131 |
Distribuição de Poisson bivariada aplicada à previsão de resultados esportivosSilva, Wesley Bertoli da 23 April 2014 (has links)
Made available in DSpace on 2016-06-02T20:06:10Z (GMT). No. of bitstreams: 1
6128.pdf: 965623 bytes, checksum: 08d957ba051c6348918f8348a857eff7 (MD5)
Previous issue date: 2014-04-23 / Financiadora de Estudos e Projetos / The modelling of paired counts data is a topic that has been frequently discussed in several threads of research. In particular, we can cite bivariate counts, such as the analysis of sports scores. As a result, in this work we present the bivariate Poisson distribution to modelling positively correlated scores. The possible independence between counts is also addressed through the double Poisson model, which arises as a special case of the bivariate Poisson model. The main characteristics and properties of these models are presented and a simulation study is conducted to evaluate the behavior of the estimates for different sample sizes. Considering the possibility of modeling parameters by insertion of predictor variables, we present the structure of the bivariate Poisson regression model as a general case as well as the structure of an effects model for application in sports data. Particularly, in this work we will consider applications to Brazilian Championship Serie A 2012 data, in which the effects will be estimated by double Poisson and bivariate Poisson models. Once obtained the fits, the probabilities of scores occurence are estimated and then we obtain forecasts for the outcomes. In order to obtain more accurate forecasts, we present the weighted likelihood method from which it will be possible to quantify the relevance of the data according to the time they were observed. / A modelagem de dados provenientes de contagens pareadas e um típico que vem sendo frequentemente abordado em diversos segmentos de pesquisa. Em particular, podemos citar os casos em que as contagens de interesse são bivariadas, como por exemplo na analise de placares esportivos. Em virtude disso, neste trabalho apresentamos a distribuição Poisson bivariada para os casos em que as contagens de interesse sao positivamente correlacionadas. A possível independencia entre as contagens tambem e abordada por meio do modelo Poisson duplo, que surge como caso particular do modelo Poisson bivariado. As principais características e propriedades desses modelos são apresentadas e um estudo de simulação é realizado, visando avaliar o comportamento das estimativas para diferentes tamanhos amostrais. Considerando a possibilidade de se modelar os parâmetros por meio da inserçao de variáveis preditoras, apresentamos a estrutura do modelo de regressão Poisson bivariado como caso geral, bem como a estrutura de um modelo de efeitos para aplicação a dados esportivos. Particularmente, neste trabalho vamos considerar aplicações aos dados da Serie A do Campeonato Brasileiro de 2012, na qual os efeitos serão estimados por meio dos modelos Poisson duplo e Poisson bivariado. Uma vez obtidos os ajustes, estimam-se as probabilidades de ocorrência dos placares e, a partir destas, obtemos previsões para as partidas de interesse. Com o intuito de se obter previsões mais acuradas para as partidas, apresentamos o metodo da verossimilhança ponderada, a partir do qual seria possível quantificar a relevância dos dados em função do tempo em que estes foram observados.
