• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 73
  • 19
  • 8
  • 8
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 146
  • 146
  • 36
  • 28
  • 20
  • 19
  • 18
  • 18
  • 17
  • 17
  • 16
  • 16
  • 15
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

dSTRIPAK régule les fonctions catalytiques et non-catalytiques de la kinase Ste20 Slik

de Jamblinne, Camille V. 12 1900 (has links)
Many cellular and molecular mechanisms are involved in the structural changes (morphogenesis) taking place during embryonic development. Indeed, the cytoskeleton is dynamically modified by intracellular signaling cascades, controlling cell morphogenesis during division or epithelial organization. Signal transduction mechanisms establishes homeostasis during morphogenetic processes. The cell cortex, composed by plasma membrane and underlying cytoskeleton meshwork, is responsible for integrating cell shape changes and organizing structural elements required for intercellular communication. The composition of the cell cortex is thus constantly changing in response to morphogenetic needs. However, the signaling network controlling this cortical plasticity is still unclear. This work has identified a new signaling pathway involved in cell cortex organization. The laboratories of Dr Carréno and Dr Hipfner use Drosophila as a model organism to study cell and tissue morphogenesis. Dr Carréno and Dr Hipfner had previously found that Ste20 Slik kinase was responsible for dMoesin activation by phosphorylation. dMoesin acts as a cross-linker between the cytoskeleton and the plasma membrane. This way, activation of dMoesin by Slik controls cortical stability during mitosis and epithelial integrity in Drosophila. This research project found that dSTRIPAK phosphatase activity promotes cortical localization of Slik in order to activate dMoesin at the plasma membrane. In addition, it showed that dSTRIPAK, as Slik and dMoesin, controls mitotic morphogenesis and epithelial tissue integrity. On top of that, Dr Hipfner has previously shown that Slik induces growth signaling at distance and independently of its catalytic activity. My research has led to the discovery that Slik is located along specialized signaling filopodia, called cytonemes. In addition, our data showed that Slik lengthens cytonemes, while dSTRIPAK is necessary for their biogenesis and signaling function. Slik and dSTRIPAK thus control tissue growth during the embryonic development of Drosophila. We have not determined the molecular mechanisms involved in the formation of cytonemes by dSTRIPAK/Slik yet. Together, our research projects led to the discovery that the dSTRIPAK complex regulates the catalytic and non-catalytic functions of Slik. We have thus identified a new signaling pathway controlling cell and tissue morphogenesis, through the cytoskeleton and intercellular communication. These processes are essential for maintaining homeostasis during embryogenesis. However, alteration of these morphogenetic processes can cause tumorigenesis. Our research might lead to the exploration of new anti-cancer therapeutic avenues. / De nombreux mécanismes moléculaires et cellulaires sont à la base des changements structurels (appelés la morphogenèse) qui ont lieu durant le développement d’un organisme. En effet, le cytosquelette est dynamiquement modifié par des cascades de signalisation intracellulaires contrôlant ainsi la morphogenèse cellulaire durant la division ou l’organisation d’un épithélium. L’homéostasie entre les différents processus morphogénétiques est établie grâce à des échanges de molécules signalisatrices. Le cortex de la cellule, composé de la membrane plasmique et du réseau de protéines du cytosquelette sous-jacent, est responsable d’intégrer les changements de forme cellulaire et d’organiser les éléments structurels requis pour la communication intercellulaire. Donc la composition du cortex cellulaire varie constamment en réponse aux besoins morphogénétiques. Toutefois, les réseaux de signalisation qui contrôlent cette plasticité corticale ne sont pas toujours connus. Ce travail a identifié une nouvelle voie de signalisation impliquée dans l’organisation du cortex cellulaire. Le laboratoire d’accueil (Dr Carréno) ainsi que celui du Dr Hipfner utilisent la drosophile comme organisme modèle pour l’étude fondamentale de la morphogenèse cellulaire et tissulaire. Le Dr Carréno et le Dr Hipfner avaient précédemment découvert que la kinase Ste20 Slik était responsable d’activer la dMoésine par phosphorylation. Celle-ci lie le cytosquelette à la membrane plasmique. L’activation de la dMoésine par Slik contrôle ainsi la stabilité corticale durant la mitose et l'intégrité épithéliale chez la drosophile. Durant mon projet de recherche, nous avons ensuite mis en évidence que le complexe phosphatase-kinase dSTRIPAK promeut la localisation corticale de Slik afin d’activer la dMoésine à la membrane plasmique. Nous avons également révélé que dSTRIPAK contrôle, tout comme Slik et dMoésine, la morphogenèse mitotique et l’intégrité du tissu épithélial. D'autre part, le Dr Hipfner avait précédemment constaté que Slik induisait une signalisation de croissance à distance, de façon indépendante de son activité catalytique. Mes recherches ont amené à découvrir que Slik est localisée le long de filopodes spécialisés dans la signalisation à distance, appelés cytonèmes. En outre, nos résultats révèlent que Slik allonge les cytonèmes, alors que dSTRIPAK est nécessaire à leur biogenèse et fonction de signalisation. Slik et dSTRIPAK contrôlent ainsi la croissance tissulaire au cours du développement embryonnaire de la mouche. Il reste à déterminer les mécanismes moléculaires impliqués dans la formation des cytonèmes par dSTRIPAK/Slik. Au final nos recherches ont mené à la découverte que le complexe dSTRIPAK régule les fonctions catalytiques et non-catalytiques de Slik. Nous avons ainsi identifié une nouvelle voie de signalisation contrôlant la morphogenèse cellulaire et tissulaire, par le biais du cytosquelette et de la communication intercellulaire. Ces processus sont essentiels au maintien de l’homéostasie durant l’embryogenèse. Toutefois, l’altération de ces processus morphogénétiques peut causer la tumorigenèse. Notre travail de recherche participe donc potentiellement à l’exploration de nouvelles stratégies thérapeutiques anti-cancéreuses.
132

SYNTHESIS AND CHARACTERIZATION OF NOVEL EXCITED STATE INTRAMOLECULAR PROTON TRANSFER (ESIPT) CYANINE DYES WITH NEAR INFRARED (NIR) EMISSION FOR BIOLOGICAL APPLICATIONS

Dahal, Dipendra, Dahal 06 September 2019 (has links)
No description available.
133

