Spelling suggestions: "subject:"paraboliques"" "subject:"paraboliques""
31 |
Etude spectrale d'opérateurs de Sturm-Liouville et applications à la contrôlabilité de problèmes paraboliques discrets et continus / Study of spectral properties of Sturm Liouville operators and applications in null controllability of discretized and continuous parabolic problemsAllonsius, Damien 26 September 2018 (has links)
Dans cette thèse, nous étudions la contrôlabilité à zéro de quelques systèmes paraboliques continus et semi-discrétisés. Nous considérons tout d'abord des systèmes en cascade d'équations paraboliques de la forme ∂t −(∂xγ∂x +q). La variable spatiale évolue dans un intervalle réel borné et ce système est semi-discrétisé en espace par un schéma aux différences finies. En appliquant la méthode des moments, nous démontrons des résultats de contrôlabilité à zéro et de φ(h) contrôlabilité à zéro, suivant les hypothèses formulées sur le maillage et les fonctions γ et q. Puis nous étendons ces résultats lorsque la variable d'espace évolue dans un domaine cylindrique, la zone de contrôle se situant dans une partie d'une section au bord du cylindre. Ce domaine cylindrique se décompose en un produit de deux espaces. Sur le premier, de dimension 1, nous appliquons les résultats décrits précédemment. Sur le second, nous appliquons la méthode de Lebeau-Robbiano. Cette approche permet à la fois de montrer que le problème discrétisé est φ(h) contrôlable à zéro et de retrouver un résultat de contrôlabilité à zéro sur le système continu. Dans une autre partie, nous nous intéressons au temps minimal de contrôle à zéro de l'équation de Grushin posée sur un domaine rectangulaire dont le domaine de contrôle est une bande verticale. L'étude se ramène à une infinité dénombrable, indexée par le paramètre de Fourier $n$, de problèmes de contrôle à zéro d'équations paraboliques, traitée, ici encore, à l'aide de la méthode des moments. / In this thesis, we study the null controllability of some continous and semi discretized parabolic systems. We first consider cascade systems of parabolic equations of the form ∂t −(∂xγ∂x +q). The space variable belongs to a real and bounded interval and this system is semi-discretized in space by a finite differences scheme. Applying the so called moments method, we prove null controllability and φ(h) null controllability results, depending on the hypotheses on the mesh and on functions γ and q. Then, we extend this results when the space variable belongs to a cylindrical domain which control zone is in a section at the border of the cylinder. This cylindrical domain is decomposed into a product of two spaces. On the first, of dimension 1, we apply the results described previously. On the second, we use the Lebeau-Robbiano's procedure. In this framework, we prove φ(h) null controllability results on the discretized domain as well as null controllability results on the continous problem. In another section, we investigate the computation of minimal time of null controllability of Grushin's equation defined on a rectangular domain which control region is a vertical strip. This problem of control amounts to study a countably infinite family, indexed by the Fourier parameter $n$, of null control problems of parabolic equations, tackled, once again, with the moments method.
|
32 |
Estimations a posteriori pour l'équation de convection-diffusion-réaction instationnaire et applications aux volumes finis / A posteriori error estimates for the time-dependent convection-diffusion-reaction equation and application to the finite volume methodsChalhoub, Nancy 17 December 2012 (has links)
On considère l'équation de convection--diffusion--réaction instationnaire. On s'intéresse à la dérivation d'estimations d'erreur a posteriori pour la discrétisation de cette équation par la méthode des volumes finis centrés par mailles en espace et un schéma d'Euler implicite en temps. Les estimations, qui sont établies dans la norme d'énergie, bornent l'erreur entre la solution exacte et une solution post-traitée à l'aide de reconstructions $Hdiv$-conformes du flux diffusif et du flux convectif, et d'une reconstruction $H^1_0(Omega)$-conforme du potentiel. On propose un algorithme adaptatif qui permet d'atteindre une précision relative fixée par l'utilisateur en raffinant les maillages adaptativement et en équilibrant les contributions en espace et en temps de l'erreur. On présente également des essais numériques. Enfin, on dérive une estimation d'erreur a posteriori dans la norme d'énergie augmentée d'une norme duale de la dérivée en temps et de la partie antisymétrique de l'opérateur différentiel. Cette nouvelle estimation est robuste dans des régimes dominés par la convection et des bornes inférieures locales en temps et globales en espace sont également obtenues / We consider the time-dependent convection--diffusion--reaction equation. We derive a posteriori error estimates for the discretization of this equation by the cell-centered finite volume scheme in space and a backward