|
132 |
Uma aproximação do tipo Euler-Maruyama para o processo de Cox-Ingersoll-RossFerreira, Ricardo Felipe 26 February 2015 (has links)
Made available in DSpace on 2016-06-02T20:06:10Z (GMT). No. of bitstreams: 1
6520.pdf: 1838901 bytes, checksum: 35b2a71ea573764ae46492a67c0ef3d6 (MD5)
Previous issue date: 2015-02-26 / Universidade Federal de Sao Carlos / In this master's thesis we work with Cox-Ingersoll-Ross (CIR) process. This process was originally proposed by John C. Cox, Jonathan E. Ingersoll Jr. and Stephen A. Ross in 1985. Nowadays, this process is widely used in financial modeling, e.g. as a model for short-time interest rates or as volatility process in the Heston model. The stochastic diferential equation (SDE) which defines this model does not have closed form solution, so we need to approximate the process by some numerical method. In the literature, several numerical approximations has been proposed based in interval discretization. We approximate the CIR process by Euler-Maruyama-type method based in random discretization proposed by Leão e Ohashi (2013) under Feller condition. In this context, we obtain an exponential convergence order for this approximation and we use Monte Carlo techniques to compare the numerical results with theoretical values. / Nesta dissertação de mestrado nós trabalhamos com o processo de Cox-Ingersoll- Ross, que foi originalmente proposto por John C. Cox, Jonathan E. Ingersoll Jr. e Stephen A. Ross em 1985. Este processo é amplamente utilizado em modelagem financeira, por exemplo, para descrever a evolução de taxas de juros ou como o processo de volatilidade no modelo de Heston. A equação diferencial estocástica que define este processo não possui solução fechada, logo faz-se necessária a aproximação do processo via algum método numérico. Na literatura diversos trabalhos propõem aproximações baseadas em esquemas de discretização intervalar. Nós aproximamos o processo de Cox-Ingersoll-Ross através de um método numérico do tipo Euler- Maruyama baseado na discretização aleatória proposta por Leão e Ohashi (2013) sob a condição de Feller. Neste contexto, mostramos que esta aproximação possui uma ordem de convergência exponencial e utilizamos técnicas de simulação Monte Carlo para comparar resultados numéricos com valores teóricos.
|
133 |
Aplicações em meta-análise sob um enfoque bayesiano usando dados médicos.Pissini, Carla Fernanda 21 March 2006 (has links)
Made available in DSpace on 2016-06-02T20:06:11Z (GMT). No. of bitstreams: 1
DissCFP.pdf: 956101 bytes, checksum: e21a11e1dc4754a5751b0b0840943082 (MD5)
Previous issue date: 2006-03-21 / Financiadora de Estudos e Projetos / In this work, we consider the use of Meta-analysis with a Bayesian approach. Meta-analysis is a statistical technique that combines the results of di¤erent independent studies with purpose to find general conclusions. This term was introduced by Glass (1976) and it has been used when the number of studies about some research project is small. Usually, the models for Meta-analysis assume a large number of parameters and the Bayesian approach using MCMC (Markov Chain Monte Carlo) methods is a good alternative to combine information of independent studies, to obtain accutrate inferences about a specified treatment. As illustration, we consider real medical data sets on di¤erent studies, in which, we consider fixed and random e¤ects models. We also assume mixture of normal distributions for the error of the models. Another application is considered with
educational data. / Neste trabalho, consideramos o uso de Meta-análise sob um enfoque Bayesiano. Meta-análise é uma técnica estatística que combina resultados de diversos estudos in-dependentes, com o propósito de descrever conclusões gerais. Este termo foi introduzido por Glass (1976) usado quando o número de estudos sobre alguma pesquisa científica é pequeno. Os modelos propostos para Meta-análise usualmente assumem muitos parâmetros e o enfoque Bayesiano com MCMC (Monte Carlo em Cadeias de Markov) é uma alternativa apropriada para combinar informações de estudos independentes. O uso de modelos Bayesianos hierárquicos permite combinações de vários estudos independentes, para a obtenção de inferências precisas sobre um determinado tratamento. Como ilustração numérica consideramos conjuntos de dados médicos de diferentes estudos e, na análise, utilizamos modelos de efeitos fixos e aleatórios e mistura de distribuições normais para o erro do modelo de regressão. Em uma outra aplicação relacionamos Meta-análise e Educação, através do efeito da espectativa do professor associada ao QI dos estudantes.