Role of Caveolae in Membrane Tension

Köster, Darius Vasco 30 September 2010 (has links)
Caveolae sind charakteristische Plasmamembraneinstülpungen, die in vielen Zelltypen vorkommen und deren biologische Funktion umstritten ist. Ihre besondere Form und ihre Häu gkeit in Zellen, die stets mechanischen Belastungen ausgesetzt sind, führten zu der Annahme, dass Caveolae die Plasmamembran vor mechanischen Belastungen schützen und als Membranreservoir dienen. Dies sollte mit dieser Dissertation experimentell geprüft werden. Zunächst wurde der Ein uss der Caveolae auf die Membranspannung von Zellen im Normalzustand untersucht. Dann wurden die Zellen mechanisch belastet. Mit Fluoreszensmikroskopie wurde das Verschwinden von Caveolae nach Strecken der Zellen oder nach einem hypo-osmotischen Schock beobachtet. Messungen der Membranspannung vor und unmittelbar nach dem hypo-osmotischem Schock zeigten, dass Caveolae einen Anstieg der Membranspannung verhindern, unabhängig von ATP und dem Cytoskelett. Die Erzeugung von Membranvesikel mit Caveolae erlaubte es, diesen Effekt der Caveolae in einem vereinfachten Membransystem zu beobachten. Schliesslich wurden Muskelzellen untersucht. Zellen, die genetisch bedingt weniger Caveolae haben und mit Muskelschwundkrankheiten in Verbingung stehen, waren mechanisch weniger belastbar als gesunde Zellen. Zusammenfassend wird mit dieser Dissertation die These bestärkt, dass Caveolae einem Anstieg der Membranspannungen entgegenwirken. Dass dies in Zellen und in Vesikeln unabhängig von Energie und Cytoskelett geschieht, lässt auf einen passiven, mechanisch getriebenen Prozess schliessen. Diese Erkenntnis trägt zum Verständnis der Rolle von Caveolae in Zellen bei und kann dem besseren Verständnis von Krankheiten bedingt durch Caveolin-Mutationen, wie z.B. Muskelschwundkrankheiten, dienen.:I Introduction 9 1 Physical Description of Cellular Membranes 11 1.1 Membrane Physics at Equilibrium . . . . . . . . . . . . . . . . 11 1.1.1 Elastic Membrane Properties . . . . . . . . . . . . . . 13 1.1.2 Mathematical Description of the Membrane . . . . . . 16 1.1.3 Membrane Tension . . . . . . . . . . . . . . . . . . . . 17 1.2 Techniques to Measure Mechanical Properties of Membranes . 20 1.2.1 The Micropipette Aspiration Technique . . . . . . . . . 21 1.2.2 Tether Extraction . . . . . . . . . . . . . . . . . . . . . 24 1.2.3 Force and Radius of a Tether . . . . . . . . . . . . . . 25 2 From Vesicles to Cells 30 2.1 Structure of the Cell . . . . . . . . . . . . . . . . . . . 31 2.2 Cytoskeleton of Cells . . . . . . . . . . . . . . . . . . . 33 2.2.1 Actin Filaments . . . . . . . . . . . . . . . . . . . . . . 35 2.2.2 Actin Cortex Impairing Drugs . . . . . . . . . . . . . . 37 2.3 Cellular Membranes . . . . . . . . . . . . . . . . . . . . 38 2.4 Membrane Area and Membrane Tension Regulation . . . . 39 2.5 Tether Extraction From Cells . . . . . . . . . . . . . . . . . . 41 3 Caveolae 44 3.1 The De nition of Caveolae . . . . . . . . . . . . . . . . . . . . 44 3.2 The Caveolin Protein Family . . . . . . . . . . . . . . . . . . . 46 3.2.1 The Structure of Caveolin . . . . . . . . . . . . . . . . 47 3.3 The Cavin Protein Family . . . . . . . . . . . . . . . . . . . . 50 3.3.1 Cavin1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3.2 Cavin2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3.3 Cavin3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3.4 Cavin4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 13.4 The Assembly of Caveolae . . . . . . . . . . . . . . . . .54 3.4.1 Caveolin is Synthesized in the Endoplasmic Reticulum, and Assembles in The Golgi Apparatus .54 3.4.2 Cavin Enters the Stage for Caveola Formation . . . . . 56 3.4.3 The Lipid Composition of Caveolae . . . . . . . . . . . 59 3.5 Caveolae Are Stable Structures at the Plasma Membrane . . 60 3.6 Endocytosis of Caveolae . . . . . . . . . . . . . . . . . . 61 3.7 Caveolae/Caveolin Proteins and Signaling Processes . . . . . 62 3.7.1 Ion-pumps in Caveolae . . . . . . . . . . . . . . . . . . 63 3.7.2 Regulation of eNOS . . . . . . . . . . . . . . . . . . . . 63 3.8 Caveolae in Muscle Cells . . . . . . . . . . . . . .. . . . 64 3.8.1 Interaction Partners of Cav3 in Myotubes . . . . . . . 64 3.8.2 Muscular Dystrophies . . . . . . . . . . . . . . . . . . . 69 4 Mechanical Role of Caveolae 74 II Materials and Methods 82 5 Cells and Reagents 84 5.1 Cell Types and Cell Culture . . . . . . . . . . . . . . . . . . 84 5.1.1 HeLa-PFPIG . . . . . . . . . . . . . . . . . . . . . . . 85 5.1.2 Mouse Lung Endothelial Cells . . . . . . . . . . . . . . 85 5.1.3 Mouse Embryonic Fibroblast . . . . . . . . . . . . . . . 86 5.1.4 Human Muscle Cells . . . . . . . . . . . . . . . . . . . 86 5.2 Treatments Altering the Cell . . . . . . . . . . . . . . . . . 88 5.2.1 Expression of Proteins . . . . . . . . . . . . . . . . . . 88 5.2.2 Altering Actin Dynamics . . . . . . . . . . . . . . . . . 89 5.2.3 ATP depletion . . . . . . . . . . . . . . . . . . . . . . . 89 5.2.4 Cholesterol Depletion . . . . . . . . . . . . . . . . . . . 90 5.3 Vesicles out of Cellular Plasma Membranes . . . . . . . . . . . 91 5.3.1 Giant Plasma Membrane Vesicles (GPMV) . . . . . . . 93 5.3.2 CytochalasinD-Blebs . . . . . . . . . . . . . . . . . . . 94 5.3.3 Plasma Membrane Spheres (PMS) . . . . . . . . . . . . 94 6 Experimental Set-Up 96 6.1 Tether Extraction . . . . . . . . . . . . . . . . . . . . . . . 96 6.1.1 Epi-OT . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.1.2 Con-OT . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.1.3 Cell Stage and Pipette Holder . . . . . . . . . . . . . . 102 6.1.4 Hypo-osmotic Shock System . . . . . . . . . . . . . . . 104 6.1.5 Fabrication of Micropipettes . . . . . . . . . . . . . . . 105 6.1.6 Aspiration Control System . . . . . . . . . . . . . . . . 106 6.1.7 Beads and Bead-coatings . . . . . . . . . . . . . . . . . 108 6.1.8 Online Tracking with MatLab . . . . . . . . . . . . . . 108 6.1.9 Calibration . . . . . . . . . . . . . . . . . . . . . . . . 109 6.2 TIRF-microscopy . . . . . . . . . . . . . . . . . . . . . . . 114 6.2.1 TIRF Set-up . . . . . . . . . . . . . . . . . . . . . . . 114 III Results 115 7 Tether Extraction From Adherent Cells 117 7.1 Typical Tether Force Traces . . . . . . . . . . . . . . . . . . . 117 7.2 Preliminary Remarks and Comments on the Relation Between Tether Force and Membrane Tension on Cells . . . . . . . . 120 8 Do Caveolae Contribute to Setting the Resting Cell Tension? 123 8.1 The E ective Tension of MLEC is A ected by the Presence Caveolae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 8.2 The E ective Tension in MEFs Does not Depend on the Presence of Caveolae . . . . . . . . . . . . . . . . . . . . . . . . . . 126 8.3 Challenging the E ective Cell Tension by Chemical and Biological Treatments . . . . . . . . . . . . . . . . . . . . . . . . 