• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 34
  • 1
  • 1
  • 1
  • Tagged with
  • 109
  • 39
  • 35
  • 27
  • 26
  • 23
  • 21
  • 20
  • 17
  • 15
  • 14
  • 13
  • 13
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Machine Learning in Computational Chemistry

Kuntz, David Micah 05 1900 (has links)
Machine learning and artificial intelligence are increasingly becoming mainstream in our daily lives, from smart algorithms that recognize us online to cars that can drive themselves. In this defense, the intersection of machine learning and computational chemistry are applied to the generation of new PFAS molecules that are less toxic than those currently used today without sacrificing the unique properties that make them desirable for industrial use. Additionally, machine learning is used to complete the SAMPL6 logP challenge and to correlate molecules to best DFT functionals for enthalpies of formation.
62

MIFO-baserade bedömningar av risken för förorening och spridning av PFAS vid brandstationer / Risk assessments of pollution and spread of PFAS at fire stations based on MIFO

Hollsten, Josefin January 2022 (has links)
A relatively unexplored source of pollution is fire stations and their usage of aqueous film forming foam (AFFF) containing per- and polyfluorinated substances (PFAS). It is well documented that these were used at fire drill sites that contaminated surrounding surface water, sediments and groundwater. The aim of this study was to assess whether fire stations could be a source of pollution and spread of PFAS and if the industry should be given priority for further investigations. Four fire stations were selected for the assessment, which were carried out by using part one of the Method of Surveying Contaminated Sites (Acronym in Swedish: MIFO). This included studies of maps, archives and field visits where fire fighters were interviewed to gather information about activities that had taken place historically on the specific sites. All of the fire stations were classified as level 2, meaning they pose a high risk for the enviroment and human health accordning to MIFO. In conjunction to the assessment, existing testing results of PFAS in soil and water from other fire stations in Sweden are submitted in purpose of showing the general situation of pollution linked with the results of this evaluation. The conclusion of this study was that various activities at fire stations possibly have polluted ground -and surface waters and that the industry should be given priority for further investigations.
63

Community resilience and response following PFAS contamination

Henry Skoving Seeger (11083557) 22 July 2021 (has links)
<div> <div> <div> <p>Water is a critical resource for life, and communities are dependent upon reliable access to clean </p> <p>water to maintain stable quality of life. Issues of water contamination threaten this stability, creating uncertainty, threatening public health, and necessitating community response. One emerging water contamination issue involves a family of industrial chemicals called Per- and Polyfluoroalkyl Substances (PFAS). This study uses an integrated multi-theory approach to examine the processes of Resilience and Collective Action within a community experiencing issues of PFAS contamination. Results indicate that the community was generally successful in enacting resilience, however some challenges were encountered in the form of high levels of uncertainty, inaccessibility of technical information, challenges foregrounding productive action, and challenges maximizing transformative potential. Results also indicated the community was general successful with collective action in the immediate aftermath of the issue. The community struggled to maintain collective action over a long period and to transition to high level advocacy. Results demonstrated that existing theoretical frames are limited in their ability to predict effective resilience and collective action in events of long-term water contamination. These limitations are described in detail and the potential for expansion of these theories is discussed. Suggestions to improve future responses to issues of PFAS contamination, as well as suggestions for intervention into the community of focus are offered. </p> </div> </div> </div>
64

Removal of per- and polyfluoroalkyl substances(PFAS) from contaminated leachate usingaeration foam fractionation / Rening av per- och polyfluorerade alkylsubstanser (PFAS) från kontaminerat lakvatten med hjälp av skumfraktionering

