Spelling suggestions: "subject:"338"" "subject:"838""
121 |
Rôle de l'AMP-kinase dans l'activation de la p38 MAPK et du transport du glucose induits par la contraction musculaireLefort, Natalie 12 April 2018 (has links)
Par l'entremise d'un modèle de souris transgénique exprimant une forme mutée et inactive d'AMPKa2 (KD), cette étude avait comme principal objectif de tester le rôle de l'AMPK dans le transport de glucose stimulé par la contraction musculaire. Un protocole de stimulation électrique a été défini pour assurer une génération de force égale entre l'extenseur digitorum longus (EDL) de souris KD et son contrôle sauvage (SA). Nous avons observé que le transport de glucose est réduit de 70% dans l'EDL de souris KD. Une cible protéique a aussi été identifiée comme étant modulée par l'AMPK lors de la contraction musculaire, soit la p38 MAPK. L'activité de p38 MAPK n'est pas modulée lors de la contraction musculaire chez la souris KD, contrairement à la souris SA. Le niveau d'ARNm de l'hexokinase II (HKII) est diminué chez la souris KD. Il est donc postulé qu'AMPK est un activateur essentiel de la p38 MAPK, ce qui pourrait contribuer à l'augmentation du transport de glucose par la contraction et à la modulation du niveau d'ARNm d'HKII cellulaire. On suggère que p38 MAPK pourrait induire l'ARNm d'HKII par l'entremise de CREB, un facteur reconnu pour être impliqué dans la transcription d'HKII.
|
122 |
Syndrome métabolique et diabète chez l'Homme. Composition lipidique et oxydation des lipoprotéines de basse densité (LDL) plasmatiques en relation avec l'activation des plaquettes sanguines.Colas, Romain 10 December 2010 (has links) (PDF)
Le diabète de type-2 et le syndrome métabolique sont associés à une augmentation du stress oxydant et du risque cardiovasculaire. L'hyperactivation plaquettaire et les dyslipoprotéinémies sont deux causes majeures de l'athérothrombose. Nous avons montré que des lipoprotéines de basse densité (LDL) issues du plasma de diabétiques de type-2 activent les plaquettes sanguines. L'objectif principal de notre étude a été d'établir le profil en lipides et peroxydes lipidiques de LDL provenant de volontaires ayant un syndrome métabolique (SM), un diabète de type-1 (DT-1) ou de type-2 (DT-2), comparativement à celui de volontaires sains (V). Un autre objectif a été de déterminer leur impact sur l'activation plaquettaire. Seules les LDL des groupes SM et DT-2 ont des anomalies lipidiques telles que : augmentation des triacylglycérols, diminution des esters de cholestérol et de l'acide linoléique. Les LDL des groupes SM, DT-1 et DT-2 présentent un stress oxydant, démontré par l'augmentation des produits de peroxydation lipidique comme les acides gras hydroxylés et le dialdéhyde malonique, ainsi que par la diminution des plasmalogènes (sous-classe de phospholipides à éthanolamine). Comparativement aux plaquettes incubées avec les LDL de V, les plaquettes incubées avec les LDL des autres groupes sont activées comme le montre une exacerbation de la cascade de l'acide arachidonique (p38 MAPK, phospholipase A2 cytosolique, thromboxane A2). Ainsi, dans les états pré-diabétique et diabétique de type-2, les LDL subissent des modifications lipidiques et oxydatives, puis activent les plaquettes. Nos résultats suggèrent que les peroxydes lipidiques des LDL induisent l'hyperactivation plaquettaire.