Euler scheme in time. The estimates are established in the energy norm and they bound the error between the exact solution and a locally post processed approximate solution, based on $Hdiv$-conforming diffusive and convective flux reconstructions, as well as an $H^1_0(Omega)$-conforming potential reconstruction. We propose an adaptive algorithm which ensures the control of the total error with respect to a user-defined relative precision by refining the meshes adaptively while equilibrating the time and space contributions to the error. We also present numerical experiments. Finally, we derive another a posteriori error estimate in the energy norm augmented by a dual norm of the time derivative and the skew symmetric part of the differential operator. The new estimate is robust in convective-dominated regimes and local-in-time and global-in-space lower bounds are also derived
|
33 |
Contrôlabilité de quelques systèmes gouvernés par des équations paraboliques / Controllability of some systems governed by parabolic equationsDuprez, Michel 26 November 2015 (has links)
Cette thèse est consacrée à l'étude de la contrôlabilité approchée et à zéro des systèmes paraboliques linéaires sur un domaine non vide borné Ω de (), contrôlés par moins de forces que d'équations. Les contrôles seront localisés sur un ouvert de Ω ou sur son bord. Nous étudierons deux problèmes différents. Le premier consiste à contrôler une des équations indirectement à l'aide d'un opérateur de couplage d'ordre un. Nous obtenons alors des résultats pour plusieurs classes d'opérateurs et de systèmes. La deuxième question que nous étudierons est de savoir s'il est possible de contrôler seulement certaines composantes de la solution du système. Nous donnons une condition nécessaire et suffisante lorsque les coefficients de couplage sont constants ou dépendent du temps et étudions un système simplifié quand ils dépendent de l'espace. Nous terminerons en détaillant un schéma numérique avec lequel nous fournirons des perspectives quant à quelques problèmes qui restent ouverts en contrôlabilité partielle des systèmes paraboliques linéaires. / This thesis is devoted to the study of the approximate and null controllability of linear parabolic systems on a nonempty bounded domain Ω of(), controlled by less controls than equations. The controls will be localized in an open set of Ω or on its boundary. We will study two different problems. The first of them involves controlling one of the equations indirectly with a coupling operator of order one. We obtain some results for different class of operators and systems. The second question we will study is to know if it is possible to control only some components of the solution of the system. We give a necessary and sufficient condition when the coupling coefficients are constant or time depending and study a simplified system when they are space dependent. We will finish by giving details on a numerical scheme with which we provide perspectives concerning some open problems in partial controllability of linear parabolic systems.
|
34 |
Option prices in stochastic volatility models / Prix d’options dans les modèles à volatilité stochastiqueTerenzi, Giulia 17 December 2018 (has links)
L’objet de cette thèse est l’étude de problèmes d’évaluation d’options dans les modèles à volatilité stochastique. La première partie est centrée sur les options américaines dans le modèle de Heston. Nous donnons d’abord une caractérisation analytique de la fonction de valeur d’une option américaine comme l’unique solution du problème d’obstacle parabolique dégénéré associé. Notre approche est basée sur des inéquations variationelles dans des espaces de Sobolev avec poids étendant les résultats récents de Daskalopoulos et Feehan (2011, 2016) et Feehan et Pop (2015). On étudie aussi les propriétés de la fonction de valeur d’une option américaine. En particulier, nous prouvons que, sous des hypothèses convenables sur le payoff, la fonction de valeur est décroissante par rapport à la volatilité. Ensuite nous nous concentrons sur le put américaine et nous étendons quelques résultats qui sont bien connus dans le monde Black-Scholes. En particulier nous prouvons la convexité stricte de la fonction de valeur dans la région de continuation, quelques propriétés de la frontière libre, la formule de Prime d’Exercice Anticipée et une forme faible de la propriété du smooth fit. Les techniques utilisées sont de type probabiliste. Dans la deuxième partie nous abordons le problème du calcul numérique du prix des options européennes et américaines dans des modèles à volatilité stochastiques et avec sauts. Nous étudions d’abord le modèle de Bates-Hull-White, c’est-à-dire le modèle de Bates avec un taux d’intérêt stochastique. On considère un algorithme hybride rétrograde qui utilise une approximation par chaîne de Markov (notamment un arbre “avec sauts multiples”) dans la direction de la volatilité et du taux d’intérêt et une approche (déterministe) par différence finie pour traiter le processus