|
134 |
Avaliação esportiva utilizando técnicas multivariadas: construção de indicadores e sistemas onlineMaiorano, Alexandre Cristovão 10 October 2014 (has links)
Submitted by Izabel Franco (izabel-franco@ufscar.br) on 2016-09-27T13:57:54Z
No. of bitstreams: 1
DissACM.pdf: 2683283 bytes, checksum: 013455f7d8c0d48a1566d18bcdd0fbe8 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2016-10-03T18:18:22Z (GMT) No. of bitstreams: 1
DissACM.pdf: 2683283 bytes, checksum: 013455f7d8c0d48a1566d18bcdd0fbe8 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2016-10-03T18:18:38Z (GMT) No. of bitstreams: 1
DissACM.pdf: 2683283 bytes, checksum: 013455f7d8c0d48a1566d18bcdd0fbe8 (MD5) / Made available in DSpace on 2016-10-03T18:29:41Z (GMT). No. of bitstreams: 1
DissACM.pdf: 2683283 bytes, checksum: 013455f7d8c0d48a1566d18bcdd0fbe8 (MD5)
Previous issue date: 2014-10-10 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / The main objective of this research is to provide statistical tools that allow the comparison
of individuals in a speci ed sports category. Particularly, the present study is focused
on the performance evaluation in football using univariate and multivariate methods. The
univariate approach is given by Z-CELAFISCS methodology, which was developed with
the purpose of identifying talents in the sport. The multivariate approaches are given
by the construction of indicators, speci cally by means of principal component analysis,
factor analysis and copulas. These indicators allows the reduction of the dimensionality
of the data in studying, providing better interpretation of the results and improving comparability
between the performance and assortment of individuals. To facilitate the use
of the methodology studied here was built an online statistical system called i-Sports. / principal objetivo do trabalho é apresentar ferramentas estatísticas que permitam a
comparação de indivíduos em uma determinada modalidade esportiva. Particularmente, o
estudo exposto é voltado à avaliação de desempenho em futebol, utilizando métodos univariados
e multivariados. A abordagem univariada é dada pela metodologia Z-CELAFISCS,
desenvolvida com o propósito de identi car talentos no esporte. As abordagens multivariadas
são dadas pela construção de indicadores, mais especi camente por meio da análise
de componentes principais, análise fatorial e cópulas. A obtenção desses indicadores possibilita
a redução da dimensionalidade do estudo, fornecendo melhor interpretação dos
resultados e melhor comparabilidade entre o desempenho e rankeamento dos indivíduos.
Para facilitar a utilização da metodologia aqui estudada foi construído um sistema estat
ístico online chamado de i-Sports.
|
135 |
Dados de sobrevivência multivariados na presença de covariáveis e observações censuradas: uma abordagem bayesianaSantos, Carlos Aparecido dos 04 March 2010 (has links)
Made available in DSpace on 2016-06-02T20:04:51Z (GMT). No. of bitstreams: 1
3028.pdf: 7339557 bytes, checksum: 16711c2271b754604bfa0b0fba30290b (MD5)
Previous issue date: 2010-03-04 / In this work, we introduce a Bayesian Analysis for survival multivariate data in the presence of a covariate vector and censored observations. Different frailties or latent variables are considered to capture the correlation among the survival times for the same individual. We also introduce a Bayesian analysis for some of the most popular bivariate exponential distributions introduced in the literature. A Bayesian analysis is also introduced for the Block & Basu bivariate exponential distribution using Markov Chain Monte Carlo (MCMC) methods and considering lifetimes in presence of covariates and censored data. In another topic, we introduce a Bayesian Analysis for bivariate lifetime data in the presence of covariates and censoring data assuming different bivariate Weibull distributions derived from some existing copula functions. A great computational simplification to simulate samples for the joint posterior distribution is obtained using the WinBUGS software. Numerical illustrations are introduced considering real data sets considering every proposed methodology. / Nesta tese introduzimos uma an´alise Bayesiana para dados de sobreviv encia multivariados, na presen¸ca de um vetor de covari´aveis e observa¸c oes censuradas. Diferentes fragilidades ou vari´aveis latentes s ao consideradas para capturar a correla¸c ao existente entre os tempos de sobreviv encia, para o mesmo indiv´ıduo. Tamb´em apresentamos uma an´alise Bayesiana para algumas das mais populares distribui¸c oes exponenciais bivariadas introduzidas na literatura. Uma an´alise Bayesiana tamb´em ´e introduzida para a distribui¸c ao exponencial bivariada de Block & Basu, usando m´etodos MCMC (Monte Carlo em Cadeias de Markov) e considerando os tempos de sobreviv encia na presen¸ca de covari´aveis e dados censurados. Em outro t´opico, introduzimos uma an´alise Bayesiana para dados de sobreviv encia bivariados na presen¸ca de covari´aveis e observa¸c oes censuradas, assumindo diferentes distribui¸c oes bivariadas Weibull derivadas de algumas fun¸c oes c´opulas existentes. Uma grande simplifica¸c ao computacional para simular amostras da distribui¸c ao a posteriori conjunta de interesse ´e obtida usando o software WinBUGS. Ilustra¸c oes num´ericas s ao introduzidas considerando conjunto de dados reais, para cada uma das metodologias propostas.
