Spelling suggestions: "subject:"paraboliques"" "subject:"paraboliques""
41 |
Propagation non-linéaire d'impulsions ultracourtes<br />dans les fibres optiques de nouvelle générationKibler, Bertrand 28 June 2007 (has links) (PDF)
Les fibres à cristaux photoniques (PCF) et autres fibres fortement non-linéaires conventionnelles (HNLF) représentent une nouvelle catégorie de guides d'ondes optiques qui possèdent des caractéristiques de dispersion et de non-linéarité inédites. Elles permettent, en effet, d'accroître fortement les effets non-linéaires avec des paramètres de dispersion multiples. De nombreux travaux récents ont déjà exploité ces propriétés pour la génération de spectres à très large bande au moyen de la génération de supercontinuum. L'étude de tels élargissements spectraux, en particulier dans les PCF, nécessite alors une modélisation précise de la propagation des impulsions. L'extension des modèles existants basés sur l'équation non-linéaire d'enveloppe de Schrödinger a été réalisée pour inclure des effets tels que de la dépendance en fréquence de l'aire effective du mode guidé et la génération de troisième harmonique. Les conséquences de tels effets sont décrites ainsi que de nouvelles perspectives pour la génération de supercontinuum. L'autre aspect attrayant de cette nouvelle génération de fibres optiques, en particulier concernant les HNLF, est leur utilisation dans l'important développement actuel des sources fibrées femtosecondes, proche de la longueur d'onde des télécommunications à 1550 nm. Dans ce cadre, deux systèmes expérimentaux ont été mis en place, permettant respectivement d'obtenir par compression non-linéaire des impulsions sub-30 fs et de générer des impulsions paraboliques de manière passive. Ces dispositifs sont basés sur l'utilisation et la gestion de très courtes longueurs de fibres commerciales de type HNLF, menant alors à des dispositifs ultra-compacts.
|
42 |
Homogénéisation stochastique quantitative / Quantitative stochastic homogenizationBordas, Alexandre 24 September 2018 (has links)
Cette thèse porte sur l’homogénéisation quantitative d’équations aux dérivées partielles paraboliques, et de problèmes elliptiques discrets. Dans l’introduction, nous voyons comment de tels problèmes, même lorsque les coefficients sont déterministes, résultent d’un modèle aléatoire. Nous donnons ensuite une notion de ce qu’est l’homogénéisation : que se passe-t-il lorsque les coefficients eux-mêmes sont aléatoires, est-il possible de considérer qu’un environnement présentant des inhomogénéités sur de très petites échelles, se comporte d’une manière proche d’un environnement fictif qui serait homogène ?Nous donnons ensuite une interprétation de cette question en terme de marche aléatoire en conductances aléatoires, puis donnons une idée des outils utilisés dans les preuves des deux chapitres suivants. Dans le chapitre II, nous démontrons un résultat d’homogénéisation quantitative pour une équation parabolique – l’équation de la chaleur par exemple – dans un environnement admettant des coefficients aléatoires et dépendant du temps. La méthode utilisée consiste à considérer les solutions d’un tel problème comme optimiseurs de fonctionnelles qui seront définies au préalable, puis d’utiliser la propriété cruciale de sous-additivité de ces quantités, afin d’en déduire une convergence puis un résultat de concentration, qui permettra d’en déduire une vitesse de convergence des solutions vers la solution du problème homogénéisé, Dans le chapitre III, nous adaptons ces méthodes pour un problème elliptique sur le graphe Zd. / This thesis deals with quantitative stochastic homogenization of parabolic partial differential equations, and discrete elliptic problems. In the introduction, we see how can such problems come from random models, even when the coefficients are deterministic. Then, we introduce homogenization : what happen if the coefficients themselves are random ? Could we consider that an environment with microscopical random heterogeneities behaves, at big scale, as a fictious deterministic homogeneous environment ? Then, we give a random walk in random environment interpretation and the sketch of the proofs in the two following chapters. In chapter II, we prove a quantitative homogenization result for parabolic PDEs, such as heat equation, in environment admitting time and space dependent coefficients. The method of the proof consists in considering solutions of such problems as minimizers of variational problems. The first step is to express solutions as minimizers, and then to use the capital property of subadditivity of the corresponding quantities, in order to deduce convergence and concentration result. From that, we deduce a rate of convergence of the actual solutions to the homogenized solution. In chapter III, we adapt these methods to a discrete elliptic problem on the lattice Zd.