de prix d’actif. De plus, nous fournissons une procédure de simulation pour des évaluations Monte Carlo. Les résultats numériques montrent la fiabilité et l’efficacité de ces méthodes. Finalement, nous analysons le taux de convergence de l’algorithme hybride appliqué à des modèles généraux de diffusion avec sauts. Nous étudions d’abord la convergence faible au premier ordre de chaînes de Markov vers la diffusion sous des hypothèses assez générales. Ensuite nous prouvons la convergence de l’algorithme: nous étudions la stabilité et la consistance de la méthode hybride par une technique qui exploite les caractéristiques probabilistes de l’approximation par chaîne de Markov / We study option pricing problems in stochastic volatility models. In the first part of this thesis we focus on American options in the Heston model. We first give an analytical characterization of the value function of an American option as the unique solution of the associated (degenerate) parabolic obstacle problem. Our approach is based on variational inequalities in suitable weighted Sobolev spaces and extends recent results of Daskalopoulos and Feehan (2011, 2016) and Feehan and Pop (2015). We also investigate the properties of the American value function. In particular, we prove that, under suitable assumptions on the payoff, the value function is nondecreasing with respect to the volatility variable. Then, we focus on an American put option and we extend some results which are well known in the Black and Scholes world. In particular, we prove the strict convexity of the value function in the continuation region, some properties of the free boundary function, the Early Exercise Price formula and a weak form of the smooth fit principle. This is done mostly by using probabilistic techniques.In the second part we deal with the numerical computation of European and American option prices in jump-diffusion stochastic volatility models. We first focus on the Bates-Hull-White model, i.e. the Bates model with a stochastic interest rate. We consider a backward hybrid algorithm which uses a Markov chain approximation (in particular, a “multiple jumps” tree) in the direction of the volatility and the interest rate and a (deterministic) finite-difference approach in order to handle the underlying asset price process. Moreover, we provide a simulation scheme to be used for Monte Carlo evaluations. Numerical results show the reliability and the efficiency of the proposed methods.Finally, we analyze the rate of convergence of the hybrid algorithm applied to general jump-diffusion models. We study first order weak convergence of Markov chains to diffusions under quite general assumptions. Then, we prove the convergence of the algorithm, by studying the stability and the consistency of the hybrid scheme, in a sense that allows us to exploit the probabilistic features of the Markov chain approximation
|
35 |
Problèmes non-linéaires singuliers et bifurcation / Singular nonlinear problems and bifurcationBougherara, Brahim 11 September 2014 (has links)
Cette thèse s’inscrit dans le domaine mathématique de l’analyse des équations aux dérivées partielles non linéaires. Précisément, nous nous sommes intéressés à une classe de problèmes elliptiques et paraboliques avec coefficients singuliers. Ce manque de régularité pose un certain nombre de difficultés qui ne permettent pas d’utiliser directement les méthodes classiques de l’analyse non-linéaire fondées entre autres sur des résultats de compacité. Dans les démonstrations des principaux résultats, nous montrons comment pallier ces difficultés. Ceci suppose d’adapter certaines techniques bien connues mais aussi d’introduire de nouvelles méthodes. Dans ce contexte, une étape importante est l’estimation fine du comportement des solutions qui permet d’adapter le principe de comparaison faible, d’utiliser la régularité elliptique et parabolique et d’appliquer dans un nouveau contexte la théorie globale de la bifurcation analytique. La thèse se présente sous forme de deux parties indépendantes. 1- Dans la première partie (chapitre I de la thèse), nous avons étudié un problème quasi-linéaire parabolique fortement singulier faisant intervenir l’opérateur p-Laplacien. On a démontré l’existence locale et la régularité de solutions faibles. Ce résultat repose sur des estimations a priori obtenues via l’utilisation d’inégalités de type log-Sobolev combinées à des inégalités de Gagliardo-Nirenberg. On démontre l’unicité de la solution pour un intervalle de valeurs du paramètre de la singularité en utilisant un principe de comparaison faible fondé sur la monotonie d’un opérateur non linéaire adéquat. 