127 8.3.1 Alterations of the Cytoskeleton Decrease the E ective Cell Tension . . . . . . . . . . . . . . . . . . . . . . . . 128 8.3.2 ATP depletion Decreases the Membrane Tension . . . . 130 8.3.3 Interaction of Cav1 with Src-kinase . . . . . . . . . . . 131 8.3.4 Cav3 Re-establishes the Cell Tension of Cav1−/− MLEC 133 8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . 135 9 Caveola-mediated Membrane Tension Bu ering Upon Acute Mechanical Stress: Experiments on Cells 137 9.1 Application of Acute Mechanical Stress and Cell Response Observed by TIRF and EM . . . . . . . . . . . 137 9.1.1 Mechanical Stress Leads to the Partial Disappearance of Caveolae from the Plasma Membrane .138 9.1.2 Partial Disappearance of Caveolae Observed by EM . 144 9.2 Membrane Tension Measurements During Hypo-osmotic Shock 147 9.2.1 Caveolae are Required for Bu ering the Tension Surge Due to Hypo-osmotic Shock . . . . . . . . . . . . . . . 147 9.2.2 Clathrin Coated Pits do not Bu er the Membrane Tension 151 9.2.3 Disassembly of Caveolae During Mechanical Stress . . . 153 9.3 Correlation Between the Observed Loss of Caveolae and the Excess of Membrane Area Required to Bu er Membrane Tension 156 10 Caveola-mediated Membrane Tension Bu ering upon Mechanical Stress: Experiments on Plasma Membrane Spheres 159 10.1 Plasma Membrane Spheres Contain Caveolae and Are Devoid of Actin Filaments . . . . . 161 10.1.1 Production of PMS from HeLa-PGFPIG . . . . . . . . 161 10.1.2 Production of PMS from MLEC . . . . . . . . . . . . . 163 10.2 Micropipette Aspiration of PMS Induces Disassembly of Caveolae 166 10.2.1 Quantitative Analysis of Micropipette Aspiration of PMS 167 11 Experiments on Muscle Cells The Role of Caveolin-3 Mutations in Muscular Dystrophy 174 11.1 Tether Force of Di erentiated Muscle Cells . . . . . . . . . . . 176 11.2 Reaction of Myotubes with Cav3-Mutations upon Acute Mechanical Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 11.3 Contracting Myotubes . . . . . . . . . . . . . . . . . . . . .181 IV Discussion 182 12 Caveolae as a Security Device for the Cell Membrane 183 12.1 Comparison of Experimental Data with the Theoretical Model (Sens and Turner) . . . . . . . . . 186 13 Mechanical Stress and the Role of Caveolae in Signaling 189 14 Towards a Better Understanding of Muscular Dystrophies 191 15 Other Caveolin Related Diseases 194 V Appendices 196 A Cell Speci c Protocols 197 A.1 General Cell Handling . . . . . . . . . . . . . . . . . . . . 197 A.1.1 Cell Culture . . . . . . . . . . . . . . . . . . . . . . . . 197 A.2 Mouse Lung Endothelial Cells . . . . . . . . . . . . . . . . . . 198 A.2.1 Cell Type Description . . . . . . . . . . . . . . . . . . 198 A.2.2 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 198 A.2.3 Cell Culture . . . . . . . . . . . . . . . . . . . . . . . . 198 A.2.4 Transfection . . . . . . . . . . . . . . . . . . . . . . . . 199 A.3 HeLa and Mouse Embryonic Fibroblast Cells . . . . . . . . . . 199 A.3.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 199 A.3.2 Cell Culture . . . . . . . . . . . . . . . . . . . . . . . . 200 A.4 Muscle Cells . . . . . . . . . . . . . . . . . . . . . . . . . 200 A.4.1 Cell Type Description . . . . . . . . . . . . . . . . . . 200 A.4.2 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 200 A.4.3 Cell Culture . . . . . . . . . . . . . . . . . . . . . . . . 201 A.4.4 Transfection . . . . . . . . . . . . . . . . . . . . . . . . 202 B Cav1-Reconstitution in Lipid Vesicles 203 B.1 Puri cation of Cav1-GST . . . . . . . . . . . . . . . . . . . . 203 B.1.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 203 B.1.2 Puri cation . . . . . . . . . . . . . . . . . . . . . . . . 205 B.2 puri cation of Cav1-His . . . . . . . . . . . . . . . . . . . . . 206 B.2.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 206 B.2.2 Puri cation . . . . . . . . . . . . . . . . . . . . . . . . 207 B.3 Incorporation of Cav1 in Lipid Vesicles . . . . . . . . . . . . . 208 B.3.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 208 B.3.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 209 B.4 GUV Electro formation . . . . . . . . . . . . . . . . . . . . . . 209 B.4.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 209 B.4.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 210 5 B.5 Check of Cav1 Association with Lipids . . . . . . . . . . . . . 210 B.5.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 210 B.5.2 Cav1-SUVs . . . . . . . . . . . . . . . . . . . . . . . . 211 B.5.3 Run Sucrose Gradient . . . . . . . . . . . . . . . . . . 211 B.5.4 TCA precipitation and Western Blot . . . . . . . . . . 212 B.5.5 SDS Page . . . . . . . . . . . . . . . . . . . . . . . . . 212 B.5.6 Western Blot . . . . . . . . . . . . . . . . . . . . . . . 212 / Caveolae, the characteristic plasma membrane invaginations present in many cells, have been associated with numerous functions that still remain debated. Taking into account the particular abundance of caveolae in cells experiencing mechanical stress, it was proposed that caveolae constitute a membrane reservoir and bu er the membrane tension upon mechanical stress. The present work aimed to check this proposition experimentally. First, the in uence of caveolae on the membrane tension was studied on mouse lung endothelial cells in resting conditions using tether extraction with optically trapped beads. Second, experiments on cells upon acute mechanical stress showed that caveolae serve as a membrane reservoir bu ering surges in membrane tension in their immediate, ATP- and cytoskeleton-independent attening and disassembly. Third, caveolae incorporated in membrane vesicles also showed the tension bu ering. Finally, in a physiologically more relevant case, human muscle cells were studied, and it was shown that mutations with impaired caveolae which are described in muscular dystrophies render muscle cells less resistant to mechanical stress. In Summary the present work provides experimental evidence for the hypothesis that caveolae bu er the membrane tension upon mechanical stress. The fact that this was observed in cells and membrane vesicles in an ATP and cytoskeleton independent manner reveals a passive, mechanically driven process. This could be a leap forward in the comprehension of the role of caveolae in the cell, and in the understanding of genetic diseases like muscular dystrophies.:I Introduction 9 1 Physical Description of Cellular Membranes 11 1.1 Membrane Physics at Equilibrium . . . . . . . . . . . . . . . . 11 1.1.1 Elastic Membrane Properties . . . . . . . . . . . . . . 13 1.1.2 Mathematical Description of the Membrane . . . . . . 16 1.1.3 Membrane Tension . . . . . . . . . . . . . . . . . . . . 17 1.2 Techniques to Measure Mechanical Properties of Membranes . 20 1.2.1 The Micropipette Aspiration Technique . . . . . . . . . 21 1.2.2 Tether Extraction . . . . . . . . . . . . . . . . . . . . . 