Krögerström, Axel January 2021 (has links)
Leachate from landfills is contaminated in many ways and per- and polyfluoroalkyl substances (PFAS)-contamination is one of them. Recent studies have demonstrated the environmental and human concerns of PFAS. Therefore, the treatment of leachate is important. One technique to reduce the PFAS concentration is by using aeration and foam fractionation. Hovgården is a landfill northeast of Uppsala, where previous measurements have shown high levels of PFAS in the leachate. Earlier small-scale experiments using aeration foam fractionation as a treatment technique for PFAS removal have been done successfully, but with upcoming requirements of PFAS concentrations there is a need to investigate whether an upscaling is possible or not. In this study, this has been investigated by pumping PFAS contaminated leachate from the landfill in to a 0.046 square metre plastic cylinder and aerated the leachate with an airflow of ten L min-1. A total of six experiments were conducted were the contact time and fraction of extracted foam was parameters that was varying. Four experiments were done with a contact time of ten min and foam fraction of five, ten, twenty and thirty percent and two experiments were made with a foam fraction of five percent and a contact time of twenty respectively thirty min. The average ΣPFAS removal, i.e., the percentage difference in ΣPFAS concentrations between the influent and effluent water in the different runs varied between 31 % and 66 %. The removal of long chained PFAS (≥C6) was higher than the removal of short chained PFAS(≤C5) even if all experiments did reduce the PFAS concentration. Carbon chains with a functional group containing a carboxylic acid is called perfluorocarboxylic acids (PFCA) and with a functional group containing a sulfonic acid is called perfluoroalkane sulfonic acids (PFSA). Precursors are PFAS that after a reaction degrades into PFCA and PFSA. The average removal efficiency of PFCA were 48 %, of PFSA 59 % and of precursors 78 %. The highest removal efficiency was discovered in the experiment with a 30-min contact time and five percent foam fraction with an average ΣPFAS removal of 58 % and an average Σlong chained PFAS removal of 92 %. The lowest removal efficiency was discovered in the experiment with a 10-min contact time and 20 percent foam fraction with an average ΣPFAS removal of 41 % and an average Σlong chained PFAS removal of 67 %. In conclusion a connection between increased contact time and increased removal efficiency was discovered but no clear connections between foam fraction and removal efficiency were found. However, it cannot be stated beyond reasonable doubt that the contact time is the decisive factor. Another conclusion is that the enrichment of short chained PFAS are higher in the water and a higher enrichment of long chained PFAS in the foam. In general, a higher inlet concentration of PFAS in the influent water resulted in a higher removal efficiency.
65

Utility of bark chips for removal of fluorinatedorganic compounds in water samples at a hazardouswaste management facility

Ekesbo, Maria January 2021 (has links)
Per- and polyfluoroalkyl substances (PFAS) are synthetic compounds that have beenaround since 1940. They can be used in a variety of products such as fire-fighting foam,food packaging and cosmetic products. Many PFAS have potential toxic effects on bothhumans and animals which poses a problem due to their wide distribution and persistency.Another problem concerns the remediation of PFAS, where the substances ends upcirculating between the different disposal types (landfills, wastewater treatment andincineration). Active methods are therefore needed to remove or retain the contaminants.Some examples of these remediation technologies can be biomaterials, organoclays andmore advanced methods such as activated carbon and ion exchange. The more advancedbeing suited for remediation of drinking water. In this study, the sorption efficiency oftwo pine bark fractions has been studied and also compared to the efficiency of activatedcarbon. The evaluation was done for both target analysis (PFAS-11) and non-specificanalysis of extractable organofluorine (EOF) compounds in contaminated water from ahazardous waste management facility. The two pine bark fractions indicated similarsorption efficiencies, for both the PFAS-11 and the EOF compounds. The sorptionefficiency ranged from 10% up to 75% for perfluorinated sulfonic acids (PFSA) and frombelow zero up to 40% for perfluorinated carboxylic acids (PFCA). A general pattern canbe seen, the sorption efficiency increases with increasing length of the PFAS chain. Theactivated carbon had a higher sorption efficiency, where the majority of PFAS had anaverage sorption of 100%. In comparison, the PFAS-11 and total EOF analysis displayedhigh concentrations of unidentified EOF compounds. These compounds indicated anegative sorption, which might imply that non-targeted PFAS or other fluorinated organic compounds desorb from the bark. Therefore, the pine bark might be suitable as a roughremediation of long-chain PFAS (≥8C), but further studies on the sorption of unidentifiedfluorinated organic compounds are of interest.Keywords:
66