|
123 |
Pro-fibrotic role of ERK3-MK5 during pressure-overload induced cardiac hypertrophyDingar, Dharmendra 12 1900 (has links)
Il y a 4 isoforme de p38 : α, β, δ, and γ. MK5, à l'origine identifié comme étant un régulateur de PRAK (Regulated/Activated Protein Kinase), est maintenant connu pour être activée par la protéine kinase p38 (qui est un mitogène activé par la protéine kinase, MAPK). Cette dernière est impliquée dans les mécanismes de fibrose et d'apoptose pendant l'hypertrophie cardiaque. De plus, MK5 est également activée par les MAPKs atypiques; ERK3 et ERK4. Bien qu’elles soient fortement exprimées dans le coeur, le rôle physiologique de MK5 et ERK3 demeure inconnu. Par conséquent, nous avons étudié l'effet de la constriction aortique transversale (TAC) – induisant un surcharge chronique de pression chez les souris hétèrozygotes knockout pour MK5 (MK5+/-) ou ERK3 (ERK3+/-) et pour leurs types sauvages (MK5+/+ et ERK3+/+).
Deux sem post-TAC; le ratio de poids du coeur/poids corporel a été augmenté chez les 2 souris MK5+/- et MK5+/+. L'échocardiographie de la trans-thoracique démontre que la surcharge de pression a altéré la fonction diastolique du ventricule gauche chez MK5+/+, mais pas chez la souris MK5+/-. De plus, nous avons observé moins de dépôt de collagène, évalué par une coloration au trichrome de Masson, 2 et 3 sem post-TAC chez les souris MK5+/-. Parallèlement, le niveau de l’ARNm de collagène type1 alpha-1 a été significativement diminué dans les coeurs des souris MK5+/-, 2 et 3 sem post-TAC. De même, ERK3, mais pas ERK5 ni p38α, co-IP avec MK5 dans les 2 modèles des coeurs TAC; aigus ou chroniques. En revanche, l’ajout exogénique de GST-MK5 a abaissé ERK4 et p38α, mais pas ERK3 dans les lysâtes de coeur de souris. Par contre, GST-ERK3 et GST-p38α ne démontrent aucune co-IP avec MK5. Ces données suggèrent que dans le coeur seul ERK3, et non ERK4 ou p38α, est capable d’interagir avec, et réguler MK5. A niveau physiologique MK5 interagit entièrement avec ERK3 et par conséquent MK5 n’est pas disponible pour lier les protéines exogéniques. Les souris hétérozygotes pour ERK3 (ERK3+/-) ont également démontré une réduction ou une absence de collagène et une faible expression d’ARNm du collagène type1 alpha1, 3 sem post-TAC. Ces résultats démontrent un important rôle pro-fibrotique de la signalisation MK5-ERK3 pendant une surcharge chronique de pression.Nous avons également démontré 5 variant d'épissage de (MK5.1-5), y compris la forme originale (MK5.1). MK5.2 et MK5.5 subissent une délétion de 6 paires de base dans l’exon 12 : MK5.3 manque l'exon 12 : MK5.4 et MK5.5 manquent les exons 2-6. L'expression des ARNm des différents variant d'épissage a été vérifiée par PCR en temps réel (qPCR). Bien que l’expression est ubiquitaire, l'abondance relative de chaque variant était tissu-spécifique (coeur, rein, pancréas, muscle squelettique, poumon, foie, et cerveau). En plus, l'abondance relative des variant d’épissage varie pendant la surcharge de pression et le développement postnatal du coeur. En outre, l'immunofluorescence a indiqué que MK5.1-5.3 se localise au noyau alors que MK5.4-5.5 est situé au niveau cytoplasmic dans les cellules HEK 293 non stimulées. Suite à une stimulation avec l'anisomycin, un activateur de p38 MAPK, MK5.1-5.3 se translocalise du noyau au cytoplasme alors qu’une petite fraction de MK5.4-5.5 translocalise vers le noyau. Ces variant d'épissage peuvent diversifier la signalisation de MK5-ERK3 dans coeur, mais leur rôle exact oblige des recherches supplémentaires.