24 1.2.3 Force and Radius of a Tether . . . . . . . . . . . . . . 25 2 From Vesicles to Cells 30 2.1 Structure of the Cell . . . . . . . . . . . . . . . . . . . 31 2.2 Cytoskeleton of Cells . . . . . . . . . . . . . . . . . . . 33 2.2.1 Actin Filaments . . . . . . . . . . . . . . . . . . . . . . 35 2.2.2 Actin Cortex Impairing Drugs . . . . . . . . . . . . . . 37 2.3 Cellular Membranes . . . . . . . . . . . . . . . . . . . . 38 2.4 Membrane Area and Membrane Tension Regulation . . . . 39 2.5 Tether Extraction From Cells . . . . . . . . . . . . . . . . . . 41 3 Caveolae 44 3.1 The De nition of Caveolae . . . . . . . . . . . . . . . . . . . . 44 3.2 The Caveolin Protein Family . . . . . . . . . . . . . . . . . . . 46 3.2.1 The Structure of Caveolin . . . . . . . . . . . . . . . . 47 3.3 The Cavin Protein Family . . . . . . . . . . . . . . . . . . . . 50 3.3.1 Cavin1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3.2 Cavin2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3.3 Cavin3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3.4 Cavin4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 13.4 The Assembly of Caveolae . . . . . . . . . . . . . . . . .54 3.4.1 Caveolin is Synthesized in the Endoplasmic Reticulum, and Assembles in The Golgi Apparatus .54 3.4.2 Cavin Enters the Stage for Caveola Formation . . . . . 56 3.4.3 The Lipid Composition of Caveolae . . . . . . . . . . . 59 3.5 Caveolae Are Stable Structures at the Plasma Membrane . . 60 3.6 Endocytosis of Caveolae . . . . . . . . . . . . . . . . . . 61 3.7 Caveolae/Caveolin Proteins and Signaling Processes . . . . . 62 3.7.1 Ion-pumps in Caveolae . . . . . . . . . . . . . . . . . . 63 3.7.2 Regulation of eNOS . . . . . . . . . . . . . . . . . . . . 63 3.8 Caveolae in Muscle Cells . . . . . . . . . . . . . .. . . . 64 3.8.1 Interaction Partners of Cav3 in Myotubes . . . . . . . 64 3.8.2 Muscular Dystrophies . . . . . . . . . . . . . . . . . . . 69 4 Mechanical Role of Caveolae 74 II Materials and Methods 82 5 Cells and Reagents 84 5.1 Cell Types and Cell Culture . . . . . . . . . . . . . . . . . . 84 5.1.1 HeLa-PFPIG . . . . . . . . . . . . . . . . . . . . . . . 85 5.1.2 Mouse Lung Endothelial Cells . . . . . . . . . . . . . . 85 5.1.3 Mouse Embryonic Fibroblast . . . . . . . . . . . . . . . 86 5.1.4 Human Muscle Cells . . . . . . . . . . . . . . . . . . . 86 5.2 Treatments Altering the Cell . . . . . . . . . . . . . . . . . 88 5.2.1 Expression of Proteins . . . . . . . . . . . . . . . . . . 88 5.2.2 Altering Actin Dynamics . . . . . . . . . . . . . . . . . 89 5.2.3 ATP depletion . . . . . . . . . . . . . . . . . . . . . . . 89 5.2.4 Cholesterol Depletion . . . . . . . . . . . . . . . . . . . 90 5.3 Vesicles out of Cellular Plasma Membranes . . . . . . . . . . . 91 5.3.1 Giant Plasma Membrane Vesicles (GPMV) . . . . . . . 93 5.3.2 CytochalasinD-Blebs . . . . . . . . . . . . . . . . . . . 94 5.3.3 Plasma Membrane Spheres (PMS) . . . . . . . . . . . . 94 6 Experimental Set-Up 96 6.1 Tether Extraction . . . . . . . . . . . . . . . . . . . . . . . 96 6.1.1 Epi-OT . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.1.2 Con-OT . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.1.3 Cell Stage and Pipette Holder . . . . . . . . . . . . . . 102 6.1.4 Hypo-osmotic Shock System . . . . . . . . . . . . . . . 104 6.1.5 Fabrication of Micropipettes . . . . . . . . . . . . . . . 105 6.1.6 Aspiration Control System . . . . . . . . . . . . . . . . 106 6.1.7 Beads and Bead-coatings . . . . . . . . . . . . . . . . . 108 6.1.8 Online Tracking with MatLab . . . . . . . . . . . . . . 108 6.1.9 Calibration . . . . . . . . . . . . . . . . . . . . . . . . 109 6.2 TIRF-microscopy . . . . . . . . . . . . . . . . . . . . . . . 114 6.2.1 TIRF Set-up . . . . . . . . . . . . . . . . . . . . . . . 114 III Results 115 7 Tether Extraction From Adherent Cells 117 7.1 Typical Tether Force Traces . . . . . . . . . . . . . . . . . . . 117 7.2 Preliminary Remarks and Comments on the Relation Between Tether Force and Membrane Tension on Cells . . . . . . . . 120 8 Do Caveolae Contribute to Setting the Resting Cell Tension? 123 8.1 The E ective Tension of MLEC is A ected by the Presence Caveolae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 8.2 The E ective Tension in MEFs Does not Depend on the Presence of Caveolae . . . . . . . . . . . . . . . . . . . . . . . . . . 126 8.3 Challenging the E ective Cell Tension by Chemical and Biological Treatments . . . . . . . . . . . . . . . . . . . . . . . . 127 8.3.1 Alterations of the Cytoskeleton Decrease the E ective Cell Tension . . . . . . . . . . . . . . . . . . . . . . . . 128 8.3.2 ATP depletion Decreases the Membrane Tension . . . . 130 8.3.3 Interaction of Cav1 with Src-kinase . . . . . . . . . . . 131 8.3.4 Cav3 Re-establishes the Cell Tension of Cav1−/− MLEC 133 8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . 135 9 Caveola-mediated Membrane Tension Bu ering Upon Acute Mechanical Stress: Experiments on Cells 137 9.1 Application of Acute Mechanical Stress and Cell Response Observed by TIRF and EM . . . . . . . . . . . 137 9.1.1 Mechanical Stress Leads to the Partial Disappearance of Caveolae from the Plasma Membrane .138 9.1.2 Partial Disappearance of Caveolae Observed by EM . 144 9.2 Membrane Tension Measurements During Hypo-osmotic Shock 147 9.2.1 Caveolae are Required for Bu ering the Tension Surge Due to Hypo-osmotic Shock . . . . . . . . . . . . . . . 147 9.2.2 Clathrin Coated Pits do not Bu er the Membrane Tension 151 9.2.3 Disassembly of Caveolae During Mechanical Stress . . . 153 9.3 Correlation Between the Observed Loss of Caveolae and the Excess of Membrane Area Required to Bu er Membrane Tension 156 10 Caveola-mediated Membrane Tension Bu ering upon Mechanical Stress: Experiments on Plasma Membrane Spheres 159 10.1 Plasma Membrane Spheres Contain Caveolae and Are Devoid of Actin Filaments . . . . . 161 10.1.1 Production of PMS from HeLa-PGFPIG . . . . . . . . 161 10.1.2 Production of PMS from MLEC . . . . . . . . . . . . . 163 10.2 Micropipette Aspiration of PMS Induces Disassembly of Caveolae 166 10.2.1 Quantitative Analysis of Micropipette Aspiration of PMS 167 11 Experiments on Muscle Cells The Role of Caveolin-3 Mutations in Muscular Dystrophy 174 11.1 Tether Force of Di erentiated Muscle Cells . . . . . . . . . . . 176 11.2 Reaction of Myotubes with Cav3-Mutations upon Acute Mechanical Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 11.3 Contracting Myotubes . . . . . . . . . . . . . . . . . . . . .181 IV Discussion 182 12 Caveolae as a Security Device for the Cell Membrane 183 12.1 Comparison of Experimental Data with the Theoretical Model (Sens and Turner) . . . . . . . . . 186 13 Mechanical Stress and the Role of Caveolae in Signaling 189 14 Towards a Better Understanding of Muscular Dystrophies 191 15 Other Caveolin Related Diseases 194 V Appendices 196 A Cell Speci c Protocols 197 A.1 General Cell Handling . . . . . . . . . . . . . . . . . . . . 