Development of a Risk-Based Assessment Tool for PFAS Contaminated Sites

Olds, Zachary M. 22 June 2020 (has links)
No description available.
67

PER- AND POLYFLUOROALKYL SUBSTANCES (PFAS) DEGRADATION BY NANOSCALE ZERO-VALENT IRON UNDER LIGHT FOR WATER REUSE

Xia, Chunjie 01 May 2022 (has links) (PDF)
Wastewater reclamation and reuse have been increasingly practiced as sustainable strategies to meet water demands, particularly in regions threatened by water shortages. However, one of the biggest challenges for reusing wastewater effluents (WEs) as irrigation water is to remove emerging organic contaminants such as persistent and potentially bioaccumulated per- and polyfluoroalkyl substances (PFAS), whose presence may result in adverse impacts on crops, soils, aqueous ecosystems, and human health. Photocatalysis is an effective and promising technique to remediate PFAS in aqueous media. This dissertation aims to: i) Develop a novel, environmental-friendly, and low-cost treatment process for PFAS removal and degradation for water reuse; ii) Optimize the experimental conditions and investigate the removal mechanisms of PFAS with different structures in this novel process; iii) Scale up this treatment process and apply it to treatment of WEs in a point-of-use (POU) system. First, ultraviolet (UV) C /nanoscale zero-valent iron (nZVI, Fe0 nanoparticles (NPs)) system is used for the first time to induce PFAS photocatalytic removal from aqueous solution. Oxidative and/or reductive degradation of three representative PFAS - perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorooctane sulfonate (PFOS) was achieved using Fe0 NPs under UVC light both with and without presence of oxygen. However, no PFAS removal was observed either under visible light and in the dark, and much lower PFAS degradation was achieved under UVA light. Higher degradation and defluorination efficiencies were obtained for longer chain PFNA compared to PFOA, and higher degradation and defluorination of PFAS were achieved without presence of O2 compared to with O2. The degradation of PFOA and PFOS followed first order reaction kinetics with the highest efficiencies achieved of 97.6, >99.9, and 98.5% without presence of O2 for PFOA, PFNA, and PFOS, respectively. The degradation efficiencies increased with the increase of nZVI concentrations in the range of 1-100 mg/L. The degradation efficiency of PFOA using bare Fe0 NPs was higher than that using 1% PVP-coated Fe0 NPs in the initial 6 h. Second, the removal mechanism of PFAS in UVC/Fe0 NPs system was obtained by testing the concentrations of iron ions (Fe2+/Fe3+), intermediate products, and reactive oxygen species (ROS, e.g., ·O2- and ·OH) generated, and conducting ROS quenching experiments. The proposed degradation pathway of PFCAs (PFNA and PFOA) was initiated from PFOA/PFNA oxidation by transferring an electron of the carboxylate terminal group of PFOA/PFNA to the Fe(III)-carboxylate complex, then followed by decarboxylation−hydroxylation−elimination−hydrolysis (DHEH) pathway and the accompanying CO2 and F− release. The generated shorter chain PFCAs also underwent degradation with time in the system. This proposed degradation pathway was confirmed by the formation of shorter chain PFCAs, e.g. PFHpA, PFHxA, PFPeA, and PFBA, F- ions, and rapid consumption of Fe3+. For PFOS, besides H/F exchange pathway and chain-shortening (DHEH pathway) to form short chain PFAS during PFCA degradation, desulfonation to form PFOA followed by PFOA degradation also happened. These pathways were suggested by the formation of intermediates — trace amount of shorter chain PFCAs, 6:2 FTS, PFHpS, and F- ions. ·O2- and ·OH were not involved in PFOA degradation in the UVC/Fe0 NPs system with presence of O2, while they may be involved in PFOS degradation, e.g., desulfonation to form PFOA, which were suggested by the results of quenching experiments. And introducing H2O2 into the UVC/Fe0 NPs system resulted in lower PFOA degradation efficiency and defluorination efficiency, which also indicated that ·OH may not be involved in PFOA degradation. Hydrated electrons e-aq that can be involved in desulfonation, defluorination, and C-C bond scission processes were likely quenched by the presence of oxygen to reduce the degradation and defluorination efficiencies; plus, presence of Fe0 NPs may promote the generation of hydrated electrons. Last, UVC/Fe0 NPs system was used to degrade PFAS from WEs in both bench scale and in a scale up POU system. The degradation efficiencies of PFAS in WEs from both wastewater treatment plants (WWTP) were lower than that in deionized water, likely reflecting the complex compositions in the environmental media. Optimal degradation efficiencies of 90±1%, 88±1%, and 46±2% were obtained for PFNA, PFOS, and PFOA, respectively, each starting from 0.5 µg/L using bare Fe0 at pH 3.0 after 2 h. PFAS removal and bacterial inactivation were achieved simultaneously in the POU system using Fe0 NPs without and with rGO support under UVC irradiation in WEs, although the PFAS levels were still above the regulation levels for discard. These pilot tests provided more data and experiences for the real applications of UVC/Fe0 NP system to PFAS contaminated wastewater or other water matrix treatment. Overall, this research demonstrated a cost-effective and environment-friendly method — UVC/Fe0 NPs method for PFAS (i.e., PFOA, PFNA, and PFOS) degradation from WEs for water reuse both with and without presence of oxygen. The possible degradation mechanisms of PFAS with different structures were obtained by testing the concentrations of iron ions, intermediate products, and reactive oxygen species (ROS) involved in the reactions. The developed technology can be potentially applied to treat other environmental media (e.g., groundwater, landfill leachate) that are contaminated by PFAS from previous anthropogenic activities.
68

