• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 6
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 62
  • 14
  • 12
  • 11
  • 10
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Design and Optimization of TiO2 Nanomaterial-based Photoelectrochemical Biosensors / Photoelectrochemical Biosensing

Sakib, Sadman January 2023 (has links)
Recently, there has been a shift in the global healthcare paradigm, which is prioritizing a more patient-centric approach causing an increase in the demand for rapid and point-of-care (PoC) biomolecular detection. Electrochemical (EC) signal transduction has been used to great effect to meet some of this demand by constructing biosensors with high sensitivity and low limit-of-detection (LOD). However, signal generation in EC biosensors requires input bias potentials to activate electrochemical redox reactions. This means EC systems are inherently built-in with high background noise that limits the performance of biosensors. Biosensors with photoelectrochemical (PEC) signal transduction have recently shown great promise in being able to deliver biomolecular detection on par with, if not better than, EC biosensors. PEC biosensing directly improves upon EC signal transduction by combining EC signal readout with optical excitation as the bias input, and generally being able to achieve similar performance with simpler bioassay designs. In this scheme, the input and output of the signal transduction are decoupled from each other, significantly reducing background signal in biosensors to enhance their sensitivity. Despite being highly effective, PEC biosensors have yet to find commercial breakthrough as they have so far only shown quantitative analysis on a limited set of biomarkers and have not shown to be PoC-capable. In this thesis, we developed new strategies to improve PEC signal transduction so that it could be applied to build robust ultrasensitive PoC biosensors with high dynamic range, simple operation, and low LOD for detecting a wide variety of different disease biomarkers. The most popular photoactive materials used in the fabrication of PEC biosensors are TiO2 nanomaterials on account of their availability, chemical stability, high catalytic efficiency, tunable morphology, and ideal band energy levels for driving useful EC reactions. However, unmodified TiO2 suffers from several drawbacks that limit its photocurrent generation efficiency, such as poor visible range absorbance due its wide bandgap and fast charge carrier recombination. Alongside the additional difficulty of biofunctionalization, PEC biosensors fabricated from TiO2 nanomaterials are limited in their bioanalytic performance. In order to make improvements on PEC biosensors, we modified the surface of TiO2 nanomaterials by chelating them with catecholate molecules. The surface modification with catecholates formed charge transfer complexes on TiO2, which resulted in enhanced photoexcitation due to enhanced electron injection attributable to intermolecular orbital excitations in the catecholate molecules. The catecholate ligands also added improved colloidal stability and additional functional groups that aided with biofunctionalization. This resulted in multifunctional TiO2 nanoparticles with improved photocurrent signal generation and enhanced visible range photoabsorption. We took this one step further by taking advantage of the high binding affinity of catecholates on TiO2 surfaces to create novel synthesis methods that created high surface area nanostructures. Photoelectrodes fabricated from these new TiO2 nanostructures had nanoporous morphology and were able to capture biomolecules more efficiently. Using our novel TiO2 nanomaterials, we fabricated signal-off biosensors that were able to detect DNA biomarkers and IL-6 protein (cancer and inflammatory biomarker) in urine with an LOD of 1.38 pM and 3.6 pg mL-1, respectively. We further explored hybrid semiconductor structures by combining TiO2 nanomaterials with other materials such semiconductors with different bandgaps or plasmonic metal nanoparticles (NP). Using the aforementioned catechol-assisted synthesis techniques, we were able to produce different morphologies of TiO2 nanomaterials with distinct phases: anatase TiO2 nanorod assemblies and rutile TiO2 NP. The two different TiO2 nanomaterials have different bandgaps and can be used to form semiconductor heterostructures. By combining rutile TiO2 NPs with DNAzymes, a type of synthetic functional nucleic acid, we created a photoactive molecular switch that worked by making and breaking heterostructures between the two TiO2 nanomaterials. We used DNAzymes specific to E. coli bacteria to develop a highly sensitive signal-on bacterial detection platform that was able to detect E. coli in lake water samples with an LOD of 18 CFU mL-1. Using catecholate-assisted photoreduction synthesis, we developed an efficient and novel method for decorating TiO2 NP with silver (Ag) NP. The resultant nanomaterial featured TiO2 NP surfaces modified with Hematoxylin (HTX) dyes and covered with sub-nanometer sized silver NP. The band structure of TiO2/HTX/Ag NP hybrid material involved high energy electron generation through decay of surface plasmons in the Ag NP and then enhancing the photoelectron injection process between HTX and TiO2. This significantly enhances the photoexcitation and photoabsorbtion, resulting in the material with the highest photocurrent generation as presented in this thesis. By taking advantage of thiol-metal bonds, we used the TiO2/HTX/Ag NP material system in the fabrication of a highly sensitive signal-off microRNA (prostate cancer biomarker) sensor with an LOD of 172 fM in urine. Special attention was paid to the design of PEC bioassays in this work so that they are miniaturized and easy to use, and thus suitable for PoC applications. Because PEC signal transduction generates ultrahigh signals compared to other transduction methods, it allows bioassay designs to remain simple without sacrificing performance. This allowed us to create bioassays with very few operational steps, that excel in reliability and ease-of-use. To further improve PoC capability, we explored multiplexing with the biosensor made from TiO2/HTX/Ag NP. Here we were able to demonstrate multiplexing with PEC signal transduction for the first time. Another major barrier to PEC biosensors becoming widespread is the requirement of large benchtop instrumentation such as potentiostats and light sources. To address this challenge, we designed a portable smartphone-interfacing potentiostat with a built-in LED light source to support PEC biosensing. This device, named the PECsense was as versatile as any commercial potentiostats, having features such as adjustable recording periods, variable illumination periods, automatic data processing and being able to record both anodic and cathodic photocurrents. The PECsense was demonstrated to be used successfully as a signal reader in a PEC DNA detection assay. Ultimately, we designed several ultrasensitive PEC biosensors used for the detection of four different diagnostic biomarkers. Combined with the exploration of miniaturized design, multiplexing and portable signal-reading, our designed PEC biosensors were made PoC-capable. The work in this thesis presented innovations in areas of nanotechnology, material synthesis, solid-state physics, biotechnology and embedded systems for the advancement of biomolecular detection and PoC diagnostics. / Thesis / Doctor of Philosophy (PhD) / Biosensors show great promise for use in point-of-care diagnostics and health monitoring systems. Such deceives combine biorecongition with signal transduction for analyzing biologically relevant targets. Photoelectrochemical (PEC) mode of signal reading, particularly those based on TiO2 nanomaterials, have shown great promise in delivering point-of-care biosensors that have excellent diagnostic performance. In this thesis, our goal was to develope new techniques for creating low-cost, easy-to-use and ultrasensitive photoelectrochemical biosensors. To achieve this goal, our work here can broadly be split into three objectives. Firstly, we focused on developing new material synthesis methods to improve traditional TiO2 nanomaterials so they can be more useful in PEC biosensors. These methods involved combining TiO2 with organic molecules known as catecholates and metal nanoparticles. This work created material systems that are able to generate high signals and more easily interface with biomolecules for improving PEC biosensor sensitivity. For the second objective, we used our newly developed enhanced TiO2 nanomaterials as the foundation for designing various bioassays for the detection of a wide range of different biological targets such as DNA, RNA, proteins and bacteria. This served to demonstrate the robustness of PEC signal reading as a tool for various markers of diseases. Despite PEC biosensors being a powerful tool in healthcare, they have seen very little commercial breakthrough, which can primarily be attributed to needing bulky benchtop instruments and light sources for signal reading. For the last objective, we worked on designing a handheld smartphone-operated signal-reader for PEC biosensing with its own built-in light source.
52

