Spelling suggestions: "subject:"paraboliques"" "subject:"paraboliques""
11 |
Algorithmes d'optimisation et de contrôle d'interface libre - Application à la production industrielle d'aluminiumOrriols, Antonin 12 1900 (has links) (PDF)
La production industrielle d'aluminium met en jeu plusieurs aspects physiques, à la fois chimiques, thermiques et magnétohydrodynamiques (MHD). L'une de ses particularités est la coexistence dans une cuve de deux fluides non miscibles, ce qui conduit à la présence d'une interface libre. Ce procédé consomme près de 2% de l'électricité mondiale, la moitié étant perdue par effet Joule. L'enjeu est de réduire ce coût sans déstabiliser le procédé: il s'agit typiquement d'un problème de contrôle optimal, que nous traitons en considérant une modélisation MHD de la cuve. Deux approches sont utilisées pour effectuer cette optimisation, à savoir considérer une contrainte d'état non linéaire basée sur un couplage entre les équations de Maxwell et de Navier-Stokes multifluides, et une contrainte d'état linéaire résultant d'une approximation shallow water de la précédente. Après une courte introduction à la modélisation du procédé et aux concepts du contrôle optimal basé sur le principe de Pontryagin, nous décrivons dans un premier temps le contrôle de l'évolution de l'interface modélisée par l'approximation shallow water. S'ensuivent un travail de parallèlisation du logiciel de simulation du procédé dans le cadre non linéaire et la recherche numérique d'actionneurs acceptables pour son contrôle. Enfin, un algorithme d'optimisation de la forme de l'interface est proposé sous une contrainte d'état non linéaire simplifié, à savoir les équations de Navier-Stokes bifluides en dimension deux.
|
12 |
Some results for nonlocal elliptic and parabolic nonlinear equations / Quelques résultats pour équations non local elliptiques et paraboliques non linéairesTopp Paredes, Erwin 01 September 2014 (has links)
Cette thèse se consacre à l’étude des propriétés qualitatives d’équations elliptiques dégénérées où la diffusion est purement non locale, et s’est réalisée dans le cadre de la théorie des solutions visqueuses. La première partie de la thèse traite de l’étude des propriétés de compacité d’une famille d’opérateurs non locaux d’ordre zéro. Ces opérateurs sont d’opérateurs elliptiques non locaux définis par le biais d’une mesure bornée. On considère une famille d’opérateurs uni-paramétrique d’ordre zéro de la forme \begin{eqnarray*} \mathcal{I}_\epsilon(u, x) = \int_{\mathbb{R}^N} [u(x + z) - u(x)]K_\epsilon(z)dz, \end{eqnarray*} où, pour chaque S\epsilon \in (0,1)$, $K_\epsilon \in L^I(\mathbb{R}^N)$ est une fonction radialement symétrique et positive. On configure notre problème de sorte que $\mathcal{I}_\epsilon$ tende vers du Laplacien fractionnaire quand $\epsilon \to 0^+$, ce qui implique que la norme $L^1S des $K_\epsilon$ n’est pas bornée lorsque $\epsilon \to 0^+$. Un premier résultat de cette partie est un module de continuité dans l’espace-temps pour la famille des solutions bornées de l’équation de la chaleur non-locale dans le plan associé à $\matbcal{I}_\epsilon$, indépendante de $\epsilon \in (0,1)$. Le second résultat de cette partie considère le problème de Dirichlet sur un domaine borné \Omega \subset \R^N$ associé à $mathcal{I}_\epsilon$, et conclut à la compacité de la famille de solutions bornées ${u_\epsilon }_\epsilon$ pour ces problèmes de Dirichlet, en exhibant un module de continuité commun sur $\bar(\Omega)$ pour $\{ u_\epsilon \}_\epsilon$, indépendant de $\epsilon$. / This thesis is devoted to the study of qualitative properties of degenerate