Is two stage GAC better than one stage GAC for removing PFAS at a DWTP? : Investigation of PFAS removal from drinking water using two stage granular activated carbon (GAC) filter

Ekesiöö, Oliver January 2023 (has links)
The removal of 34 per- and polyfluoroalkyl substances (PFAS) were compared in a 1 stagegranular activated carbon (GAC) filtration to a 2 stage GAC filtration in a pilot study at adrinking water treatment plant (DWTP). The PFASs that were present in the water wereperfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluoropentanoic acid(PFPeA), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorobutanesulfonic acid (PFBS), perfluoropentane sulfonic acid (PFPeS) and perfluorohexane sulfonic acid(PFHxS). A cost comparison for the operation of a one stage GAC to a two stage GAC wascompared for PFAS4 (sum of PFOA, PFNA, PFHxS and PFOS) at treatment goals ranging from2 - 10 ng/L. The pilot was operated at three different flows and the three different bed volumes(BV)s resulting in three different empty bed contact times (EBCTs) at three different times.Therefore, the Lin &amp; Huang adsorption model (1999) was used to model the concentrations ateach EBCT. It was found that the model worked good for PFBS, PFPeS, PFHxS, PFOS andPFOA but not for PFPeA, PFHxA and PFHpA (except for PFPeA and PFHxA during EBCT 5min) and did not work for desorbing PFASs. The removal comparison of PFASs was made,partly by comparing removal efficiencies between the first stage and the second stage GAC filterand by comparing the removal per weight of GAC per BV 1 stage and 2 stages. It was found thatthe removal efficiency decreases with decreasing chain length and increasing treated BVs forboth the first stage and the second stage. The short chain PFCAs were also desorbing after anumber of BVs. The removal per weight of GAC showed that the removal does not increasewhen comparing a one stage GAC to a two stage GAC for any the PFAS. The cost comparisonwas made using the adsorption model. It showed that it was cheaper to operate a 2 stage GAC forthe EBCT of 5 minutes and 8 minutes for the whole range of treatment goals. However, for theEBCT of 15 minutes the costs for the second stage was decreasing with decreasing treatmentgoal which is unrealistic result. This was caused by too few data points available for the model topredict reliable results.
69

Leveraging the African clawed frog (Xenopus laevis) for Understanding Stage- and Sex-Specific Toxicokinetics and Effects of PFAS

