics, we find that the lateral diffusion is similar to colloids, but step-edge crossing is characterized by an atom-like Schwoebel barrier. Furthermore, a thermally-activated post-growth dewetting for C60 on mica has been observed for the first monolayer with an effective activation barrier for upward interlayer transport of (0.33 ± 0.14) eV. In the second part we investigate the thermomechanical properties of the supra-molecular assembly of the organic semiconductor PTCDI-C8. Temperature-dependent Grazing Incidence X-ray Diffraction (GIXD) experiments reveal extraordinary large positive and, surprisingly, negative thermal expansion coefficients of the thin film crystal structure. The molecules perform temperature-controlled cooperative rotational motions leading to the change of the molecular crystal structure at different temperatures. We hope that our molecular scale picture of the movement of single ad-molecules during growth and the cooperative motions of single molecules in supra-molecular ensembles will stimulate further work towards the optimized, rational design of functional molecular thin films and nanomaterials.
60

Co-deposited films of rod-like conjugated molecules

Vogel, Jörn-Oliver 20 August 2009 (has links)
In dieser Arbeit wird die Phasenseparation und Mischung zwischen konjugierten Stäb-chenmolekülen in dünnen Filmen untersucht. Hauptaugenmerk liegt darauf zu ergrün-den welche molekularen Eigenschaften zu Mischung und/ oder Phasenseparation füh-ren. Mit den 5 Molekülen Pentacen (PEN), Quaterthiophen (4T), Sexithiophen (6T), p-Sexiphenylen (6P), alpha,omega-Dihexylsexithiophen (DH6T) werden Materialpaare zusammen gestellt, die sich in den Parametern „optische und elektrische Eigenschaf-ten“, „Länge des konjugierten Kerns“ und Alkylkettensubstitution unterscheiden. Alle Schichten werden mittels organischer Molekularstrahlabscheidung auf die Substrate Siliziumoxid und Mylar, einer PET Folie, simultan von zwei Quellen aufgedampft. Das Mischungsverhältnis wird mittels der individuellen Aufdampfraten eingestellt und eine Gesamtrate von 0.5 nm/min eingehalten. Es wird Phasenseparation für Materialpaare mit ungleicher konjugierter Kernlänge, z.B. [4T/6T], beobachtet. Erstaunlicherweise führt die Co-Verdampfung von Molekülpaaren mit ähnlicher konjugierter Kernlänge [4T/PEN] und [6T/6P] zu wohlgeordneten Fil-men, in denen die Moleküle in gemischten Lagen parallel zur Substratoberfläche auf-wachsen und die Längsachse der Moleküle fast senkrecht zur Substratoberfläche orien-tiert ist. Molekülpaare mit ähnlicher konjugierter Kernlänge und Alkylsubstitution [6T/DH6T] und [6P/DH6T] zeigten ebenfalls geordneten Schichten, wobei als Besonderheit eine lineare Abhängigkeit des Lagenabstandes vom DH6T-Gehalt zu beobachten ist. Dies wird mit einer Phasenseparation in eine aromatische und eine alkyl Domäne erklärt. Mit abnehmendem DH6T-Gehalt im Film ist die Alkyldomäne weniger dicht gepackt, was auf Grund der Flexibilität der Alkylketten zu einer Abnahme des gesamten Lagenab-standes führt. Die besonders geringe Oberflächenrauhigkeit und die miteinander verbundenen Inseln der [DH6T/6T] Filme prädestinieren sie zur Verwendung in Feldeffekttransistoren. Es wird gezeigt, dass es möglich ist, die Ladungsträgerdichte im Kanal durch Änderung des Verhältnisses zwischen DH6T und 6T so zu verändern, dass der Transistor im Verar-mungs- oder Anreicherungsregime betrieben werden kann. Dabei bleibt die Ladungsträ-germobilität auf gleich bleibend hohem Niveau. Dies entspricht dem Dotieren eines anorganischen Halbleiters. / This thesis is centered on studies of phase separation and mixing in co-deposited thin films of rod-like conjugated molecules. The main focus is to determine which molecular properties lead to phase separation and/or mixing of two materials. To address this question I used five materials, of importance in the context of “organic electronics”: pentacene (PEN), quaterthiophene (4T), sexithiophene (6T), p-sexiphenylene (6P), alpha,omega-dihexylsexithiophene (DH6T). With these it was possible to form material pairs which differ in the parameters: energy levels, length of the conjugated core, and alkyl-end-chain-substitution. All films were deposited by organic molecular beam deposition onto the chemically inert substrates silicon oxide and Mylar, a polyethylene terephthalate (PET) foil. The material pairs were deposited simultaneously from two thermal sublima-tion sources. The mixing ratio was controlled by the individual deposition rates, which were measured online by a microbalance. The total deposition rate was 0.5 nm/min, and the film thicknesses ranged from 4 nm to 40 nm. Phase separation is observed for material pairs with dissimilar conjugated core sizes, i.e. [4T/6T]. Noteworthy, the co-deposition of material pairs with similarly sized conju-gated cores [4T/PEN] and [6T/6P] lead to well ordered layered structures. The mole-cules show mixing within layers on a molecular scale and the long molecular axis is ori-ented almost perpendicular to the substrate surface. Material pairs with similarly sized conjugated core and alkyl-end-chain-substitution [6T/DH6T] and [6P/DH6T] show also growth in mixed layered structures. An especially appealing fact is that the interlayer distance increases proportional to the DH6T content in the film. This can be explained with a phase separation into an aromatic and an alkyl domain vertically to the substrate surface. A decrease of the DH6T content in the film leads to a less dense packing in the alkyl domain. This leads, due to the flexibility of the alkyl chains, to a decrease of the overall interlayer distance. The low surface corrugation and the interconnected islands render the material pair [6T/DH6T] well suitable for the use as active layer in organic field effect transistors. It is shown that it is possible to tune the charge carrier density in the channel by changing the ratio between 6T and DH6T. This effect enables switching the transistor from en-hancement to depletion mode, while maintaining a high charge carrier mobility. This is comparable to p-type doping of inorganic semiconductors.

Page generated in 0.0943 seconds