elliptic equations where the diffusion is purely nonlocal, and it is carried out in the framework of the theory of viscosity solutions. The first part of the thesis is focused in the study of compactness properties of a family of \textsl{zero-th order nonlocal operators], that is, elliptic nonlocal operators defined though a finite measure. We consider a one parameter family of zero-th order operator with the form \begin{eqnarray*} \mathcal{I}_\epsilon(u, x) = \int_{\mathbb{R}^N} [u(x + z) - u(x)]K_\epsilon(z)dz, \end{eqnarray*} where, for each $\epsilon ‘sin (0,1)$, $K_\epsilon Mn L^1(\mathbb{R^N})$ is a radially symmetric, positive function. We set our problem in such a way $\mathcal{l}_\epsilon$ approaches the fractional Laplacian as $\epsilon \to 0^+$, implying that the $L^1$-norm of $K_\epsilon$ blows up as $\epsilon \to 0^+$. In the first result of this part we provide a common space-time modulus of continuity independent of $\epsilon Mn (0,1)$, for the family of bounded solutions of the nonlocal Heat equation in the plane associated to $\mathcal{I}_\epsilon$. The second result of this part considers a Dirichlet problem in a bounded domain $\Omega \subset $\mathbb{R}^N$ associated to $mathcaI{I}_\epsilon$, and we conclude the compactness of the family of bounded solutions $\{u_\epsilon \}_\epsilon$ to these Dirichlet problems by finding a common modulus of continuity in $\bar{\Omega}$ for ${ u_\epsilon \}_\epsilon$, which is independent of $\epsilon$.
|
13 |
Inégalités de Carleman pour des systèmes paraboliques et applications aux problèmes inverses et à la contrôlabilité : contribution à la diffraction d'ondes acoustiques dans un demi-plan homogène.Ramoul, Hichem 15 March 2011 (has links)
Dans la première partie, on démontre des inégalités de Carleman pour des systèmes paraboliques. Au chapitre 1, on démontre des inégalités de stabilité pour un système parabolique 2 x 2 en utilisant des inégalités de Carleman avec une seule observation. Il s'agit d'un problème inverse pour l'identification des coefficients et les conditions initiales du système. Le chapitre2 est consacré aux inégalités de Carleman pour des systèmes paraboliques dont les coefficients de diffusion sont de classe C1 par morceaux ou à variations bornées. A la fin, on donne quelques applications à la contrôlabilité à zéro. La seconde partie est consacrée à l'étude d'un problème de diffraction d'ondes acoustiques dans un demi-plan homogène. Il s'agit d'un problème aux limites associé à l'équation de Helmholtz dans le demi-plan supérieur avec une donnée de Neumann non homogène au bord. On apporte des éléments de réponse sur la question d'unicité et d'existence des solutions pour certaines classes de la donnée au bord. / In the first part, we prove Carleman estimates for parabolic systems. In chapter1, we prove stability inequalities for 2 x 2 parabolic system using Carleman estimates with one observation. It is concerns to the identification of the coefficients and initial conditions of the system. The chapter2 is devoted to th Carleman estimates of parabolic systems for which the diffusion coefficients are assumed to be ofclass piecewise C1 or with bounded variations. In the end, we give some applications to the null controllability. The second part is devoted to the study of the scattering problem of acoustics waves in a homogeneous half-plane. It is about a boundary value problem associated to the Helmholtz equation in theupper half-plane with a nonhomogeneous Neumann boundary data. We provide some answers to the question of uniqueness and existence of solutions for some classes of the boundary data.