Meredith Norris Scherer (15361759) 26 April 2023 (has links)
<p>Per- and polyfluoroalkyl substances (PFAS) are a group of emerging global contaminants used in a variety of industrial processes and consumer products, such as personal care products and fast-food wrappers. However, due to their carbon-fluorine bonds, these chemicals resist degradation and persist in the environment. PFAS toxicity is driven by a compound’s functional group and chain length with perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS), perfluorooctanoic acid (PFOA), and hexafluoropropylene oxide dimer acid (GenX) being of focal concern due to their toxicity to wildlife and presence in the environment. Despite growing concern regarding these contaminants, inadequate attention has been given to evaluating what organismal characteristics influence uptake and depuration of these chemicals, such as life stage and sex. <em>Xenopus laevis</em> tadpoles are a useful model to assess the influence of sex on PFAS kinetics since they have a life history that includes a gill to lung transition. Previous studies have shown that air-breathing organisms depurate PFAS more slowly than water-breathing organisms, but this relationship has never been directly tested. Sex has been shown to be an important factor in the depuration of PFOA for rats, with female rats depurating PFOA in four hours while males depurate in four days. The early portion of bioaccumulation curves are also understudied even though tadpoles accumulate PFAS rapidly, reaching steady state within 48 hours of exposure. <em>Xenopus laevis</em> are used to study multiple endpoints for endocrine disrupting chemicals including PFAS. Despite this, toxicity reference values (TRVs) have not been described for the uptake and elimination of PFAS using <em>X. laevis</em>. To address these gaps in knowledge, I first developed TRVs for <em>X. laevis</em> tadpoles exposed to PFOA throughout metamorphosis and evaluated the influence of sex on phenotypic endpoints. Results showed a no observed effect concentration (NOEC) of 11.1 ppm for body mass at day 14 and no effect of sex on apical endpoints. Next, I described the early bioaccumulation of four PFAS with differing structure (chain lengths and functional groups). PFOS was the only chemical to bioaccumulate with a log bioconcentration factor (BCF) at 10 and 1,000 ppm of 1.33 and 1.18, respectively. PFHxS, PFOA, and GenX had BCFs less than 0. Finally, I examined the impact of life-stage and sex on <em>X. laevis</em> tadpole and juvenile depuration rates. Larval tadpoles depurated four times faster than juveniles, indicating a significant effect of life stage on elimination rates. Sex had no influence on elimination rates. These are the first studies conducted evaluating the significance of life stage and sex in toxicokinetics of PFAS in amphibians.</p>
70

Designing Mesoporous Test Sticks for Measuring PFAS Concentrations in Water

Hillås, Amanda January 2022 (has links)
Water contamination through substances called per- and polyfluoroalkyl substances (PFAS) is a worldwide problem. Being able to measure the concentrations of PFAS in water is a first step towards beating this contamination. One alternative is to use a field test kit instead of extensive lab equipment to monitor the contaminated areas. This thesis has investigated the possibility of using amine-functionalized mesoporous carbon as adsorbent to develop a detection method based on adsorbing first PFAS and then dye in aqueous solutions. The non-adsorbed dye concentrations are depending on the amount of PFAS, and hence the colour intensity in the remaining solution is proportional to PFAS concentration. Mesoporous carbon with amine functional groups were chosen as specific adsorbents for PFAS because of its large surface area and high adsorption capacity. It has been shown that some colorants would react in a similar way as PFAS on sorbents and thus can be used as an indicator for the user. In the study, the two most common PFAS, PFOA and PFOS, were studied and Rose Bengal was the dye. The adsorbent’s morphology, pore structure and pore size was verified with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen sorption before being tested. Adsorption tests were performed using different PFAS concentrations and a dye solution range in order to find three things: the detection range, the ratio powder/solution in order to see a difference, and the adsorption or saturation time for both PFAS and dye. This thesis concluded that even though the adsorbent was not as efficient as predicted, this method could be used for detecting PFAS concentrations down to at least 0.1 pg/ml and could be a possible approach for quick field tests in the future.

Page generated in 0.0155 seconds