|
136 |
Eliminação de parâmetros perturbadores em um modelo de captura-recapturaSalasar, Luis Ernesto Bueno 18 November 2011 (has links)
Made available in DSpace on 2016-06-02T20:04:51Z (GMT). No. of bitstreams: 1
4032.pdf: 1016886 bytes, checksum: 6e1eb83f197a88332f8951b054c1f01a (MD5)
Previous issue date: 2011-11-18 / Financiadora de Estudos e Projetos / The capture-recapture process, largely used in the estimation of the number of elements of animal population, is also applied to other branches of knowledge like Epidemiology, Linguistics, Software reliability, Ecology, among others. One of the _rst applications of this method was done by Laplace in 1783, with aim at estimate the number of inhabitants of France. Later, Carl G. J. Petersen in 1889 and Lincoln in 1930 applied the same estimator in the context of animal populations. This estimator has being known in literature as _Lincoln-Petersen_ estimator. In the mid-twentieth century several researchers dedicated themselves to the formulation of statistical models appropriated for the estimation of population size, which caused a substantial increase in the amount of theoretical and applied works on the subject. The capture-recapture models are constructed under certain assumptions relating to the population, the sampling procedure and the experimental conditions. The main assumption that distinguishes models concerns the change in the number of individuals in the population during the period of the experiment. Models that allow for births, deaths or migration are called open population models, while models that does not allow for these events to occur are called closed population models. In this work, the goal is to characterize likelihood functions obtained by applying methods of elimination of nuissance parameters in the case of closed population models. Based on these likelihood functions, we discuss methods for point and interval estimation of the population size. The estimation methods are illustrated on a real data-set and their frequentist properties are analised via Monte Carlo simulation. / O processo de captura-recaptura, amplamente utilizado na estimação do número de elementos de uma população de animais, é também aplicado a outras áreas do conhecimento como Epidemiologia, Linguística, Con_abilidade de Software, Ecologia, entre outras. Uma das primeiras aplicações deste método foi feita por Laplace em 1783, com o objetivo de estimar o número de habitantes da França. Posteriormente, Carl G. J. Petersen em 1889 e Lincoln em 1930 utilizaram o mesmo estimador no contexto de popula ções de animais. Este estimador _cou conhecido na literatura como o estimador de _Lincoln-Petersen_. Em meados do século XX muitos pesquisadores se dedicaram à formula ção de modelos estatísticos adequados à estimação do tamanho populacional, o que causou um aumento substancial da quantidade de trabalhos teóricos e aplicados sobre o tema. Os modelos de captura-recaptura são construídos sob certas hipóteses relativas à população, ao processo de amostragem e às condições experimentais. A principal hipótese que diferencia os modelos diz respeito à mudança do número de indivíduos da popula- ção durante o período do experimento. Os modelos que permitem que haja nascimentos, mortes ou migração são chamados de modelos para população aberta, enquanto que os modelos em que tais eventos não são permitidos são chamados de modelos para popula- ção fechada. Neste trabalho, o objetivo é caracterizar o comportamento de funções de verossimilhança obtidas por meio da utilização de métodos de eliminação de parâmetros perturbadores, no caso de modelos para população fechada. Baseado nestas funções de verossimilhança, discutimos métodos de estimação pontual e intervalar para o tamanho populacional. Os métodos de estimação são ilustrados através de um conjunto de dados reais e suas propriedades frequentistas são analisadas via simulação de Monte Carlo.