|
14 |
Controllability of of some kinetic equations, of parabolic degenerated equations and of the Schrödinger equation via domain transformation. / Contrôlabilité de quelques équations cinétiques, paraboliques dégénérées et SchrödingerMoyano Garcia, Iván 29 September 2016 (has links)
Ce mémoire présente les travaux réalisés au cours de ma thèse dans le but d'étudier la contrôlabilité de quelques équations aux dérivées partielles. La première partie de cette thèse est consacrée à l'étude de la contrôlabilité de quelques équations cinétiques en différents régimes. Dans un régime collisionnel, nous étudions la contrôlabilité de l'équation de Kolmogorov, un modèle de type Fokker-Planck cinétique, posée dans l'espace de phases $R^d times R^d$. Nous obtenons la contrôlabilité à zéro de cette équation grâce à l'utilisation d'une inégalité spectrale associée à l'opérateur Laplacien dans tout l'espace. Dans un régime non-collisionnel, nous étudions la contrôlabilité de deux systèmes de couplage fluide-cinétique, les systèmes de Vlasov-Stokes et de Vlasov-Navier-Stokes, comportant des non-linéarités dues au terme de couplage. Dans ces cas, l'approche repose sur la méthode du retour.Dans la deuxième partie nous étudions la contrôlabilité d'une famille d'équations paraboliques dégénérées 1-D par la méthode de platitude, qui permet la constructions de contrôles explicites. La troisième partie porte sur le problème de la contrôlabilité de l'équation de Schrödinger par la forme du domaine, c'est-à-dire, en utilisant le domaine comme variable de contrôle. Nous obtenons un résultat de ce type dans le cas du disque unité bidimensionnel. Nos méthodes sont basées sur un résultat de contrôle exact local autour d'une certaine trajectoire, obtenu grâce au théorème d'inversion locale. / This memoir presents the results obtained during my PhD, whose goal is the study of the controllability of some Partial Differential Equations.The first part of this thesis is concerned with the study of the controllability of some kinetic equations undergoing different regimes. Under a collisional regime, we study the controllability of the Kolmogorov equation, a particular case of kinetic Fokker-Planck equation, in the phase space $R^d times R^d$. We obtain the null-controllability of this equation thanks to the use of a spectral inequality associated to the Laplace operator in the whole space. Under a non-collisional regime, we study the controllability of two fluid-kinetic models, the Vlasov-Stokes system and the Vlasov-Navier-Stokes system, which exhibe nonlinearities due to the coupling terms. In those cases, the strategy relies on the Return method.In the second part, we study the controllability of a family of 1-D degenerate parabolic equations by the flatness method, which allows the construction of explicit controls.The third part is focused on the problem of the controllability of the Schrödinger equation via domain deformations, i.e., using the domain as a control. We obtain a result of this kind in the case of the two-dimensional unit disk, for radial data. Our methods are based on a local exact controllability result around a certain trajectory, obtained thanks to the Inverse Mapping theorem.
|
15 |
Nonlinear acoustic wave propagation in complex media : application to propagation over urban environmentsLeissing, Thomas 30 November 2009 (has links) (PDF)
Dans cette recherche, un modèle de propagation d'ondes de choc sur grandes distances sur un environnement urbain est construit et validé. L'approche consiste à utiliser l'Equation Parabolique Nonlinéaire (NPE) comme base. Ce modèle est ensuite étendu afin de prendre en compte d'autres effets relatifs à la propagation du son en milieu extérieur (surfaces non planes, couches poreuses, etc.). La NPE est résolue en utilisant la méthode des différences finies et donne des résultats en accord avec d'autres méthodes numériques. Ce modèle déterministe est ensuite utilisé comme base pour la construction d'un modèle stochastique de propagation sur environnements urbains. La Théorie de l'Information et le Principe du Maximum d'Entropie permettent la construction d'un modèle probabiliste d'incertitudes intégrant la variabilité du système dans la NPE. Des résultats de référence sont obtenus grâce à une méthode exacte et permettent ainsi de valider les développements théoriques et l'approche utilisée
|
16 |
Ecoulement diphasique compressible et immiscible en milieu poreux : analyse mathématique et numériqueKhali, Ziad 30 September 2010 (has links) (PDF)
L'objectif de cette thèse est l'étude du problème de Cauchy pour les solutions faibles de trois problèmes (systèmes paraboliques dégénérés et fortement couplés) modélisant des écoulements diphasiques et compressibles en milieu poreux. La motivation de ce travail est un "benchmark" du GNR MoMaS pour l'étude de l'impact de l'écoulement du gaz d\^{u} à la corrosion des matériaux ferreux dans un site de stockage de déchets radioactifs. Cette thèse est divisée en trois chapitres indépendants. Premièrement, on s'intéresse à l'analyse mathématique d'un problème modélisant l'écoulement de deux phases immiscibles et en considérant qu'une phase est compressible et l'autre est incompressible (eau/gaz). Deuxièmement, on traite le cas général du déplacement de deux fluides compressibles et immiscibles dans un milieu poreux. Enfin, le dernier chapitre est consacré à la construction et à la convergence de la méthode des volumes finis pour le système eau-gaz sous l'hypothèse que la densité du gaz est une fonction de la pression globale.