Excepté l’isoforme δ, toutes les isoformes de p38 sont exprimées dans le coeur et la forme α est considérée comme étant l'isoforme dominante. L’analyse par qPCR et immunobuvardage de type western ont démontré que p38α et p38γ sont les deux isoformes prédominantes alors que p38β et p38δ sont exprimées aux mêmes niveaux dans le coeur de rat adulte. L'immunofluorescence a démontré que p38α et p38γ se trouvent dans le cytoplasme et le noyau. Cependant, suite à la surcharge par TAC, p38γ s'est accumulé dans noyau tandis que la distribution de p38α est demeurée inchangée. Ainsi, l'abondance de p38γ et sa translocalisation nucléaire suite à la surcharge de pression indique un rôle potentiel dans l'expression génique pendant le remodelage cardiaque.
En conclusion, nous avons mis en évidence pour la première fois un rôle pro-fibrotique pour la signalisation MK5-ERK3 pendant une surcharge chronique de pression. D'ailleurs, les niveaux comparables d'expression de p38γ avec p38α, et la localisation différentielle de p38γ pendant la surcharge aiguë ou chronique de pression suggèrent différents rôles possibles pour ces isoformes pendant le remodelage hypertrophique cardiaque. / There are 4 isoforms of p38 MAP kinase: α, β, γ, and δ. p38 signaling has been implicated in fibrosis and apoptosis during cardiac hypertrophy. MK5, originally identified as a p38 Regulated/Activated Protein Kinase (PRAK), is known to be downstream of p38 mitogen activated protein kinase (MAPK). Although highly expressed in the heart, the physiological roles of MK5 remain unknown. To determine if MK5 plays a role in mediating detrimental effects downstream of p38, we studied the effect of transverse aortic constriction (TAC)-induced chronic pressure overload in mice heterozygous for a knockout of MK5 (MK5+/-). Moreover, as MK5 is also activated by the atypical MAPKs, ERK3 and ERK4, the effects of TAC were also studied in ERK3+/- mice. Wild-type (MK5+/+; ERK3+/+) littermates were used as controls.
Two wks post-TAC, heart weight/body weight ratios were significantly and similarly increased in both MK5+/- and MK5+/+ hearts. Trans-thoracic echocardiography revealed that pressure overload impaired left ventricular diastolic function in MK5+/+, but not in MK5+/- hearts. In addition, less collagen deposition, assessed by Masson trichrome staining, was observed in MK5+/- hearts 2 and 3 wks post-TAC. Furthermore, TAC-induced increases in collagen alpha1 type1 mRNA levels were significantly lower in MK5+/- hearts at both 2 and 3 wks post-TAC. Immunoprecipitation of MK5 resulted in co-immunoprecipitation of ERK3 but not ERK4 or p38α in either acute or chronic sham-operated and TAC hearts. In contrast, exogenous GST-MK5 pulled down endogenous ERK4 and p38α, but not ERK3, from mouse heart lysates. Neither exogenous GST-ERK3 nor GST-p38α pulled down MK5. These results suggest that MK5 associates with, and is regulated by ERK3, but not ERK4 or p38α in heart. At physiological expressional levels, all MK5 was bound to ERK3 and hence not available to bind exogenous protein. Along similar lines, mice heterozygous for an ERK3 knockout (ERK3+/-) also showed reduced or absent collagen deposition and lower collagen alpha1 type1 mRNA levels 3 wks post-TAC. This data suggests an important pro-fibrotic role of MK5-ERK3 signaling during chronic pressure overload.We also demonstrated the existence of 5 splice variants of (MK5.1-5), including the originally published form (MK5.1). MK5.2 and MK5.5 had a 6 base pair deletion in exon 12: MK5.3 lacked exon 12: and MK5.4 and MK5.5 lacked exons 2-6. Subsequently, expression of the splice variants at the mRNA level was quantified by real time qPCR. Although ubiquitously expressed, the relative abundance of each variant was tissue-specific (heart, kidney, pancreas, skeletal muscle, lung, liver, and brain). Additionally, the relative abundance of MK5 splice variants changed in the heart during pressure overload and post-natal development. Furthermore, immunofluorescence revealed MK5.1-5.3 localized to the nucleus and MK5.4-5.5 to the cytoplasm in unstimulated HEK 293 cells. Upon stimulation with anisomycin, which activates p38 MAPK, MK5.1-5.3 translocated from the nucleus to the cytoplasm and small amounts of MK5.4-5.5 relocated to the nucleus. These splice variants may further diversify MK5-ERK3 signaling in the heart, but their exact role awaits further investigation.