|
137 |
Modelos não lineares truncados mistos para locação e escalaParaiba, Carolina Costa Mota 14 January 2015 (has links)
Made available in DSpace on 2016-06-02T20:04:53Z (GMT). No. of bitstreams: 1
6714.pdf: 1130315 bytes, checksum: 4ce881df9c6c0f6451cae6908855d277 (MD5)
Previous issue date: 2015-01-14 / Financiadora de Estudos e Projetos / We present a class of nonlinear truncated mixed-effects models where the truncation nature of the data is incorporated into the statistical model by assuming that the variable of interest, namely the truncated variable, follows a truncated distribution which, in turn, corresponds to a conditional distribution obtained by restricting the support of a given probability distribution function. The family of nonlinear truncated mixed-effects models for location and scale is constructed based on the perspective of nonlinear generalized mixed-effects models and by assuming that the distribution of response variable belongs to a truncated class of distributions indexed by a location and a scale parameter. The location parameter of the response variable is assumed to be associated with a continuous nonlinear function of covariates and unknown parameters and with unobserved random effects, and the scale parameter of the responses is assumed to be characterized by a continuous function of the covariates and unknown parameters. The proposed truncated nonlinear mixed-effects models are constructed assuming both random truncation limits; however, truncated nonlinear mixed-effects models with fixed known limits are readily obtained as particular cases of these models. For models constructed under the assumption of random truncation limits, the likelihood function of the observed data shall be a function both of the parameters of the truncated distribution of the truncated variable and of the parameters of the distribution of the truncation variables. For the particular case of fixed known truncation limits, the likelihood function of the observed data is a function only of the parameters of the truncated distribution assumed for the variable of interest. The likelihood equation resulting from the proposed truncated nonlinear regression models do not have analytical solutions and thus, under the frequentist inferential perspective, the model parameters are estimated by direct maximization of the log-likelihood using an iterative procedure. We also consider diagnostic analysis to check for model misspecification, outliers and influential observations using standardized residuals, and global and local influence metrics. Under the Bayesian perspective of statistical inference, parameter estimates are computed based on draws from the posterior distribution of parameters obtained using an Markov Chain Monte Carlo procedure. Posterior predictive checks, Bayesian standardized residuals and a Bayesian influence measures are considered to check for model adequacy, outliers and influential observations. As Bayesian model selection criteria, we consider the sum of log -CPO and a Bayesian model selection procedure using a Bayesian mixture model framework. To illustrate the proposed methodology, we analyze soil-water retention, which are used to construct soil-water characteristic curves and which are subject to truncation since soil-water content (the proportion of water in soil samples) is limited by the residual soil-water content and the saturated soil-water content. / Neste trabalho, apresentamos uma classe de modelos não lineares truncados mistos onde a característica de truncamento dos dados é incorporada ao modelo estatístico assumindo-se que a variável de interesse, isto é, a variável truncada, possui uma função de distribuição truncada que, por sua vez, corresponde a uma função de distribuição condicional obtida ao se restringir o suporte de alguma função de distribuição de probabilidade. A família de modelos não lineares truncados mistos para locação e escala é construída sob a perspectiva de modelos não lineares generalizados mistos e considerando uma classe de distribuições indexadas por parâmetros de locação e escala. Assumimos que o parâmetro de locação da variável resposta é associado a uma função não linear contínua de um conjunto de covariáveis e parâmetros desconhecidos e a efeitos aleatórios não observáveis, e que o parâmetro de escala das respostas pode ser caracterizado por uma função contínua das covariáveis e de parâmetros desconhecidos. Os