197 A.1.1 Cell Culture . . . . . . . . . . . . . . . . . . . . . . . . 197 A.2 Mouse Lung Endothelial Cells . . . . . . . . . . . . . . . . . . 198 A.2.1 Cell Type Description . . . . . . . . . . . . . . . . . . 198 A.2.2 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 198 A.2.3 Cell Culture . . . . . . . . . . . . . . . . . . . . . . . . 198 A.2.4 Transfection . . . . . . . . . . . . . . . . . . . . . . . . 199 A.3 HeLa and Mouse Embryonic Fibroblast Cells . . . . . . . . . . 199 A.3.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 199 A.3.2 Cell Culture . . . . . . . . . . . . . . . . . . . . . . . . 200 A.4 Muscle Cells . . . . . . . . . . . . . . . . . . . . . . . . . 200 A.4.1 Cell Type Description . . . . . . . . . . . . . . . . . . 200 A.4.2 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 200 A.4.3 Cell Culture . . . . . . . . . . . . . . . . . . . . . . . . 201 A.4.4 Transfection . . . . . . . . . . . . . . . . . . . . . . . . 202 B Cav1-Reconstitution in Lipid Vesicles 203 B.1 Puri cation of Cav1-GST . . . . . . . . . . . . . . . . . . . . 203 B.1.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 203 B.1.2 Puri cation . . . . . . . . . . . . . . . . . . . . . . . . 205 B.2 puri cation of Cav1-His . . . . . . . . . . . . . . . . . . . . . 206 B.2.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 206 B.2.2 Puri cation . . . . . . . . . . . . . . . . . . . . . . . . 207 B.3 Incorporation of Cav1 in Lipid Vesicles . . . . . . . . . . . . . 208 B.3.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 208 B.3.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 209 B.4 GUV Electro formation . . . . . . . . . . . . . . . . . . . . . . 209 B.4.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 209 B.4.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 210 5 B.5 Check of Cav1 Association with Lipids . . . . . . . . . . . . . 210 B.5.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 210 B.5.2 Cav1-SUVs . . . . . . . . . . . . . . . . . . . . . . . . 211 B.5.3 Run Sucrose Gradient . . . . . . . . . . . . . . . . . . 211 B.5.4 TCA precipitation and Western Blot . . . . . . . . . . 212 B.5.5 SDS Page . . . . . . . . . . . . . . . . . . . . . . . . . 212 B.5.6 Western Blot . . . . . . . . . . . . . . . . . . . . . . . 212 / Cavéoles sont des invaginations caractéristiques de la membrane plas- mique présents dans beaucoup de types cellulaires. Ils sont liées à plusieurs fonctions cellulaires, ce qui sont encore débattues. Prenant compte de l importance des cavéoles dans les cellules soumises au stress mécanique, les cavéoles sont proposées de constituer un réservoir membranaire et de tamponner la tension membranaire pendant des stresses mécaniques. Cette étude a eu le but de tester cette hypothèse expérimentalement. En premier, l in uence des cavéoles sur la tension membranaire au repos a été étudiée sur des cellules endothéliales du poumon de la souris. Puis, on a montré que les cavéoles tamponnent l augmentation de la tension membranaire après l application d un stress mécanique. En suite, la réalisation des vésicules membranaires contenant des cavéoles a permit de montrer leur rôle comme réservoir membranaire dans un système simpli é. Finalement, dans un contexte physiologiquement plus relevant, l étude des cellules musculaires a montrée que les mutations du cavéolin associées aux dystrophies musculaires rendent les cellules moins résistante aux stresses mécaniques. En conclusion, cette étude supporte l\''hypothèse que les cavéoles tamponnent la tension membranaire pendant des stresses mécaniques. Le fait que cela se passe dans les cellules et les vésicules indépendamment d ATP et du cytosquelette révèlent un processus passif et mécanique. Cela pourrait servir à une meilleure compréhension du rôle des cavéoles dans la cellule et les maladies génétiques comme les dystrophies musculaires.:I Introduction 9 1 Physical Description of Cellular Membranes 11 1.1 Membrane Physics at Equilibrium . . . . . . . . . . . . . . . . 11 1.1.1 Elastic Membrane Properties . . . . . . . . . . . . . . 13 1.1.2 Mathematical Description of the Membrane . . . . . . 16 1.1.3 Membrane Tension . . . . . . . . . . . . . . . . . . . . 17 1.2 Techniques to Measure Mechanical Properties of Membranes . 20 1.2.1 The Micropipette Aspiration Technique . . . . . . . . . 21 1.2.2 Tether Extraction . . . . . . . . . . . . . . . . . . . . . 24 1.2.3 Force and Radius of a Tether . . . . . . . . . . . . . . 25 2 From Vesicles to Cells 30 2.1 Structure of the Cell . . . . . . . . . . . . . . . . . . . 31 2.2 Cytoskeleton of Cells . . . . . . . . . . . . . . . . . . . 33 2.2.1 Actin Filaments . . . . . . . . . . . . . . . . . . . . . . 35 2.2.2 Actin Cortex Impairing Drugs . . . . . . . . . . . . . . 37 2.3 Cellular Membranes . . . . . . . . . . . . . . . . . . . . 38 2.4 Membrane Area and Membrane Tension Regulation . . . . 39 2.5 Tether Extraction From Cells . . . . . . . . . . . . . . . . . . 41 3 Caveolae 44 3.1 The De nition of Caveolae . . . . . . . . . . . . . . . . . . . . 44 3.2 The Caveolin Protein Family . . . . . . . . . . . . . . . . . . . 46 3.2.1 The Structure of Caveolin . . . . . . . . . . . . . . . . 47 3.3 The Cavin Protein Family . . . . . . . . . . . . . . . . . . . . 50 3.3.1 Cavin1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3.2 Cavin2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3.3 Cavin3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3.4 Cavin4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 13.4 The Assembly of Caveolae . . . . . . . . . . . . . . . . .54 3.4.1 Caveolin is Synthesized in the Endoplasmic Reticulum, and Assembles in The Golgi Apparatus .54 3.4.2 Cavin Enters the Stage for Caveola Formation . . . . . 56 3.4.3 The Lipid Composition of Caveolae . . . . . . . . . . . 59 3.5 Caveolae Are Stable Structures at the Plasma Membrane . . 60 3.6 Endocytosis of Caveolae . . . . . . . . . . . . . . . . . . 61 3.7 Caveolae/Caveolin Proteins and Signaling Processes . . . . . 62 3.7.1 Ion-pumps in Caveolae . . . . . . . . . . . . . . . . . . 63 3.7.2 Regulation of eNOS . . . . . . . . . . . . . . . . . . . . 63 3.8 Caveolae in Muscle Cells . . . . . . . . . . . . . .. . . . 64 3.8.1 Interaction Partners of Cav3 in Myotubes . . . . . . . 64 3.8.2 Muscular Dystrophies . . . . . . . . . . . . . . . . . . . 69 4 Mechanical Role of Caveolae 74 II Materials and Methods 82 5 Cells and Reagents 84 5.1 Cell Types and Cell Culture . . . . . . . . . . . . . . . . . . 84 5.1.1 HeLa-PFPIG . . . . . . . . . . . . . . . . . . . . . . . 85 5.1.2 Mouse Lung Endothelial Cells . . . . . . . . . . . . . . 85 5.1.3 Mouse Embryonic Fibroblast . . . . . . . . . . . . . . . 86 5.1.4 Human Muscle Cells . . . . . . . . . . . . . . . . . . . 