With the exception of p38δ, all p38 isoforms are expressed in the heart and α is considered to be the prominent isoform in this tissue. qPCR and western blot analysis revealed p38α and p38γ to be the predominant isoforms and p38β and p38δ are expressed at comparable levels in the adult heart. Confocal immunofluorescence studies revealed p38α and p38γ in both the cytoplasm and nucleus. However, in response to TAC, p38γ accumulated in the nucleus whereas the distribution of p38α remained unaffected. The high abundance of p38γ and its nuclear accumulation during chronic pressure overload suggest that this isoform may play a role in gene expression during pathological cardiac remodeling.
In conclusion, we have shown for the first time a pro-fibrotic role for MK5-ERK3 signaling during chronic pressure overload. Moreover, comparable expression levels of p38γ with p38α, and differential localization of p38γ during acute or chronic pressure overload, suggest these isoforms play different roles during cardiac remodeling.
|
124 |
Étude de l'activation des basophiles par le système tachykinergiqueOuaked, Nadia January 2005 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
125 |
Role de l’axe endothéline-1 et des map kinases dans la physiologie des leiomyomes utérins de rates / Role of endothelin-1 axis and MAP kinase in the physiology of rat uterine leiomyomasOyeniran, Clément 04 February 2011 (has links)
Nous montrons pour la première fois qu’en plus de la MAPK ERK1/2, l’endothéline-1 (ET-1) via les récepteurs ETA et ETB active une autre MAP kinase : la p38 uniquement dans les cellules de léiomyomes utérins de rate (ELT3) mais pas dans les cellules myométriales saines. Dans les cellules ELT3, l’analyse des voies de signalisation montre que malgré les similitudes observées entre les modes d’activation des voies p38 et ERK1/2 par ET-1, celles-ci sont activées de façon indépendante l’une de l’autre. En plus, la forskoline active p38 (mais pas ERK1/2), par contre l’activation de p38 par ET-1 n’implique pas une production d’AMPc. Par ailleurs ERK1/2 et p38 coactivées par ET-1 coopèrent pour augmenter l’expression de COX2 et la production des prostaglandines E2 (PGE2) pour favoriser l’effet antiapoptotique de ET-1. De plus p38 activée par ET-1 contribue à la prolifération des léiomyomes. Nos résultats élucident les mécanismes par lesquels ET-1 contribue à la croissance des léiomyomes. / We demonstrated for the first time, that in addition to the MAPK ERK1/2, Endothelin-1 (ET-1) through ETA and ETB receptors activated another MAP kinase: p38 only in uterine leiomyoma cells (ELT3) but not in normal myometrial cells. In ELT3 cells, analysis of signaling pathways showed that, despite the similarities between the mechanisms involved in the activation of p38 and ERK1/2 pathways by ET-1, these kinases are activated independently one of another. In addition, forskolin (a cAMP inducer), activated p38 (but not ERK1/2), whereas the activation of p38 by ET-1 did not involve production cAMP. Moreover the coactivated ERK1/2 and p38 pathways by ET-1 cooperated to increase expression of COX2 and prostaglandin E2 (PGE2) production. This PGE2 like ET-1 exerted an antiapoptotic effect in ELT3 cells. Furthermore, p38 activated by ET-1 contributes to the proliferation of ELT3 leiomyoma cells. Our data highlight the mechanisms by which ET-1 could promote uterine leiomyoma growth.