2- Dans la deuxième partie (correspondant aux Chapitres II, III et IV de la thèse), nous sommes intéressés à l’étude de problèmes de bifurcation globale. On a établi pour ces problèmes l’existence de continuas non bornés de solutions qui admettent localement une paramétrisation analytique. Pour établir ces résultats, nous faisons appel à différents outils d’analyse non linéaire. Un outil important est la théorie analytique de la bifurcation globale qui a été introduite par Dancer (voir Chapitre II de la thèse). Pour un problème semi linéaire elliptique avec croissance critique en dimension 2, on montre que les solutions le long de la branche convergent vers une solution singulière (solution non bornée) lorsque la norme des solutions converge vers l’infini. Par ailleurs nous montrons que la branche admet une infinité dénombrable de "points de retournement" correspondant à un changement de l’indice de Morse des solutions qui tend vers l’infini le long de la branche. / This thesis is concerned with the mathematical study of nonlinear partial differential equations. Precisely, we have investigated a class of nonlinear elliptic and parabolic problems with singular coefficients. This lack of regularity involves some difficulties which prevent the straight-orward application of classical methods of nonlinear analysis based on compactness results. In the proofs of the main results, we show how to overcome these difficulties. Precisely we adapt some well-known techniques together with the use of new methods. In this framework, an important step is to estimate accurately the solutions in order to apply the weak comparison principle, to use the regularity theory of parabolic and elliptic equations and to develop in a new context the analytic theory of global bifurcation. The thesis presents two independent parts. 1- In the first part (corresponding to Chapter I), we are interested by a nonlinear and singular parabolic equation involving the p-Laplacian operator. We established for this problem that for any non-negative initial datum chosen in a certain Lebeque space, there exists a local positive weak solution. For that we use some a priori bounds based on logarithmic Sobolev inequalities to get ultracontractivity of the associated semi-group. Additionaly, for a range of values of the singular coefficient, we prove the uniqueness of the solution and further regularity results. 2- In the second part (corresponding to Chapters II, III and IV of the thesis), we are concerned with the study of global bifurcation problems involving singular nonlinearities. We establish the existence of a piecewise analytic global path of solutions to these problems. For that we use crucially the analytic bifurcation theory introduced by Dancer (described in Chapter II of the thesis). In the frame of a class of semilinear elliptic problems involving a critical nonlinearity in two dimensions, we further prove that the piecewise analytic path of solutions admits asymptotically a singular solution (i.e. an unbounded solution), whose Morse index is infinite. As a consequence, this path admits a countable infinitely many “turning points” where the Morse index is increasing.
|
36 |
Modélisation d’aquifères peu profonds en interaction avec les eaux de surfaces / Modeling of shallow aquifers in interaction with surface watersTsegmid, Munkhgerel 26 June 2019 (has links)
Nous présentons une classe de nouveaux modèles pour décrire les écoulements d’eau dans des aquifères peu profonds non confinés. Cette classe de modèles offre une alternative au modèle Richards 3d plus classique mais moins maniable. Leur dérivation est guidée par deux ambitions : le nouveau modèle doit d’une part être peu coûteux en temps de calcul et doit d’autre part donner des résultats pertinents à toute échelle de temps. Deux types d’écoulements dominants apparaissent dans ce contexte lorsque le rapport de l’épaisseur sur la longueur de l’aquifère est petit : le premier écoulement apparaît en temps court et est décrit par un problème vertical Richards 1d ; le second correspond aux grandes échelles de temps, la charge hydraulique est alors considérée comme indépendante de la variable verticale. Ces deux types d’écoulements sont donc modélisés de manière appropriée par le couplage d’une équation 1d pour la partie insaturée de l’aquifère et d’une équation 2d pour la partie saturée. Ces équations sont couplées au niveau d’une interface de profondeur h (t,x) en dessous de laquelle l’hypothèse de Dupuit est vérifiée. Le couplage est assuré de telle sorte que la masse globale du système soit conservée. Notons que la profondeur h (t,x) peut être une inconnue du problème ou être fixée artificiellement. Nous prouvons (dans le cas d’aquifères minces) en utilisant des développements asymptotiques que le problème Richards 3d se comporte de la même manière que les modèles de cette classe à toutes les échelles de temps considérées (courte, moyenne et grande). Nous décrivons un schéma numérique pour approcher le modèle couplé non linéaire. Une approximation par éléments finis est combinée à une méthode d’Euler implicite en temps. Ensuite, nous utilisons une reformulation de l’équation discrète en introduisant un opérateur de Dirichlet-to-Neumann pour gérer le couplage non linéaire en temps. Une méthode de point fixe est appliquée pour résoudre l’équation discrète reformulée. Le modèle couplé est testé