|
17 |
Global existence and fast-reaction limit in reaction-diffusion systems with cross effects / Existence globale et limite de réaction rapide dans des systèmes de réaction-diffusion avec effets croisésRolland, Guillaume 07 December 2012 (has links)
Cette thèse est consacrée à l'étude de systèmes d'équations aux dérivées partielles paraboliques issus de modèles de cinétique chimique, de dynamique des populations et de la théorie de l'électromigration. On s'intéresse à des questions d'existence de solutions globales en temps, à l'unicité de solutions faibles, ainsi qu'à la limite de réaction rapide dans un système de réaction-diffusion. Dans un premier chapitre, on étudie deux systèmes aux diffusions croisées. On commence par s'intéresser à un modèle de dynamique des populations, où les effets croisés dans les interactions entre les différentes espèces sont modélisés par des opérateurs non locaux. Pour toute dimension d'espace, on prouve l'existence et l'unicité de solutions globales régulières. On s'intéresse ensuite à un système aux diffusions croisées qui apparait comme la limite de réaction rapide d'un système classique associé à la réaction chimique C1+C2=C3. On prouve alors la convergence lorsque k tend vers l'infini de la solution du système avec une vitesse de réaction finie k vers une solution globale du système limite. Le second chapitre contient de nouveaux résultats d'existence globale pour des systèmes de réaction-diffusion. Pour des réseaux de réactions chimiques élémentaires du type Ci+Cj=Ck qui suivent la loi d'Action de Masse, on montre l'existence et l'unicité de solutions globales fortes, pour des dimensions en espace N<6 dans le cas semi-linéaire et N<4 dans le cas quasi-linéaire. On montre aussi l'existence de solutions globales faibles pour une classe de systèmes paraboliques quasi-linéaires dont les non-linéarités sont au plus quadratiques et dont les données initiales sont seulement supposées positives et intégrables. Dans le dernier chapitre, on généralise un résultat d'existence globale de solutions fortes pour des systèmes de réaction-diffusion dont les non-linéarités ont une structure "triangulaire", pour lesquels on prend désormais en compte des termes d'advection et des coefficients de diffusion dépendant du temps et de la variable d'espace. Ce résultat est ensuite utilisé dans un argument de point fixe de Leray-Schauder pour prouver l'existence en toute dimension de solutions globales à un problème d'électromigration-diffusion. / This thesis is devoted to the study of parabolic systems of partial differential equations arising in mass action kinetics chemistry, population dynamics and electromigration theory. We are interested in the existence of global solutions, uniqueness of weak solutions, and in the fast-reaction limit in a reaction-diffusion system. In the first chapter, we study two cross-diffusion systems. We are first interested in a population dynamics model, where cross effects in the interactions between the different species are modeled by non-local operators. We prove the well-posedness of the corresponding system for any space dimension. We are then interested in a cross-diffusion system which arises as the fast-reaction limit system in a classical system for the chemical reaction C1+C2=C3. We prove the convergence when k goes to infinity of the solution of the system with finite reaction speed k to a global solution of the limit system. The second chapter contains new global existence results for some reaction-diffusion systems. For networks of elementary chemical reactions of the type Ci+Cj=Ck and under Mass Action Kinetics assumption, we prove the existence and uniqueness of global strong solutions, for space dimensions N<6 in the semi-linear case, and N<4 in the quasi-linear case. We also prove the existence of global weak solutions for a class of parabolic quasi-linear systems with at most quadratic non-linearities and with initial data that are only assumed to be nonnegative and integrable. In the last chapter, we generalize a global well-posedness result for reaction-diffusion systems whose nonlinearities have a "triangular" structure, for which we now take into account advection terms and time and space dependent diffusion coefficients. The latter result is then used in a Leray-Schauder fixed point argument to prove the existence of global solutions in a diffusion-electromigration system.