|
126 |
A central role of p38 MAPK and JNK in bone morphogenic protein-4 induced endothelial cell apoptosis.January 2009 (has links)
Yung, Lai Hang. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 93-115). / Abstract also in Chinese. / Declaration --- p.i / Acknowledgements --- p.ii / Abbreviations --- p.iii / Abstract in English --- p.v / Abstract in Chinese --- p.ix / Contents --- p.xi / Chapter Chapter I - --- Introduction / Chapter 1.1) --- Endothelial cells function --- p.1 / Chapter 1.2) --- Oxidative stress in the vascular wall --- p.2 / Chapter 1.2.1) --- Sources of ROS --- p.3 / Chapter 1.2.2) --- Actions of ROS --- p.3 / Chapter 1.2.2.1) --- Impaired endothelium-dependent vasodilatation --- p.3 / Chapter 1.2.2.2) --- VSMC migration --- p.4 / Chapter 1.2.2.3) --- Programmed cell death (cell apoptosis) --- p.4 / Chapter 1.3) --- Endothelial cell apoptosis --- p.7 / Chapter 1.3.1) --- Apoptosis and cardiovascular diseases --- p.7 / Chapter 1.3.2) --- Mechanisms of endothelial cells apoptosis --- p.7 / Chapter 1.3.2.1) --- What are caspases? --- p.8 / Chapter 1.3.2.2) --- Death receptor-mediated apoptosis --- p.9 / Chapter 1.3.2.3) --- Mitochondria-dependent pathway --- p.9 / Chapter 1.3.3) --- Regulations of endothelial cells apoptosis --- p.10 / Chapter 1.3.3.1) --- Oxidative stress --- p.10 / Chapter 1.3.3.2) --- Shear Stress --- p.11 / Chapter 1.3.3.3) --- Growth factors --- p.12 / Chapter 1.3.3.4) --- NO --- p.12 / Chapter 1.3.3.5) --- Inflammatory mediators --- p.13 / Chapter 1.4) --- Mitogen activated kinases signaling in apoptosis --- p.15 / Chapter 1.5) --- Bone morphogenic proteins (BMPs) --- p.17 / Chapter 1.5.1) --- BMPs functions and cardiovascular system --- p.17 / Chapter 1.5.2) --- BMPs signaling pathways --- p.18 / Chapter 1.5.2.1) --- Smad-dependent pathway --- p.18 / Chapter 1.5.2.2) --- MAPKs and SAPKs pathways --- p.19 / Chapter 1.5.2.3) --- Antagonists of BMPs signaling --- p.20 / Chapter 1.5.3) --- BMP4 and cardiovascular diseases --- p.20 / Chapter 1.6) --- "Justification, long-term significance and objectives of the present project" --- p.23 / Chapter Chapter II - --- Methods and Materials / Chapter 2.1) --- Animal handling --- p.24 / Chapter 2.2) --- Endothelial cell isolation and culture --- p.24 / Chapter 2.2.1) --- Primary culture of rat endothelial cells --- p.24 / Chapter 2.2.2) --- Culture of human umbilical cord vein endothelial cells… --- p.25 / Chapter 2.3) --- Apoptosis assessment --- p.25 / Chapter 2.3.1) --- Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay --- p.25 / Chapter 2.3.2) --- Cell death detection ELISA kit --- p.26 / Chapter 2.3.3) --- Flow cytometry --- p.27 / Chapter 2.4) --- Western blot analysis --- p.28 / Chapter 2.4.1) --- Sample preparation --- p.28 / Chapter 2.4.2) --- SDS-PAGE and transfer --- p.28 / Chapter 2.5) --- DHE fluorescence --- p.29 / Chapter 2.6) --- "Drugs, chemicals and other reagents" --- p.30 / Chapter 2.6.1) --- Drugs and chemicals used in the present experiments --- p.30 / Chapter 2.6.2) --- Reagents for Western blot analysis --- p.30 / Chapter 2.6.3) --- Primary antibodies --- p.33 / Chapter 2.7) --- Small interfering RNA experiment --- p.34 / Chapter 2.8) --- Statistical analysis --- p.34 / Chapter Chapter III - --- BMP4 induces endothelial cell apoptosis in ROS related p38 MAPK and JNK mediated caspase-3 dependent pathway / Chapter 3.1) --- Introduction --- p.35 / Chapter 3.2) --- Methods and materials --- p.39 / Chapter 3.2.1) --- Isolation and culture of endothelial cells --- p.39 / Chapter 3.2.2) --- Drugs treatment --- p.39 / Chapter 3.2.3) --- Assay for cell apoptosis --- p.40 / Chapter 3.2.3.1) --- Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay --- p.40 / Chapter 3.2.3.2) --- Cell death detection ELISA kit --- p.41 / Chapter 3.2.3.3) --- Flow cytometric analysis --- p.41 / Chapter 3.2.4) --- Western blot analysis --- p.41 / Chapter 3.2.5) --- Dihydroethidium (DHE) staining --- p.42 / Chapter 3.2.6) --- Statistical analysis --- p.42 / Chapter 3.3) --- Results --- p.43 / Chapter 3.3.1) --- Dose- and time-dependent effect of BMP4 --- p.43 / Chapter 3.3.2) --- Role of caspases in apoptosis of RAECs and HUVECs --- p.43 / Chapter 3.3.3) --- Roles of BMP4 and ROS in endothelial cell apoptosis --- p.44 / Chapter 3.3.3.1) --- Noggin antagonism of BMP4-induced effect --- p.44 / Chapter 3.3.3.2) --- NAD(P)H oxidase-mediated ROS production --- p.44 / Chapter 3.3.3.3) --- Inhibition of endothelial cell apoptosis by ROS scavengers --- p.45 / Chapter 3.3.4) --- Roles of MAPKs/SAPKs in BMP4-induced endothelial cell apoptosis --- p.45 / Chapter 3.3.5) --- Relationship between ROS and MAPKs/SAPKs --- p.46 / Chapter 3.3.6) --- Relationship between p38 MAPK and JNK --- p.46 / Chapter 3.4) --- Discussion --- p.82 / Chapter 3.4.1) --- Caspase-dependent pathways --- p.82 / Chapter 3.4.2) --- Oxidative stress --- p.85 / Chapter 3.4.3) --- Role of MAPKs activation in BMP4-induced endothelial cell apoptosis --- p.87 / Chapter 3.4.4) --- ROS mediates BMP4-induced activation of MAPKs --- p.88 / Chapter 3.4.5) --- Role of p38 MAPK in the activation of JNK 1 --- p.89 / Chapter 3.5) --- Concluding remarks --- p.91 / References --- p.93 / Publications and Awards --- p.116
|
127 |
Microbial and maternal influences on allergic sensitization during childhood: defining a role for monocytesSaghafian Hedengren, Shanie January 2009 (has links)
Allergic diseases are influenced by genetics and the environment. Maternal allergy appears to confer a higher risk for allergic sensitization than paternal allergy, suggesting an in utero influence. A decrease in particular infections or a lower exposure to microbial components during infancy is suggested to contribute to the high allergy prevalence in affluent societies. Toll-like receptors (TLR) 2 and 4 recognize peptidoglycan (PGN) and LPS respectively, are expressed on e.g. monocytes, and have been implicated in modulating the risk of IgE-sensitization. This thesis aimed to study the influence of maternal allergy and early microbial exposure on monocyte function and allergic sensitization during childhood. Blood samples from children participating in a prospective allergy cohort were used. Two-year old infants with allergic mothers had lower IL-6 production and reduced activation of the TLR-signalling intermediate p38-MAPK in response to PGN than children with non-allergic mothers. In 5-year old children, allergic disease and not maternal allergy influenced monocytic TLR2-regulation. Five-year olds who were seropositive for Epstein-Barr virus (EBV) at 2-years of age had a lower risk of persistent IgE-sensitization while EBV contraction after 2-years of age related to a higher risk of IgE-sensitization. Upon in vitro stimulation, NK cells from EBV+ 2-year olds produced lower IFN-g levels. EBV+ 2-year olds had also lower systemic IFN-g. In comparison to CD14++CD16- monocytes, CD14+CD16+ cells induced NK-cell IFN-g more potently in vitro, and EBV+ infants tended to have lower proportions of these CD14+CD16+ monocytes. This thesis highlights the importance of early-life microbial (EBV) exposure for a proper allergy-protective immunity. Also, maternal allergic heredity appears to influence monocytic microbial responses in early infancy. All these aspects relate to altered monocyte functionality, which suggest that they could have a role in allergic sensitization.