86 5.2 Treatments Altering the Cell . . . . . . . . . . . . . . . . . 88 5.2.1 Expression of Proteins . . . . . . . . . . . . . . . . . . 88 5.2.2 Altering Actin Dynamics . . . . . . . . . . . . . . . . . 89 5.2.3 ATP depletion . . . . . . . . . . . . . . . . . . . . . . . 89 5.2.4 Cholesterol Depletion . . . . . . . . . . . . . . . . . . . 90 5.3 Vesicles out of Cellular Plasma Membranes . . . . . . . . . . . 91 5.3.1 Giant Plasma Membrane Vesicles (GPMV) . . . . . . . 93 5.3.2 CytochalasinD-Blebs . . . . . . . . . . . . . . . . . . . 94 5.3.3 Plasma Membrane Spheres (PMS) . . . . . . . . . . . . 94 6 Experimental Set-Up 96 6.1 Tether Extraction . . . . . . . . . . . . . . . . . . . . . . . 96 6.1.1 Epi-OT . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.1.2 Con-OT . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.1.3 Cell Stage and Pipette Holder . . . . . . . . . . . . . . 102 6.1.4 Hypo-osmotic Shock System . . . . . . . . . . . . . . . 104 6.1.5 Fabrication of Micropipettes . . . . . . . . . . . . . . . 105 6.1.6 Aspiration Control System . . . . . . . . . . . . . . . . 106 6.1.7 Beads and Bead-coatings . . . . . . . . . . . . . . . . . 108 6.1.8 Online Tracking with MatLab . . . . . . . . . . . . . . 108 6.1.9 Calibration . . . . . . . . . . . . . . . . . . . . . . . . 109 6.2 TIRF-microscopy . . . . . . . . . . . . . . . . . . . . . . . 114 6.2.1 TIRF Set-up . . . . . . . . . . . . . . . . . . . . . . . 114 III Results 115 7 Tether Extraction From Adherent Cells 117 7.1 Typical Tether Force Traces . . . . . . . . . . . . . . . . . . . 117 7.2 Preliminary Remarks and Comments on the Relation Between Tether Force and Membrane Tension on Cells . . . . . . . . 120 8 Do Caveolae Contribute to Setting the Resting Cell Tension? 123 8.1 The E ective Tension of MLEC is A ected by the Presence Caveolae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 8.2 The E ective Tension in MEFs Does not Depend on the Presence of Caveolae . . . . . . . . . . . . . . . . . . . . . . . . . . 126 8.3 Challenging the E ective Cell Tension by Chemical and Biological Treatments . . . . . . . . . . . . . . . . . . . . . . . . 127 8.3.1 Alterations of the Cytoskeleton Decrease the E ective Cell Tension . . . . . . . . . . . . . . . . . . . . . . . . 128 8.3.2 ATP depletion Decreases the Membrane Tension . . . . 130 8.3.3 Interaction of Cav1 with Src-kinase . . . . . . . . . . . 131 8.3.4 Cav3 Re-establishes the Cell Tension of Cav1−/− MLEC 133 8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . 135 9 Caveola-mediated Membrane Tension Bu ering Upon Acute Mechanical Stress: Experiments on Cells 137 9.1 Application of Acute Mechanical Stress and Cell Response Observed by TIRF and EM . . . . . . . . . . . 137 9.1.1 Mechanical Stress Leads to the Partial Disappearance of Caveolae from the Plasma Membrane .138 9.1.2 Partial Disappearance of Caveolae Observed by EM . 144 9.2 Membrane Tension Measurements During Hypo-osmotic Shock 147 9.2.1 Caveolae are Required for Bu ering the Tension Surge Due to Hypo-osmotic Shock . . . . . . . . . . . . . . . 147 9.2.2 Clathrin Coated Pits do not Bu er the Membrane Tension 151 9.2.3 Disassembly of Caveolae During Mechanical Stress . . . 153 9.3 Correlation Between the Observed Loss of Caveolae and the Excess of Membrane Area Required to Bu er Membrane Tension 156 10 Caveola-mediated Membrane Tension Bu ering upon Mechanical Stress: Experiments on Plasma Membrane Spheres 159 10.1 Plasma Membrane Spheres Contain Caveolae and Are Devoid of Actin Filaments . . . . . 161 10.1.1 Production of PMS from HeLa-PGFPIG . . . . . . . . 161 10.1.2 Production of PMS from MLEC . . . . . . . . . . . . . 163 10.2 Micropipette Aspiration of PMS Induces Disassembly of Caveolae 166 10.2.1 Quantitative Analysis of Micropipette Aspiration of PMS 167 11 Experiments on Muscle Cells The Role of Caveolin-3 Mutations in Muscular Dystrophy 174 11.1 Tether Force of Di erentiated Muscle Cells . . . . . . . . . . . 176 11.2 Reaction of Myotubes with Cav3-Mutations upon Acute Mechanical Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 11.3 Contracting Myotubes . . . . . . . . . . . . . . . . . . . . .181 IV Discussion 182 12 Caveolae as a Security Device for the Cell Membrane 183 12.1 Comparison of Experimental Data with the Theoretical Model (Sens and Turner) . . . . . . . . . 186 13 Mechanical Stress and the Role of Caveolae in Signaling 189 14 Towards a Better Understanding of Muscular Dystrophies 191 15 Other Caveolin Related Diseases 194 V Appendices 196 A Cell Speci c Protocols 197 A.1 General Cell Handling . . . . . . . . . . . . . . . . . . . . 197 A.1.1 Cell Culture . . . . . . . . . . . . . . . . . . . . . . . . 197 A.2 Mouse Lung Endothelial Cells . . . . . . . . . . . . . . . . . . 198 A.2.1 Cell Type Description . . . . . . . . . . . . . . . . . . 198 A.2.2 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 198 A.2.3 Cell Culture . . . . . . . . . . . . . . . . . . . . . . . . 198 A.2.4 Transfection . . . . . . . . . . . . . . . . . . . . . . . . 199 A.3 HeLa and Mouse Embryonic Fibroblast Cells . . . . . . . . . . 199 A.3.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 199 A.3.2 Cell Culture . . . . . . . . . . . . . . . . . . . . . . . . 200 A.4 Muscle Cells . . . . . . . . . . . . . . . . . . . . . . . . . 200 A.4.1 Cell Type Description . . . . . . . . . . . . . . . . . . 200 A.4.2 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 200 A.4.3 Cell Culture . . . . . . . . . . . . . . . . . . . . . . . . 201 A.4.4 Transfection . . . . . . . . . . . . . . . . . . . . . . . . 202 B Cav1-Reconstitution in Lipid Vesicles 203 B.1 Puri cation of Cav1-GST . . . . . . . . . . . . . . . . . . . . 203 B.1.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 203 B.1.2 Puri cation . . . . . . . . . . . . . . . . . . . . . . . . 205 B.2 puri cation of Cav1-His . . . . . . . . . . . . . . . . . . . . . 206 B.2.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 206 B.2.2 Puri cation . . . . . . . . . . . . . . . . . . . . . . . . 207 B.3 Incorporation of Cav1 in Lipid Vesicles . . . . . . . . . . . . . 208 B.3.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 208 B.3.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 209 B.4 GUV Electro formation . . . . . . . . . . . . . . . . . . . . . . 209 B.4.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 209 B.4.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 210 5 B.5 Check of Cav1 Association with Lipids . . . . . . . . . . . . . 210 B.5.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 210 B.5.2 Cav1-SUVs . . . . . . . . . . . . . . . . . . . . . . . . 211 B.5.3 Run Sucrose Gradient . . . . . . . . . . . . . . . . . . 211 B.5.4 TCA precipitation and Western Blot . . . . . . . . . . 212 B.5.5 SDS Page . . . . . . . . . . . . . . . . . . . . . . . . . 212 B.5.6 Western Blot . . . . . . . . . . . . . . . . . . . . . . . 212
134