|
43 |
Blow-up pour des problèmes paraboliques semi linéaires avec un terme source localisé / Complete blow-up for a semilinear parabolic problem with a localized non linear termSawangtong, Panumart 13 December 2010 (has links)
On étudie l'existence de blow-up et l'ensemble des points de blow-up pour une équation de type chaleur dégénérée ou non avec un terme source uniforme fonction nonlinéaire de la température instantanée en un point fixé du domaine. L'étude est conduite par les méthodes d'analyse classique (fonctions de Green, développements en fonctions propres, principe du maximum) ou fonctionnelle (semi-groupes d'opérateurs linéaires). / We study existence of blow-up and blow-up sets for a (degenerate or not) heat-like equation with a uniform source term non linear function of the instantaneous temperature at a given point of the domain. The techniques are relevant from either classical analysis (Green functions, eigenfunction expansions, maximum principle) or functional analysis (semi-groups of linear operators).
|
44 |
Contrôle optimal de quelques phénomènes de diffusion en domaines pollués / Pointwise optimal control for some diffusion phenomena in polluted areaMahoui, Sihem 01 July 2018 (has links)
Dans ce travail, on s'intéresse à l'analyse mathématique et au contrôle optimal pour des problèmes de diffusion relevant de certains domaines comme l'écologie ou l'environnement et comportant des termes de pollution inconnus en général. De plus, on souhaite agir sur le système en un seul point du domaine considéré pour des raisons de coût. La modélisation de ces problèmes se traduit généralement par un système de type parabolique avec donnée manquante (initiale ou aux limites) représentant la pollution, et où l'on introduit une fonction de contrôle de ce système. La méthode suivie pour résoudre ces problèmes est celle du contrôle à moindres regrets développée par J.-L. Lions et bien adaptée aux problèmes à données manquantes.Plus précisément, on est concerné par des problèmes de type parabolique qui décrivent la diffusion d'un fluide (eau) contaminé dans un domaine (une lagune ou un estuaire) par une pollution ayant son origine sur une partie du bord. De plus, on considère que la fonction source (le contrôle) est localisée en un point, c'est ce qu'on appelle le contrôle ponctuel. On cherche alors le (ou les) contrôle(s) qui peuvent améliorer la situation au lieu de la laisser à l'abandon (sans contrôle).Les solutions ne sont pas des fonctions régulières et ne peuvent être considérées qu'au sens faible. Deux méthodes sont utilisées: la première est la méthode de transposition de Lions-Magenes, détaillée au chapitre 3 de la thèse, et la deuxième méthode consiste à régulariser la masse de Dirac (le support du contrôle est un point) présentée au chapitre4. Pour les deux méthodes, on montre l'existence d'une solution faible et on établit un système d'optimalité singulier (SOS) du contrôle ponctuel à moindres regrets.Un dernier chapitre est consacré aux schémas numériques associés au problème de contrôle ponctuel à moindres regrets, où l'on obtient des estimations d'erreur par la méthode des éléments finis. / In this thesis, we are interested in mathematical analysis and optimal control of diffusion problems where there are pollution terms. In addition, we want to act on the system in a single point of the domain for cost reasons. The systems being studied are parabolic with missing (initial or boundary) data representing pollution, where we introduce a control function. The method of low-regret control of J.-L. Lions, used here for the first time to the pointwise control, seems to be well suited. We then look for the control which can improve the situation instead of doing nothing (no control).Solutions are not regular functions and can only be considered in the weak sense. Two methods are used here: the first one is the method of transposition of Lions-Magenes, detailed in Chapter 3 of the thesis, and the second method consists in regularizing the Dirac mass, presented in chapter 4. Each one of the two methods offers a new point of view. In particular, the functional spaces where the existence of a solution is obtained are different. For both methods, however, a singular optimality system is established for the low-regret pointwise control.A final chapter is devoted to the numerical schemes associated to the low-regret pointwise optimal control, where we obtain error estimates using finite elements method (FEM).