|
18 |
Phénomènes de propagation dans des milieux diffusifs excitables : vitesses d'expansion et systèmes avec pertes / Propagation phenomena in diffusive and axcitable media : spreading speeds and systems with lossesGiletti, Thomas 13 December 2011 (has links)
Les systèmes de réaction-diffusion interviennent pour décrire les transitions de phase dans de nombreux champs d'application. Cette thèse porte sur l'analyse mathématique de modèles de propagation dans des milieux diffusifs, non bornés et hétérogènes, et s'inscrit ainsi dans la lignée d'une recherche particulièrement active. La première partie concerne l'équation simple: on s'y intéressera à la structure interne des fronts, mais on exhibera aussi de nouvelles dynamiques où la vitesse d'un profil de propagation n'est pas unique. Dans la seconde partie, on s'intéresse aux systèmes à deux équations, pour lesquels l'absence de principe du maximum pose de nombreuses difficultés. Ces travaux, en portant sur un vaste éventail de situations, offrent une meilleure compréhension des phénomènes de propagation, et mettent en avant de nouvelles propriétés des problèmes de réaction-diffusion, aidant ainsi à améliorer l'analyse théorique comme alternative à l'approche empirique. / Reaction-diffusion systems arise in the description of phase transitions in various fields of natural sciences. This thesis is concerned with the mathematical analysis of propagation models in some diffusive, unbounded and heterogeneous media, which comes within the scope of an active research subject. The first part deals with the single equation, by looking at the inside structure of fronts, or by exhibiting new dynamics where the profile of propagation may not have a unique speed. In a second part, we take interest in some systems of two equations, where the lack of maximum principles raises many theoretical issues. Those works aim to provide a better understanding of the underlying processes of propagation phenomena. They highlight new features for reaction-diffusion problems, some of them not known before, and hence help to improve the theoretical approach as an alternative to empirical analysis.
|
19 |
Contrôlabilité de systèmes de réaction-diffusion non linéaires / Controllability of nonlinear reaction-diffusion sytemsLe Balc'h, Kévin 26 June 2019 (has links)
Cette thèse est consacrée au contrôle de quelques équations aux dérivées partielles non linéaires. On s’intéresse notamment à des systèmes paraboliques de réaction-diffusion non linéaires issus de la cinétique chimique. L’objectif principal est de démontrer des résultats de contrôlabilité locale ou globale, en temps petit, ou en temps grand.Dans une première partie, on démontre un résultat de contrôlabilité locale à des états stationnaires positifs en temps petit, pour un système de réaction-diffusion non linéaire.Dans une deuxième partie, on résout une question de contrôlabilité globale à zéro en temps petit pour un système 2 × 2 de réaction-diffusion non linéaire avec un couplage impair.La troisième partie est consacrée au célèbre problème ouvert d’Enrique Fernández-Cara et d’Enrique Zuazua des années 2000 concernant la contrôlabilité globale à zéro de l’équation de la chaleur faiblement non linéaire. On démontre un résultat de contrôlabilité globale à états positifs en temps petit et un résultat de contrôlabilité globale à zéro en temps long.La dernière partie, rédigée en collaboration avec Karine Beauchard et Armand Koenig, est une incursion vers l’hyperbolique. On étudie des systèmes linéaires à coefficients constants, couplant une dynamique transport avec une dynamique parabolique. On identifie leur temps minimal de contrôle et l’influence de leur structure algébrique sur leurs propriétés de contrôle. / This thesis is devoted to the control of nonlinear partial differential equations. We are mostly interested in nonlinear parabolic reaction-diffusion systems in reaction kinetics. Our main goal is to prove local or global controllability results in small time or in large time.In a first part, we prove a local controllability result to nonnegative stationary states in small time, for a nonlinear reaction-diffusion system.In a second part, we solve a question concerning the global null-controllability in small time for a 2 × 2 nonlinear reaction-diffusion system with an odd coupling term.The third part focuses on the famous open problem due to Enrique Fernndez-Cara and Enrique Zuazua in 2000, concerning the global null-controllability of the weak semi-linear heat equation. We show that the equation is globally nonnegative controllable in small time and globally null-controllable in large time.The last part, which is a joint work with Karine Beauchard and Armand Koenig, enters the hyperbolic world. We study linear parabolic-transport systems with constant coeffcients. We identify their minimal time of control and the influence of their algebraic structure on the controllability properties.