Spatial and temporal aspects of PI(4,5)P<sub>2</sub> and SNAREs in exocytosis studied using isolated membrane sheets and capacitance measurements / Spatial and temporal aspects of PI(4,5)P<sub>2</sub> and SNAREs in exocytosis studied using isolated membrane sheets and capacitance measurements

Milosevic, Ira 18 January 2006 (has links)
No description available.
135

Advanced Fluorescence Microscopy to Study Plasma Membrane Protein Dynamics

Piguet, Joachim January 2010 (has links)
Membrane protein dynamics is of great importance for living organisms. The precise localization of proteins composing a synapse on the membrane facing a nerve terminus is essential for proper functioning of the nervous system. In muscle fibers, the nicotinic acetylcholine is densely packed under the motor nerve termini. A receptor associated protein, rapsyn, acts as a linker between the receptor and the other components of the synaptic suramolecular assembly. Advances in fluorescence microscopy have allowed to measure the behavior of a single receptor in the cell membrane. In this work single-molecule microscopy was used to track the motion of ionotropic acetylcholine (nAChR) and serotonin (5HT3R) receptors in the plasma membrane of cells. We present methods for measuring single-molecule diffusion and their analysis. Single molecule tracking has shown a high dependence of acetylcholine receptors diffusion on its associated protein rapsyn. Comparing muscle cells that either express rapsyn or are devoid of it, we found that rapsyn plays an important role on receptor immobilization. A three-fold increase of receptor mobility was observed in muscle cells devoid of rapsyn. However, in these cells, a certain fraction of immobilized receptors was also found immobile. Furthermore, nAChR were strongly confined in membrane domains of few tens of nanometers. This showed that membrane composition and membrane associated proteins influence on receptor localization. During muscle cell differentiation, the fraction of immobile nAChR diminished along with the decreasing nAChR and stable rapsyn expression levels. The importance of rapsyn in nAChR immobilization has been further confirmed by measurements in HEK 293 cells, where co-expression of rapsyn increased immobilization of the receptor. nAChR is a ligand-gated ion-channel of the Cys-loop family. In mammals, members of this receptor family share general structural and functional features. They are homo- or hetero-pentamers and form a membrane-spanning ion channel. Subunits have three major regions, an extracellular ligand binding domain, a transmembrane channel and a large intracellular loop. 5HT3R was used as a model to study the effect of this loop on receptor mobility. Single-molecule tracking experiments on receptors with progressively larger deletions in the intracellular loop did not show a dependence of the size of the loop on the diffusion coefficient of mobile receptors. However, two regions were identified to play a role in receptor mobility by changing the fractions of immobile and directed receptors. Interestingly, a prokaryotic homologue of cys-loop receptors, ELIC, devoid of a large cytoplasmic loop was found to be immobile or to show directed diffusion similar as the wild-type 5HT3R. The scaffolding protein rapsyn stabilizes nAChR clusters in a concentration dependent manner. We have measured the density and self-interactions of rapsyn using FRET microscopy. Point-mutations of rapsyn, known to provoke myopathies, destabilized rapsyn self-interactions. Rapsyn-N88K, and R91L were found at high concentration in the cytoplasm suggesting that this modification disturbs membrane association of rapsyn. A25V was found to accumulate in the endoplasmic reticulum. Fluorescent tools to measure intracellular concentration of calcium ions are of great value to study the function of neurons. Rapsyn is highly abundant at the neuromuscular junction and thus is a genuine synaptic marker. A fusion protein of rapsyn with a genetically encoded ratiometric calcium sensor has been made to probe synapse activity. This thesis has shown that the combined use of biologically relevant system and modern fluorescence microscopy techniques deliver important information on pLGIC behaviour in the cell membrane. / <p>QC 20151217</p>
136

Jaderný myosin 1 a jeho role v regulaci tenze cytoplazmatické membrány / Nuclear myosin 1 and its role in the regulation of plasma membrane tension