|
45 |
Absorption de l'eau et des nutriments par les racines des plantes : modélisation, analyse et simulation / Water and nutrient uptake by plant roots : modeling, analysis and simulationTournier, Pierre-Henri 04 February 2015 (has links)
Dans le contexte du développement d'une agriculture durable visant à préserver les ressources naturelles et les écosystèmes, il s'avère nécessaire d'approfondir notre compréhension des processus souterrains et des interactions entre le sol et les racines des plantes.Dans cette thèse, on utilise des outils mathématiques et numériques pour développer des modèles mécanistiques explicites du mouvement de l'eau et des nutriments dans le sol et de l'absorption racinaire, gouvernés par des équations aux dérivées partielles non linéaires. Un accent est mis sur la prise en compte explicite de la géométrie du système racinaire et des processus à petite échelle survenant dans la rhizosphère, qui jouent un rôle majeur dans l'absorption racinaire.La première étude est dédiée à l'analyse mathématique d'un modèle d'absorption du phosphore (P) par les racines des plantes. L'évolution de la concentration de P dans la solution du sol est gouvernée par une équation de convection-diffusion avec une condition aux limites non linéaire à la surface de la racine, que l'on considère ici comme un bord du domaine du sol. On formule ensuite un problème d'optimisation de forme visant à trouver les formes racinaires qui maximisent l'absorption de P.La seconde partie de cette thèse montre comment on peut tirer avantage des récents progrès du calcul scientifique dans le domaine de l'adaptation de maillage non structuré et du calcul parallèle afin de développer des modèles numériques du mouvement de l'eau et des solutés et de l'absorption racinaire à l'échelle de la plante, tout en prenant en compte les phénomènes locaux survenant à l'échelle de la racine unique. / In the context of the development of sustainable agriculture aiming at preserving natural resources and ecosystems, it is necessary to improve our understanding of underground processes and interactions between soil and plant roots.In this thesis, we use mathematical and numerical tools to develop explicit mechanistic models of soil water and solute movement accounting for root water and nutrient uptake and governed by nonlinear partial differential equations. An emphasis is put on resolving the geometry of the root system as well as small scale processes occurring in the rhizosphere, which play a major role in plant root uptake.The first study is dedicated to the mathematical analysis of a model of phosphorus (P) uptake by plant roots. The evolution of the concentration of P in the soil solution is governed by a convection-diffusion equation with a nonlinear boundary condition at the root surface, which is included as a boundary of the soil domain. A shape optimization problem is formulated that aims at finding root shapes maximizing P uptake.The second part of this thesis shows how we can take advantage of the recent advances of scientific computing in the field of unstructured mesh adaptation and parallel computing to develop numerical models of soil water and solute movement with root water and nutrient uptake at the plant scale while taking into account local processes at the single root scale.
|
46 |
Étude de nouveaux schémas numériques pour la simulation des écoulements à rapport de mobilités défavorable dans un contexte EOR / Study of new numerical schemes for the simulation of flows with adverse mobility ratios in the EOR contextLaurent, Karine 07 November 2019 (has links)
En simulation dynamique des réservoirs, un des artéfacts les plus gênants pour la prédiction de production est l’effet de l’orientation du maillage. Bien que celui-ci soit « normal » pour tout schéma numérique, il se trouve amplifié par l’instabilité du modèle physique, ce qui a lieu lorsque le contraste de mobilités entre l’eau (fluide poussant, utilisé dans les procédés de récupération secondaires) et l’huile (fluide poussé, contenant les hydrocarbures) dépasse un certain seuil critique. On parle alors d’écoulements à rapport de mobilités défavorable. Connu depuis longtemps, ce problème a fait l'objet de nombreux travaux dans les années 1980 ayant abouti au schéma dit à neuf points. Actuellement implanté dans PumaFlow, logiciel développé et commercialisé par IFPEN, ce schéma fonctionne relativement bien en maillages carrés et dépend d’un paramètre scalaire dont le réglage varie selon les auteurs sur la base de considérations heuristiques. Dans cette thèse, nous proposons une nouvelle démarche méthodologique afin non seulement d’ajuster ce paramètre libre de manière optimale mais aussi de généraliser le schéma aux maillages rectangulaires. La stratégie que nous préconisons repose sur une analyse d’erreur du problème, à partir de laquelle il est possible de définir une notion d’erreur angulaire et de garantir que le comportement du schéma obtenu soit le « moins anisotrope » possible via une minimisation de son écart par rapport à un comportement idéal. Cette procédure de minimisation est ensuite appliquée à deux autres familles de schémas numériques~ : (1) un schéma multidimensionnel proposé par Kozdon, dans lequel le paramètre libre est une fonction~ ; (2) un autre schéma à neuf points faisant intervenir deux paramètres scalaires. C’est ce dernier qui réduit le mieux l’effet de l’orientation lorsque le rapport des pas de maillage s’éloigne de 1. Enfin, une extension de la méthode à des modèles physiques plus complets est envisagée. / In dynamic reservoir simulation, one of the most troublesome artifacts for the prediction of production is the grid orientation effect. Although this normally arises from any numerical scheme, it happens to be amplified by the instability of the physical model, which occurs when the mobility contrast between