|
128 |
Tyrosinkinaseinhibition bei humanen Non-Hodgkin-Lymphomen: Präklinische Evaluation von Sorafenib / Tyrosine Kinase Inhibition at Human Non-Hodgkin s Lymphomas: Preclinical Evaluation of SorafenibSchuelper, Nikolai 30 November 2010 (has links)
No description available.
|
129 |
TRAF6 stimulates TGFβ-induced oncogenic signal transduction in cancer cells / TRAF6 stimulerar TGFβ-inducerad onkogen signal transduction i cancerceller.Gudey, Shyam Kumar January 2014 (has links)
Prostate cancer is one of the leading causes of cancer-related deaths in men worldwide, with 10,000 new cases/year diagnosed in Sweden. In this context, there is an urgent need to identify new biomarkers to detect prostate cancer at an initial stage for earlier treatment intervention. Although how prostate cancer develops has not been fully established, the male sex hormone testosterone is a known prerequisite for prostate cancer development. High levels of transforming growth factor-β (TGFβ) are prognostically unfavorable in prostate cancer patients. TGFβ is a multifunctional cytokine that regulates a broad range of cellular responses. TGFβ signals through either the canonical Smad or the non-Smad signaling cascade. Cancerous cells develop different strategies to evade defense mechanisms and metastasize to different parts of the body. This thesis unveils one such novel mechanism related to TGFβ signaling. The first two articles provide evidence that TGFβ receptor type I (TβRI) is ubiquitinated by tumor necrosis factor receptor-associated factor 6 (TRAF6) and is cleaved at the ectodomain region by tumor necrosis factor alpha converting enzyme (TACE) in a protein kinase C zeta type-dependent manner. After TβRI is shed from the ectodomain, it undergoes a second cleavage by presenilin 1 (PS1), a γ-secretase catalytic subunit, which liberates the TβRI intracellular domain (TβRI-ICD) from the cell membrane. TRAF6 promotes TGFβ-dependent Lys63-linked polyubiquitination and recruitment of PS1 to the TβRI complex, and facilitates the cleavage of TβRI by PS1 to generate a TβRI-ICD. The TβRI-ICD then translocates to the nucleus, where it binds with the transcriptional co-activator p300 and regulates the transcription of pro-invasive target genes such as Snail1. Moreover, the nuclear translocated TβRI-ICD cooperates with the Notch intracellular domain (NICD), a core component in the Notch signaling pathway, to drive the expression of invasive genes. Interestingly, treatment with g-secretase inhibitors was able to inhibit cleavage of TβRI and inhibit the TGFβ-induced oncogenic pathway in an in vivo prostate cancer xenograft model. In the third article, we identified that Lysine 178 is the acceptor lysine in TβRI that is ubiquitinated by TRAF6. The TβRI K178R mutant was neither ubiquitinated nor translocated to the nucleus, and prevented transcriptional regulation of invasive genes in a dominant negative manner. In the fourth article, we show that TGFβ utilizes the E3-ligase TRAF6 and the p38 mitogen-activated protein kinase to phosphorylate c-Jun. In turn, the phosphorylated c-Jun activates p21 and Snail1 in a non-canonical Smad-independent pathway, and thereby promotes invasion in cancerous cells. In summary, we elucidate a new mechanism of TGFβ-induced oncogenic signal transduction in cancer cells in which TRAF6 plays a fundamental role. This opens a new avenue in the field of TGFβ signaling.