numériquement dans différentes situations et pour différents types d’aquifère. Pour chacune des simulations, les résultats numériques obtenus sont en accord avec ceux obtenus à partir du problème de Richards original. Nous concluons notre travail par l’analyse mathématique d’un modèle couplant le modèle Richards 3d à celui de Dupuit. Il diffère du premier parce que nous ne supposons plus un écoulement purement vertical dans la frange capillaire supérieure. Ce modèle consiste donc en un système couplé non linéaire d’équation Richards 3d avec une équation parabolique non linéaire décrivant l’évolution de l’interface h (t,x) entre les zones saturées et non saturées de l’aquifère. Les principales difficultés à résoudre sont celles inhérentes à l’équation 3D-Richards, la prise en compte de la frontière libre h (t,x) et la présence de termes dégénérés apparaissant dans les termes diffusifs et dans les dérivées temporelles. / We present a class of new efficient models for water flow in shallow unconfined aquifers, giving an alternative to the classical but less tractable 3D-Richards model. Its derivation is guided by two ambitions : any new model should be low cost in computational time and should still give relevant results at every time scale.We thus keep track of two types of flow occurring in such a context and which are dominant when the ratio thickness over longitudinal length is small : the first one is dominant in a small time scale and is described by a vertical 1D-Richards problem ; the second one corresponds to a large time scale, when the evolution of the hydraulic head turns to become independent of the vertical variable. These two types of flow are appropriately modelled by, respectively, a one-dimensional and a two-dimensional system of PDEs boundary value problems. They are coupled along an artificial level below which the Dupuit hypothesis holds true (i.e. the vertical flow is instantaneous below the function h(t,x)) in away ensuring that the global model is mass conservative. Tuning the artificial level, which even can depend on an unknown of the problem, we browse the new class of models. We prove using asymptotic expansions that the 3DRichards problem and eachmodel of the class behaves the same at every considered time scale (short, intermediate and large) in thin aquifers. We describe a numerical scheme to approximate the non-linear coupled model. The standard Galerkin’s finite element approximation in space and Backward Euler method in time are used for discretization. Then we reformulate the discrete equation by introducing the Dirichlet to Neumann operator to handle the nonlinear coupling in time. The fixed point iterative method is applied to solve the reformulated discrete equation. We have examined the coupled model in different boundary conditions and different aquifers. In the every situations, the numerical results of the coupled models fit well with the original Richards problem. We conclude our work by the mathematical analysis of a model coupling 3D-Richards flow and Dupuit horizontal flow. It differs from the first one because we no longer assume a purely vertical flow in the upper capillary fringe. This model thus consists in a nonlinear coupled system of 3D-Richards equation with a nonlinear parabolic equation describing the evolution of the interface h(t,x) between the saturated and unsaturated zones of the aquifer. The main difficulties to be solved are those inherent to the 3D-Richards equation, the consideration of the free boundary h(t,x) and the presence of degenerate terms appearing in the diffusive terms and in the time derivatives.
|
37 |
Convergence de schémas volumes finis pour des problèmes de convection diffusion non linéairesMichel, Anthony 21 October 2001 (has links) (PDF)
Ce mémoire est centré autour de l'analyse numérique de schémas volumes finis pour un modèle simplifié d'écoulement de deux fluides incompressibles en milieu poreux. Ces phénomènes sont souvent qualifiés de phénomènes de convection diffusion à convection dominante (``convection dominated problems'' en anglais). La première partie du mémoire est consacrée à l'approximation numérique d'équations paraboliques hyperboliques faiblement ou fortement dégénérées. Les trois premiers chapitres sont consacrés à l'étude de la convergence de schémas volumes finis. Le dernier chapitre est consacré à l'analyse des résultats numériques obtenus. La seconde partie est consacrée à l'analyse numérique d'un modèle simplifié d'écoulement diphasique en milieu poreux par deux schémas différents. Le premier schéma dit ``des mathématiciens'' est basé sur la réécriture du système étudié sous la forme d'une équation parabolique hyperbolique sur la saturation et d'une équation elliptique sur la pression, ces deux équations étant couplées par le coefficient de diffusion. Le second schéma dit schéma ``des pétroliers'' est une méthode numérique utilisée en pratique dans l'industrie pétrolière. Les deux schémas sont analysés séparément et ils sont ensuite comparés numériquement.