the water (pushing fluid, used in the processes of secondary recovery) and the oil (pushed fluid, containing the hydrocarbons) exceeds a some critical threshold. We then speak of flows with adverse mobility ratio. This GOE issue has received a lot of attention from the engineers. Numerous works dating back to the 1980s have resulted in the so-called nine-point scheme. Currently implemented in the IFPEN software PumaFlow, this scheme performs relatively well in square meshes and depends on a scalar parameter whose value varies from one author to another, on the grounds of heuristic considerations. In this thesis, we propose a new methodological approach in order not only to optimally adjust this free parameter, but also to extend the scheme to rectangular meshes. The strategy that we advocate is based on an error analysis of the problem, from which it is possible to define a notion of angular error and to guarantee that the behavior of the obtained scheme is the "least anisotropic" possible through a minimization of its deviation from some ideal behavior. This minimization procedure is then applied to two other families of numerical schemes: (1) a multidimensional scheme proposed by Kozdon, in which the free parameter is a function; (2) another nine-point scheme involving two scalar parameters. The latter provides the best results regarding GOE reduction when the ratio of the mesh steps is far away from 1. Finally, an extension of the method to more sophisticated physical models is envisaged.
|
47 |
Équations et systèmes de réaction-diffusion en milieux hétérogènes et applications / Reaction-diffusion equations and systems in heterogeneous media and applicationsDucasse, Romain 25 June 2018 (has links)
Cette thèse est consacrée à l'étude des équations et systèmes de réaction-diffusion dans des milieux hétérogènes. Elle est divisée en deux parties. La première est dédiée à l'étude des équations de réaction-diffusion dans des milieux périodiques. Nous nous intéressons en particulier aux équations posées dans des domaines qui ne sont pas l'espace entier $\mathbb{R}^{N}$, mais des domaines périodiques, avec des "obstacles". Dans un premier chapitre, nous étudions l'effet de la géométrie du domaine sur la vitesse d'invasion des solutions. Après avoir dérivé une formule de type Freidlin-Gartner, nous construisons des domaines où la vitesse d'invasion est strictement inférieure à la vitesse critique des fronts. Nous donnons également des critères géométriques qui garantissent l'existence de directions où l'invasion se produit à la vitesse critique. Dans le chapitre suivant, nous donnons des conditions nécessaires et suffisantes pour garantir que l'invasion ait lieu, après quoi nous construisons des domaines où des phénomènes intermédiaires (blocage, invasion orientée) se produisent. La deuxième partie de cette thèse est consacrée à l'étude de modèles décrivant l'influence de lignes à diffusion rapide (une route, par exemple) sur la propagation d'espèces invasives. Il a en effet été observé que certaines espèces, dont le moustique-tigre, envahissent plus rapidement que prévu certaines zones proches du réseau routier. Nous étudions deux modèles : le premier décrit l'influence d'une route courbe sur la propagation. Nous nous intéressons en particulier au cas de deux routes non-parallèles. Le second modèle décrit l'influence d'une route sur une niche écologique, en présence d'un changement climatique. Le résultat principal est que l'effet de la route est ambivalent : si la niche est stationnaire, alors l'effet de la route est délétère. Cependant, si la niche se déplace, suite à un changement climatique, nous montrons que la route peut permettre à une population de survivre. Pour étudier ce second modèle, nous développons une notion de valeur propre principale généralisée pour des systèmes de type KPP, et nous dérivons une inégalité de Harnack, qui est nouvelle pour ce type de systèmes. / This thesis is dedicated to the study of reaction-diffusion equations and systems in heterogeneous media. It is divided into two parts. The first one is devoted to the study of reaction-diffusion equations in periodic media. We pay a particular attention to equations set on domains that are not the whole space $\mathbb{R}^{N}$, but periodic domains, with "obstacles". In a first chapter, we study how the geometry of the domain can influence the speed of invasion of solutions. After establishing a Freidlin-Gartner type formula, we construct domains where the speed of invasion is strictly less than the critical speed of fronts. We also give geometric criteria to ensure the existence of directions where the invasion occurs with the critical speed. In the second chapter, we give necessary and sufficient conditions to ensure that invasion occurs, and we construct domains where intermediate phenomena (blocking, oriented invasion) occur. The second part of this thesis is dedicated to the study of models describing the influence of lines with fast diffusion (a road, for instance) on the propagation of invasive species. Indeed, it was observed that some species, such as the tiger mosquito, invade faster than expected some areas along the road-network. We study two models : the first one describes the influence of a curved road on the propagation. We study in particular the case of two non-parallel roads. The second model describes the influence of a road on an ecological niche, in presence of climate change. The main result is that the effect of the road is ambivalent: if the niche is stationary, then effect of the road is deleterious. However, if the niche moves, because of a shifting climate, the road can actually help the population to persist. To study this model, we introduce a notion of generalized principal eigenvalue for KPP-type systems, and we derive a Harnack inequality, that is new for this type of systems.