|
20 |
Fibres vectoriels sur des courbes hyperelliptiques / Vector bundles on hyperelliptic curvesFernández Vargas, Néstor 04 April 2018 (has links)
Cette thèse est dédiée à l'étude des espaces de modules de fibrés sur une courbe algébrique et lisse sur le corps des nombres complexes. Le texte est composé de deux parties : Dans la première partie, je m'intéresse à la géométrie liée aux classifications de fibrés quasi-paraboliques de rang 2 sur une courbe elliptique 2-pointée, à isomorphisme près. Les notions d'indécomposabilité, simplicité et stabilité de fibrés donnent lieu à des espaces de modules qui classifient ces objets. La structure projective de ces espaces est décrite explicitement, et on prouve un théorème de type Torelli qui permet de retrouver la courbe elliptique 2-pointée. Cet espace de modules est aussi mis en relation avec l'espace de modules de fibrés quasi-paraboliques sur une courbe rationnelle 5-pointée, qui apparaît naturellement comme revêtement double de l'espace de modules de fibrés quasi-paraboliques sur la courbe elliptique 2-pointée. Finalement, on démontre explicitement la modularité des automorphismes de cet espace de modules. Dans la deuxième partie, j'étudie l'espace de modules de fibrés semistables de rang 2 et déterminant trivial sur une courbe hyperelliptique. Plus précisément, je m'intéresse à l'application naturelle donnée par le fibré déterminant, générateur du groupe de Picard de cet espace de modules. Cette application s'identifie à l'application theta, qui est de degré 2 dans notre cas. On définit une fibration de cet espace de modules vers un espace projective dont la fibre générique est birationnelle à l'espace de modules de courbes rationnelles 2g-épointées, et on décrit la restriction de theta aux fibres de cette fibration. On montre que cette restriction est, à une transformation birationnelle près, une projection osculatoire centrée en un point. En utilisant une description due à Kumar, on démontre que la restriction de l'application theta à cette fibration ramifie sur la variété de Kummer d'une certaine courbe hyperelliptique de genre g – 1. / This thesis is devoted to the study of moduli spaces of vector bundles over a smooth algebraic curve over field of complex numbers. The text consist of two main parts : In the first part, I investigate the geometry related to the classifications of rank 2 quasi-parabolic vector bundles over a 2-pointed elliptic curves, modulo isomorphism. The notions of indecomposability, simplicity and stability give rise to the corresponding moduli spaces classifying these objects. The projective structure of these spaces is explicitely described, and we prove a Torelli theorem that allow us to recover the 2-pointed elliptic curve. I also explore the relation with the moduli space of quasi-parabolic vector bundles over a 5-pointed rational curve, appearing naturally as a double cover of the moduli space of quasi-parabolic vector bundles over the 2-pointed elliptic curve. Finally, we show explicitely the modularity of the automorphisms of this moduli space. In the second part, I study the moduli space of semistable rank 2 vector bundles with trivial determinant over a hyperelliptic curve C. More precisely, I am interested in the natural map induced by the determinant line bundle, generator of the Picard group of this moduli space. This map is identified with the theta map, which is of degree 2 in our case. We define a fibration from this moduli space to a projective space whose generic fiber is birational to the moduli space of 2g-pointed rational curves, and we describe the restriction of the map theta to the fibers of this fibration. We show that this restriction is, up to a birational map, an osculating projection centered on a point. By using a description due to Kumar, we show that the restriction of the map theta to this fibration ramifies over the Kummer variety of a certain hyperelliptic curve of genus g - 1.
|
Page generated in 0.0489 seconds