|
130 |
Étude des mécanismes moléculaires menant à la migration cellulaire associée à Rac1 et ARF6.Cotton, Mathieu 12 1900 (has links)
Le facteur de l’ADP-ribosylation 6 (ARF6) et Rac1 sont des petites
protéines liant le GTP qui régulent plusieurs voies de signalisation comprenant le
trafic de vésicules, la modification des lipides membranaires et la réorganisation
du cytosquelette d’actine. Cependant, les mécanismes moléculaires par lesquels
ARF6 et Rac1 agissent de concert afin de contrôler ces différents processus
cellulaires restent méconnus.
Dans cette étude, nous montrons que, dans les cellules HEK293, ARF6 et
Rac1 sont retrouvées en complexe suite à la stimulation du récepteur à
l’angiotensine. Des expériences réalisées in vitro nous indiquent que ces deux
GTPases interagissent ensemble directement, et que ARF6 s’associe
préférentiellement avec la forme inactive de Rac1. L’inhibition de l’expression de
ARF6 par interférence à l’ARN entraîne une activation marquée en cellule de
Rac1 via le facteur PIX, indépendamment de la stimulation d’un récepteur, ce qui
provoque la migration non contrôlée des cellules.
Les arrestines, protéines de régulation de la désensibilisation des
récepteurs couplés aux protéines G, servent de protéines d’échafaudage pour
Rac1 et ARF6, en interagissant directement avec les GTPases et en augmentant
leur association stimulée par l’angiotensine. De plus, les arrestines permettent
l’activation, en s’en dissociant, de la MAP Kinase p38 qui régule l’activité de
ARF6 et son interaction précoce avec les arrestines. Mis ensemble, ces résultats
montrent que les arrestines contrôlent l’activité de ARF6, en influençant p38.
ARF6 joue un rôle inhibiteur sur l’activation basale de Rac1 pour permettre
ensuite son recrutement et son activation dépendante de l’angiotensine.
Cette étude nous a permis de préciser le mode de régulation mis en jeu
dans l’initiation de la migration cellulaire, suite à l’activation d’un récepteur couplé
aux protéines G. Par le fait même, nous avons identifié certains des acteurs
impliqués dans ce processus, offrant ainsi de nouvelles cibles pour le traitement
des déséquilibres pathophysiologiques de la migration cellulaire. / The ADP-ribosylation factor 6 (ARF6) and Rac1 are small GTP-binding
proteins that regulate several signaling events ranging from vesicle trafficking, to
modification of membrane lipids and reorganization of the actin cytoskeleton.
However, the molecular mechanisms by which ARF6 and Rac1 act in concert to
control these different cellular processes remain unclear.
Here, we show that in HEK 293 cells, ARF6 and Rac1 can be found in
complex upon stimulation of the angiotensin receptor (ATR). In vitro experiments
indicate that these two small G proteins can directly interact together, and that
ARF6 preferentially interacts with the GDP-bound form of Rac1. Depletion of
ARF6 by RNA interference leads to a marked PIX-dependent Rac1 activation in
cells, independently of receptor stimulation, leading to uncontrolled cell migration.
Arrestins, which are known for their role in G protein-coupled receptor
desensitization, act as scaffold proteins toward Rac1 and ARF6, by directly
interacting with the GTPases and by increasing their agonist-promoted
association. Besides, arrestins allow p38 MAP Kinase activation, by releasing it,
which regulates ARF6 activity and early association occurring between arrestins
and ARF6. Taken together, this study shows that arrestins control ARF6 activity,
by managing p38. ARF6 is an inhibitor of basal Rac1 activation to further allow
the protein to be recruited and activated following angiotensin treatment.
This study allowed us to precise how cell migration induction is regulated
following G protein-coupled receptor activation. As a result, we identified some of
the key players implicated in this process, providing new targets in the treatment
of patho-physiological inbalance in cell migration.
|
Page generated in 0.0443 seconds