Petr, Martin January 2014 (has links)
Myosin 1c (Myo1c) is a molecular motor involved in regulation of tension-gated ion channels, exocytosis, endocytosis, motility and other membrane-related events. Moreover, it acts as a dynamic linker between the cell membrane and cortical actin network, contributing to the maintenance of plasma membrane tension. In contrast, nuclear myosin 1 (NM1), an isoform of Myo1c, has been described only in the nucleus where it participates in various nuclear processes, including transcription or chromatin remodeling. However, although traditionally regarded as exclusively cytoplasmic or nuclear, all myosin 1c isoforms participate in nuclear functions and they are present in the cytoplasm as well. The main focus of this study was to characterize the functional significance of NM1 in the cytoplasm. We have found that NM1 localizes to plasma membrane and shows a uniform punctuated distribution with a high concentration at the cell periphery. Moreover, atomic force microscopy measurements of mouse NM1 KO fibroblasts revealed a significant increase in an overall plasma membrane elasticity in comparison to WT cells, indicating a disruption in the regulation of plasma membrane tension caused by the loss of NM1. Since a higher membrane elasticity and deformability is a characteristic marker of cancer cells,...
137

Estudo de associação entre genes do sistema dopaminérgico e esquizofrenia / Study of association between genes of the dopaminergic system and schizophrenia

Cordeiro Junior, Quirino 16 August 2007 (has links)
Evidências de estudos genético-epidemiológicos têm demonstrado a existência de um fator de risco genético para o desenvolvimento da esquizofrenia. Na presente Tese, um total de 245 pacientes com esquizofrenia e 834 controles foi selecionado com o objetivo de investigar a diferença na distribuição de alelos e genótipos de seis polimorfismos de quatro diferentes genes do sistema dopaminérgico nesses dois grupos: 1. TaqI A1/A2 do DRD2 - rs1800497; 2. -141C (Ins/Del) do DRD2 - rs1799732; 3. Ser-9-Gly do DRD3 - rs6280; 4. VNTR da região 3´ não-codificadora do SLC6A3; 5. A1343G do SLC6A3 - rs6347; 6. A/G da região 3´ não-codificadora do COMT - rs165599. Os resultados mostraram associação dos polimorfismos -141C (Ins/Del) do DRD2 (rs1799732) e A1343G do SLC6A3 (rs6347) com esquizofrenia na amostra investigada. / Evidences from genetic epidemiological studies have demonstrated the existence of a genetic risk factor for schizophrenia. In the present work a total of 245 schizophrenic patients and 834 controls were selected to investigate differences in the allelic and genotypic distribution of six polymorphisms from four different genes of the dopaminergic system between the groups: 1. TaqI A1/A2 of the DRD2 - rs1800497; 2. -141C (Ins/Del) of the DRD2 - rs1799732; 3. Ser-9-Gly of the DRD3 - rs6280; 4. VNTR in the 3\'-untranslated region of the SLC6A3; 5. A1343G of the SLC6A3 - rs6347; 6. A/G in the 3\'-untranslated region of the COMT - rs165599. The results have found an association of the polymorphisms -141C (Ins/Del) of the DRD2 (rs1799732) and A1343G of the SLC6A3 (rs6347) with schizophrenia in the investigated sample.
138

Estudo de associação entre genes do sistema dopaminérgico e esquizofrenia / Study of association between genes of the dopaminergic system and schizophrenia

Quirino Cordeiro Junior 16 August 2007 (has links)
Evidências de estudos genético-epidemiológicos têm demonstrado a existência de um fator de risco genético para o desenvolvimento da esquizofrenia. Na presente Tese, um total de 245 pacientes com esquizofrenia e 834 controles foi selecionado com o objetivo de investigar a diferença na distribuição de alelos e genótipos de seis polimorfismos de quatro diferentes genes do sistema dopaminérgico nesses dois grupos: 1. TaqI A1/A2 do DRD2 - rs1800497; 2. -141C (Ins/Del) do DRD2 - rs1799732; 3. Ser-9-Gly do DRD3 - rs6280; 4. VNTR da região 3´ não-codificadora do SLC6A3; 5. A1343G do SLC6A3 - rs6347; 6. A/G da região 3´ não-codificadora do COMT - rs165599. Os resultados mostraram associação dos polimorfismos -141C (Ins/Del) do DRD2 (rs1799732) e A1343G do SLC6A3 (rs6347) com esquizofrenia na amostra investigada. / Evidences from genetic epidemiological studies have demonstrated the existence of a genetic risk factor for schizophrenia. In the present work a total of 245 schizophrenic patients and 834 controls were selected to investigate differences in the allelic and genotypic distribution of six polymorphisms from four different genes of the dopaminergic system between the groups: 1. TaqI A1/A2 of the DRD2 - rs1800497; 2. -141C (Ins/Del) of the DRD2 - rs1799732; 3. Ser-9-Gly of the DRD3 - rs6280; 4. VNTR in the 3\'-untranslated region of the SLC6A3; 5. A1343G of the SLC6A3 - rs6347; 6. A/G in the 3\'-untranslated region of the COMT - rs165599. The results have found an association of the polymorphisms -141C (Ins/Del) of the DRD2 (rs1799732) and A1343G of the SLC6A3 (rs6347) with schizophrenia in the investigated sample.
139

Corticosterone Administration up-Regulated Expression of Norepinephrine Transporter and Dopamine Β-Hydroxylase in Rat Locus Coeruleus and Its Terminal Regions

Fan, Yan, Chen, Ping Ping, Li, Ying, Cui, Kui, Noel, Daniel M., Cummins, Elizabeth D., Peterson, Daniel J., Brown, Russell W., Zhu, Meng-Yang 01 February 2014 (has links)
Stress has been reported to activate the locus coeruleus (LC)-noradrenergic system. In this study, corticosterone (CORT) was orally administrated to rats for 21 days to mimic stress status. In situ hybridization measurements showed that CORT ingestion significantly increased mRNA levels of norepinephrine transporter (NET) and dopamine β-hydroxylase (DBH) in the LC region. Immunofluorescence staining and western blotting revealed that CORT treatment also increased protein levels of NET and DBH in the LC, as well as NET protein levels in the hippocampus, the frontal cortex and the amygdala. However, CORT-induced increase in DBH protein levels only appeared in the hippocampus and the amygdala. Elevated NET and DBH expression in most of these areas (except for NET protein levels in the LC) was abolished by simultaneous treatment with combination of corticosteroid receptor antagonist mifepristone and spironolactone (s.c. for 21 days). Also, treatment with mifepristone alone prevented CORT-induced increases of NET expression and DBH protein levels in the LC. In addition, behavioral tasks showed that CORT ingestion facilitated escape in avoidance trials using an elevated T-maze, but interestingly, there was no significant effect on the escape trial. Corticosteroid receptor antagonists failed to counteract this response in CORT-treated rats. In the open-field task, CORT treatment resulted in less activity in a defined central zone compared to controls and corticosteroid receptor antagonist treatment alleviated this increase. In conclusion, this study demonstrates that chronic exposure to CORT results in a phenotype that mimics stress-induced alteration of noradrenergic phenotypes, but the effects on behavior are task dependent. As the sucrose consumption test strongly suggests CORT ingestion-induced depression-like behavior, further elucidation of underlying mechanisms may improve our understanding of the correlation between stress and the development of depression.
140

Myelin Membrane Growth and Organization in a Cellular Model System (EN) / Wachstum und Organisation von Myelinmembranen im zellulären Modellsystem (DE)

Yurlova, Larisa 16 July 2010 (has links)
No description available.

Page generated in 0.0406 seconds