|
38 |
Modélisation et simulation numérique d'écoulements multi-composants en milieu poreuxSaad, Bilal 02 December 2011 (has links) (PDF)
Cette thèse concerne la modélisation, l'étude mathématique et la simulation numérique des problèmes d'écoulements diphasique (liquide et gaz) multi-composant (principalement eau et hydrogène) en milieu poreux. Le domaine d'application typique concerne le stockage des déchets radioactifs de moyenne et haute activité à vie longue. Ce type d'étude est motivé, entre autre, par une augmentation de la pression au sein du stockage due à un dégagement d'hydrogène au niveau des colis, pouvant ainsi fracturer la roche environnante et donc faciliter la migration des radionucléides. En supposant que le transfert de masse entre l'hydrogène gazeux et l'hydrogène dissous est donné par la loi de Henry un premier modèle est étudié. Une preuve d'existence de solutions faibles pour ce modèle a été réalisée sans hypothèse de petites données et en traitant le modèle complet en considérant que la densité de chaque composant dépend de sa propre pression. Ensuite,nous avons fait évoluer le modèle vers un modèle à transfert de masse dynamique. On établit l'existence de solutions faibles pour ce deuxième modèle avec un principe du maximum sur la saturation liquide et sur la fraction massique d'hydrogène dissous. Parallèlement, un code numérique en 1D a été développé afin de comparer les solutions numériques obtenues entre le premier modèle et le second modèle lorsque la cinétique de changement de phase devient instantanée. Des accords probant ont été obtenus sur différents cas tests dont un issu des cas tests du GNR MOMAS diphasique. Enfin, un schéma numérique de type volumes finis avec un décentrage phase par phase pour la simulation des écoulements diphasiques eau-gaz sous l'hypothèse que la densité de chaque phase dépend de sa propre pression a été proposé. On établit la convergence de ce schéma numérique. Ce schéma a été validé sur un maillage 2D non structuré.
|
39 |
Equations aux dérivées partielles en finance : problèmes inverses et calibration de modèle.Rouis, Moeiz 20 September 2007 (has links) (PDF)
Dans la premiere partie de cette these, on a etudie l'impact sur les prix d'options des erreurs d'estimation de volatilite. Dans les modeles de diffusion utilises ennance, un coefficient de diffusion fonctinnelle (:; :) modelise la volatilite d'un actif financier. Ce coefficient est estime a partir d'observations donc entache d'erreurs statistiques. L'objectif est de voir l'impact de ces erreurs sur le calcul de prix d'options, qui sont solutions d'EDP paraboliques dont l'estimateur (:; :) est le coefficient de diffusion. Cela debouche sur un probleme de passage a la limite (homogeneisation) dans des equations paraboliques a coefficients aleatoires. Dans ce travail on a obtenu des estimations de la vitesse de convergence locale sur la solution d'une EDP parabolique a coefficients aleatoire, lorsque le coefficient de diffusion est un champ aleatoire convergeant vers une fonction limite. Ce resultat permet d'etudier l'im- pact sur les prix d'options des erreurs d'estimation de volatilite dans differents cas degures. Cette methode est appliquee pour evaluer l'incertitude sur les options a barrieres dans un modele de diffusion lorsqu'on reconstitue la volatilite par la formule de Dupire a partir des donnees discretes sur les prix d'options. La deuxieme partie de cette these concerne l'etude de problemes inverses pour certaine classe d'equations d'evolution integro-differentielles survenant dans l'etude des modeles d'evaluation bases sur les processus de Levy. On a etudie une approche de ces problemes inverses par regularisation de Tikhonov. Cette approche permet de reconstruire de facon stable les parametres d'un modele markovien avec sauts a partir de l'observation d'un nombre ni d'options. Le chapitre 4 pose les bases theoriques de cette approche et propose une parametrisation des mesures de Levy par la racine carree de la densite, ce qui permet de ramener le probleme dans un cadre hilbertien. La regularisation de Tikhonov proposee consiste a minimiser l'ecart quadratique par rapport aux prix observ es plus une norme hilbertienne des parametres. Des resultats d'existence, de stabilite et de convergence de la solution du probleme