|
48 |
Classification analytique des points fixes paraboliques de germes antiholomorphes et de leurs déploiementsGodin, Jonathan 12 1900 (has links)
On s’intéresse à la dynamique dans un voisinage d’un point fixe d’une fonction antiholomorphe d’une variable. Dans un premier temps, on cherche à décrire et à comprendre l’espace des orbites dans un voisinage d’un point fixe multiple, appelé point parabolique, et à explorer les propriétés géométriques préservées par les changements de coordonnée. En particulier, on résout le problème de classification analytique des points paraboliques. Résoudre ce problème consiste à définir un module de classification complet qui permet de déterminer si deux germes de difféomorphismes antiholomorphes sont analytiquement conjugués dans un voisinage de leur point fixe parabolique. On examine également les applications du module à différents problèmes : i) extraction d’une racine n-ième antiholomorphe, ii) existence d’une courbe analytique invariante sous la dynamique d’un germe antiholomorphe parabolique et iii) centralisateur d’un germe antiholomorphe parabolique. Dans un second temps, on étudie les déploiements génériques d’un point fixe double, soit un point parabolique de codimension 1. Les questions sont de nature similaire, à savoir comprendre l’espace des orbites et les propriétés géométriques des déploiements. Afin de classifier les déploiements génériques, on déploie le module de classification pour les points paraboliques, ce qui permet d’obtenir des conditions nécessaires et suffisantes pour déterminer lorsque deux déploiements génériques sont équivalents. / We are interested in the dynamics in a neighbourhood of a fixed point of an antiholomorphic function of one variable. First, we want to describe and understand the space of orbits in a neighbourhood of a multiple fixed point, called a parabolic point, and to explore the geometric properties preserved by changes of coordinate. In particular, we solve the problem of analytical classification of parabolic fixed points. To solve this problem, we define a complete modulus of classification that allows to determine whether two germs of antiholomorphic diffeomorphisms are analytically conjugate in a neighbourhood of their parabolic fixed point. We also consider the applications of the modulus to different problems: i) extraction of an n-th antiholomorphic root, ii) existence of an invariant real analytical curve under the dynamics of a parabolic antiholomorphic germ, and iii) centraliser of a parabolic antiholomorphic germ. In the second part, we study generic unfoldings of a double fixed point, i.e. a parabolic point of codimension 1. The questions are similar in nature, namely to understand the space of orbits and the geometric properties of unfoldings. In order to classify generic unfoldings, the modulus of classification of the parabolic point is unfolded, thus providing the necessary and sufficient conditions to determine when two generic unfoldings are equivalent.
|
49 |
Typical representations for GL_n(F) / Représentations typiques pour GL_n(F)Nadimpalli, Santosh VRN 16 June 2015 (has links)
Dans cette thèse, nous classifions représentations typiques pour certaines composants Bernstein. Suite aux travaux de Henniart dans le cas de GL_2(F) et Paskunas pour les composants cuspidales, nous classifions représentations typiques pour les composants de niveau zéro pour GL_n(F) pour n> 2, composants de série principale, composants avec Levi sous-groupe de la forme (n, 1) pour n>1 et certains composants avec sous-groupe de Levi de la forme (2,2). Chacun des composants ci-dessus est traité dans un chapitre distinct. La classification utilise la théorie des types développés par Bushnell-Kutzko d'une manière significative. Nous allons donner la classification en termes de types de Bushnell-Kutzko. / In this thesis we classify typical representations for certain non-cuspidal Bernstein components. Following the work of Henniart in the case of GL_2(F) and Paskunas for the cuspidal components, we classify typical representations for of level-zero components for GL_n(F) for n>2, principal series components, components with Levi subgroup of the form (n, 1) for n>1 and certain components with Levi subgroup of the form (2,2). Each of the above component is treated in a separate chapter. The classification uses the theory of types developed by Bushnell-Kutzko in a significant way. We will give the classification in terms of Bushnell-Kutzko types for a given inertial class.