modelos não lineares truncados mistos para locação e escala, aqui apresentados, são construídos supondo limites de truncamento aleatórios, porém, modelos não lineares truncados mistos com limites fixos e conhecidos são prontamente obtidos como casos particulares desses modelos. Nos modelos construídos sob a suposição de limites de truncamentos aleatórios, a função de verossimilhança é escrita em função dos parâmetros da distribuição da variável resposta truncada e dos parâmetros das distribuições das variáveis de truncamento. Para o caso particular de limites fixos e conhecidos, a função de verossimilhança será apenas uma função dos parâmetros da distribuição truncada assumida para a variável resposta de interesse. As equações de verossimilhança dos modelos, aqui propostos, não possuem soluções analíticas e, sob a perspectiva frequentista de inferência estatística, os parâmetros do modelo são estimados pela maximização direta da função de log-verossimilhança via um procedimento iterativo. Consideramos, também, uma análise de diagnóstico para verificar a adequação do modelo, observações discrepantes e/ou influentes, usando resíduos padronizados e medidas de influência global e influência local. Sob a perspectiva Bayesiana de inferência estatística, as estimativas dos parâmetros dos modelos propostos são definidas como as médias a posteriori de amostras obtidas via um algoritmo do tipo cadeia de Markov Monte Carlo das distribuições a posteriori dos parâmetros. Para a análise de diagnóstico Bayesiano do modelo, consideramos métricas de avaliação preditiva a posteriori, resíduos Bayesianos padronizados e a calibração de casos para diagnóstico de influência. Como critérios Bayesianos de seleção de modelos, consideramos a soma de log -CPO e um critério de seleção de modelos baseada na abordagem Bayesiana de mistura de modelos. Para ilustrar a metodologia proposta, analisamos dados de retenção de água em solo, que são usados para construir curvas de retenção de água em solo e que estão sujeitos a truncamento pois as medições de umidade de água (a proporção de água presente em amostras de solos) são limitadas pela umidade residual e pela umidade saturada do solo amostrado.
|
138 |
Modelos de volatilidade estatísticaIshizawa, Danilo Kenji 22 August 2008 (has links)
Made available in DSpace on 2016-06-02T20:06:01Z (GMT). No. of bitstreams: 1
2117.pdf: 990773 bytes, checksum: a7b62936541ab91d8ae3424f62aa0f40 (MD5)
Previous issue date: 2008-08-22 / In the financial market usually notices are taken of the shares
sequentially over the time in order to characterize them a time
series. However, the major interest is to forecast the behavior of these shares. Motivated by this fact, a lot of models were created based on the past information considering constant averages and variance over time. Although, in financial series a feature often presented is called volatility, which can be noticed by the variance
to vary in time. In order to catch this characteristic were developed the models of the family GARCH, that model the conditional variance through known information. These models were well used and have passed by many formulation modifications to be able to catch different effects, such as the effect leverage EGARCH. Thus, the goal is to estimate volatility patterns obeying the specifications of the family GARCH verifying which ones of them describe better the data inside and outside the sample. / No mercado financeiro costuma-se fazer observações sobre as
carteiras sequencialmente ao longo do tempo, caracterizando uma série temporal. Contudo, o maior interesse está em prever o comportamento destas carteiras. Motivado por este fato, foram criados muitos modelos de previsão baseando-se em observações passadas considerando a média e variância constantes no tempo. Porém, nas séries financeiras uma característica muito presente é a chamada volatilidade, que pode ser observada pela variância não constante no tempo. A fim de captar esta característica, desenvolveram-se os modelos da família GARCH, que modelam a variância condicional através de informações passadas. Estes
modelos foram muito utilizados e sofreram muitas modificações nas formulações para poderem captar diferentes efeitos, como o efeito de leverage (EGARCH). Assim, deseja-se estimar modelos de volatilidade obedecendo às especificações da família GARCH, verificando quais deles descrevem melhor os dados dentro e fora da amostra.