regularise sont alors obtenus sous de hypotheses assez generales ; des hypotheses supplementaires (conditions de source) permettent d'obtenir une estimation de la vitesse de convergence. Le choix du parametre de regularisation, sujet delicat, fait l'objet d'une discussion detaillee. Le chapitre 5 propose un algorithme numerique pour le calcul de la solution du probleme regularise et l'etude du performance de cet algorithme dans differents modeles avec sauts. L'algorithme est base sur l'emploi d'un algorithme de gradient pour la minimisation de la fonctionnelle regularisee : le gradient est calcule en resolvant une equation integrodifferentielle avec terme source (equation adjointe). Ce travail generalise ceux de Lagnado&Osher, Crepey et Egger & Engl au cas des equations integrodifferentielles. Les tests numeriques montrent que cet algorithme permet de construire de facon stable un processus de Levy calibre a un ensemble de
|
40 |
Méthodes de volumes finis sur maillages quelconques pour des systèmes d'évolution non linéaires.Brenner, Konstantin 08 November 2011 (has links) (PDF)
Les travaux de cette thèse portent sur des méthodes de volumes finis sur maillages quelconque pour la discrétisation de problèmes d'évolution non linéaires modélisant le transport de contaminants en milieu poreux et les écoulements diphasiques.Au Chapitre 1, nous étudions une famille de schémas numériques pour la discrétisation d'une équation parabolique dégénérée de convection-reaction-diffusion modélisant le transport de contaminants dans un milieu poreux qui peut être hétérogène et anisotrope. La discrétisation du terme de diffusion est basée sur une famille de méthodes qui regroupe les schémas de volumes finis hybrides, de différences finies mimétiques et de volumes finis mixtes. Le terme de convection est traité à l'aide d'une famille de méthodes qui s'appuient sur les inconnues hybrides associées aux interfaces du maillage. Cette famille contient à la fois les schémas centré et amont. Les schémas que nous étudions permettent une discrétisation localement conservative des termes d'ordre un et d'ordre deux sur des maillages arbitraires en dimensions d'espace deux et trois. Nous démontrons qu'il existe une solution unique du problème discret qui converge vers la solution du problème continu et nous présentons des résultats numériques en dimensions d'espace deux et trois, en nous appuyant sur des maillages adaptatifs.Au Chapitre 2, nous proposons un schéma de volumes finis hybrides pour la discrétisation d'un problème d'écoulement diphasique incompressible et immiscible en milieu poreux. On suppose que ce problème a la forme d'une équation parabolique dégénérée de convection-diffusion en saturation couplée à une équation uniformément elliptique en pression. On considère un schéma implicite en temps, où les flux diffusifs sont discrétisés par la méthode des volumes finis hybride, ce qui permet de pouvoir traiter le cas d'un tenseur de perméabilité anisotrope et hétérogène sur un maillage très général, et l'on s'appuie sur un schéma de Godunov pour la discrétisation des flux convectifs, qui peuvent être non monotones et discontinus par rapport aux variables spatiales. On démontre l'existence d'une solution discrète, dont une sous-suite converge vers une solution faible du problème continu. On présente finalement des cas test bidimensionnels.Le Chapitre 3 porte sur un problème d'écoulement diphasique, dans lequel la courbe de pression capillaire admet des discontinuité spatiales. Plus précisément on suppose que l'écoulement prend place dans deux régions du sol aux propriétés très différentes, et l'on suppose que la loi de pression capillaire est discontinue en espace à la frontière entre les deux régions, si bien que la saturation de l'huile et la pression globale sont discontinues à travers cette frontière avec des conditions de raccord non linéaires à l'interface. On discrétise le problème à l'aide d'un schéma, qui coïncide avec un schéma de volumes finis standard dans chacune des deux régions, et on démontre la convergence d'une solution approchée vers une solution faible du problème continu. Les test numériques présentés à la fin du chapitre montrent que le schéma permet de reproduire le phénomène de piégeage de la phase huile.
|
Page generated in 0.0399 seconds