|
50 |
Étude de quelques problèmes elliptiques et paraboliques quasi-linéaires avec singularités / Study of some quasilinear and singular elliptic and parabolic problemsSauvy, Paul 04 December 2012 (has links)
Cette thèse s’inscrit dans le domaine mathématique de l’analyse des équations aux dérivées partielles non-linéaires. Plus précisément, nous avons fait ici l’étude de problèmes quasi-linéaires singuliers. Le terme "singulier" fait référence à l’intervention d’une non-linéarité qui explose au bord du domaine où ’équation est posée. La présence d’une telle singularité entraîne un manque de régularité et donc de compacité des solutions qui ne nous permet pas d’appliquer directement les méthodes classiques de l’analyse non-linéaire pour démontrer l’existence de solutions et discuter des propriétés de régularité et de comportement asymptotique de ces solutions. Pour contourner cette difficulté, nous sommes amenés à établir des estimations a priori très fines au voisinage du bord du domaine en combinant diverses méthodes : méthodes de monotonie (reliée au principe du maximum), méthodes variationnelles, argument de convexité, méthodes de point fixe et semi-discrétisation en temps. A travers, l’étude de trois problèmes-modèle faisant intervenir l’opérateur p-Laplacien, nous avons montré comment ces différentes méthodes pouvaient être mises en œuvre. Les résultats que nous avons obtenus sont décrits dans les trois chapitres de cette thèse : Dans le Chapitre I, nous avons étudié un problème d’absorption elliptique singulier. En utilisant des méthodes de sur- et sous solutions et des méthodes variationnelles, nous établissons des résultats d’existence de solutions. Par des méthodes de comparaison locale, nous démontrons également la propriété de support compact de ces solutions, pour de fortes singularités. Dans le Chapitre II, nous étudions le cas d’un système d’équations quasi-linéaires singulières. Par des arguments de point fixe et de monotonie, nous démontrons deux résultats généraux d’existence de solutions. Dans un deuxième temps, nous faisons une analyse plus détaillée de systèmes du type Gierer-Meinhardt modélisant des phénomènes biologiques. Des résultats d’unicité ainsi que des estimations précises sur le comportement des solutions sont alors obtenus. Dans le Chapitre III, nous faisons l’étude d’un problème d’absorption, parabolique singulier. Nous établissons par une méthode de semi-discrétisation en temps des résultats d’existence de solutions. Grâce à des inégalités d’énergie, nous démontrons également l’extinction en temps fini de ces solutions. / This thesis deals with the mathematical field of nonlinear partial differential equations analysis. More precisely, we focus on quasilinear and singular problems. By singularity, we mean that the problems that we have considered involve a nonlinearity in the equation which blows-up near the boundary. This singular pattern gives rise to a lack of regularity and compactness that prevent the straightforward applications of classical methods in nonlinear analysis used for proving existence of solutions and for establishing the regularity properties and the asymptotic behavior of the solutions. To overcome this difficulty, we establish estimations on the precise behavior of the solutions near the boundary combining several techniques : monotonicity method (related to the maximum principle), variational method, convexity arguments, fixed point methods and semi-discretization in time. Throughout the study of three problems involving the p-Laplacian operator, we show how to apply this different methods. The three chapters of this dissertation the describes results we get :– In Chapter I, we study a singular elliptic absorption problem. By using sub- and super-solutions and variational methods, we prove the existence of the solutions. In the case of a strong singularity, by using local comparison techniques, we also prove that the compact support of the solution. In Chapter II, we study a singular elliptic system. By using fixed point and monotonicity arguments, we establish two general theorems on the existence of solution. In a second time, we more precisely analyse the Gierer-Meinhardt systems which model some biological phenomena. We prove some results about the uniqueness and the precise behavior of the solutions. In Chapter III, we study a singular parabolic absorption problem. By using a semi-discretization in time method, we establish the existence of a solution. Moreover, by using differential energy inequalities, we prove that the solution vanishes in finite time. This phenomenon is called "quenching".
|
Page generated in 0.0586 seconds