|
139 |
Análise de dados longitudinais para variáveis bináriasRodrigues, José Tenylson Gonçalves 05 March 2009 (has links)
Made available in DSpace on 2016-06-02T20:06:02Z (GMT). No. of bitstreams: 1
2447.pdf: 2730026 bytes, checksum: 0c7b575bbfeb3fed2fc6c929b9785516 (MD5)
Previous issue date: 2009-03-05 / Financiadora de Estudos e Projetos / The objective of this work is to present techniques of regression analysis for longitudinal data when the response variable is binary. Initially, there is a review of generalized linear models, marginal models, transition models, mixed models, and logistic regression methods of estimation, which will be necessary for the development of work. In addition to the methods of estimation, some structures of correlation will be studied in an attempt to capture the intra-individual serial dependence over time. These methods were applied in two situations, one where the response variable is continuous and normal distribution, and another when the response variable has the Bernoulli distribution. It was also sought to explore and present techniques for selection of models and diagnostics for the two cases. Finally, an application of the above methodology will be presented using a set of real data. / O objetivo deste trabalho é apresentar técnicas de análise de regressão para dados longitudinais quando a variável resposta é binária. Inicialmente, é feita uma revisão sobre modelos lineares generalizados, modelos marginais, modelos de transição, modelos mistos, regressão logística e métodos de estimação, pois serão necessários para o desenvolvimento do trabalho. Além dos métodos de estimação, algumas estruturas de correlação serão estudadas, na tentativa de captar a dependência serial intra-indivíduo ao longo do tempo. Estes métodos foram aplicados em duas situações; uma quando a variável resposta é contínua, e se assume ter distribuição normal, e a outra quando a variável resposta assume ter distribuição de Bernoulli. Também se procurou pesquisar e apresentar técnicas de seleção de modelos e de diagnósticos para os dois casos. Ao final, uma aplicação com a metodologia pesquisada será apresentada utilizando um conjunto de dados reais.
|
140 |
Modelo de mistura padrão com tempos de vida exponenciais ponderadosGouveia, Bruno Pauka 05 March 2010 (has links)
Made available in DSpace on 2016-06-02T20:06:04Z (GMT). No. of bitstreams: 1
3137.pdf: 2333509 bytes, checksum: 17d0f072d443263a81b8c895dc712a3b (MD5)
Previous issue date: 2010-03-05 / Financiadora de Estudos e Projetos / In this work, we brie_y introduce the concepts of long-term survival analysis. We dedicated ourselves exclusively to the standard mixture cure model from Boag (1949) and Berkson & Gage (1952), showing its deduction and presenting the imunes probability function, which is taken from the model itself and we investigated the identi_ability issues of the mixture model. Motivated by the possibility that a experiment design can lead to a biased sample selection, we studied the weighted probability distributions, more speci_cally the weighted exponential distributions family and its properties. We studied two distributions that belong to this family; namely, the length biased exponential distribution and the beta exponential distribution. Using the GAMLSS package in R, we made some simulation studies intending to evidence the bias that occur when the possibility of a weighted sample is ignored. / Neste trabalho apresentamos brevemente os conceitos que de_nem a análise de sobreviv ência de longa duração. Dedicamo-nos exclusivamente ao modelo de mistura padrão de Boag (1949) e Berkson & Gage (1952), sendo que nos preocupamos com sua formulação, apresentamos a função probabilidade de imunes, que é derivada do próprio modelo e investigamos a questão da identi_cabilidade. Motivados pela possibilidade de que um planejamento experimental leve a uma seleção viciada da amostra, estudamos as distribui ções ponderadas de probabilidade, mais especi_camente a família das distribuições exponenciais ponderadas e suas propriedades. Estudamos duas distribuições pertencentes a essa família, a distribuição exponencial length biased e a distribuição beta exponencial. Fazendo uso do pacote GAMLSS em R, realizamos alguns estudos de simulação com o intuito de evidenciar o erro cometido quando se ignora a possibilidade de que a amostra seja proveniente de uma distribuição ponderada.
|
Page generated in 0.0276 seconds