Low-Cost Smartphone-Operated Readout System for Point-of-Care Electrochemical and Photoelectrochemical Biosensing

Scott, Alexander January 2021 (has links)
Despite the increasing number of electrochemical and photoelectrochemical biosensors reported in the research literature, few have achieved success outside of a laboratory setting. This can partly be attributed to accessibility issues with commercially available readout instruments. Consequently, low-cost and portable readout instruments have been developed by researchers, but these devices fail to address other key compatibility and accessibility challenges. Much like the commercial systems, these devices are not natively compatible with multiplexed signal assays consisting of two or more working electrodes, cannot control optical excitation sources for photoelectrochemical biosensing, nor can they interface with auxiliary instruments such as heaters and electromagnets. To this end, we have developed a low-cost smartphone-operated electrochemical and photoelectrochemical readout system for point-of-care biosensing. Our readout system can perform standard voltammetric techniques and is capable of synchronously controlling an optical excitation source to support photoelectrochemical biosensing. This device is compatible with standard three-electrode assays as well as dual signal assays with two working electrodes. We have also created a portable sample heater that can be controlled by this readout system to facilitate on-site sample heating and have also integrated a portable electromagnet to perform away-from-lab magnetic manipulation. / Thesis / Master of Applied Science (MASc) / Early and prompt detection of disease biomarkers is crucial in order to develop effective disease management strategies. Unfortunately, many gold-standard diagnostic techniques for infectious diseases, cancers, heart diseases, among other conditions prove to be time-consuming, costly, and reliant on trained professionals in a laboratory setting. Electrochemical and photoelectrochemical detection are two sensing modalities that show promising potential for point-of-care applications, as they are easily miniaturized, inexpensive, and can be used to detect both the presence of and the amount of analyte present. However, up until now, these sensing modalities have mostly been confined to research settings. To expedite the commercialization of such sensors and to facilitate their translation to point-of-care diagnostics, we have developed a low-cost smartphone-operated electrochemical and photoelectrochemical readout system. Through the integration of peripheral instruments including a sample heater, electromagnet, and optical excitation source, this system is compatible with a number of different biosensors.
53

Non-stoichiometric Cu–In–S@ZnS nanoparticles produced in aqueous solutions as light harvesters for liquid-junction photoelectrochemical solar cells

Raevskaya, Alexandra, Rosovik, Oksana, Kozytskiy, Andriy, Stroyuk, Oleksandr, Dzhagan, Volodymyr, Zahn, Dietrich R. T. 06 March 2017 (has links) (PDF)
A direct “green” aqueous synthesis of mercapto acetate-stabilized copper indium sulfide (CIS) nanoparticles (NPs) and core/shell CIS@ZnS NPs of a varied composition under ambient conditions and a temperature lower than 100 °C is reported. The CIS@ZnS NPs can be anchored to the surface of nanocrystalline FTO/TiO2 films without additional purification or ligand exchange steps yielding visible-light-sensitive heterostructures ready for using as photoanodes in the liquid-junction solar cells. The highest photoelectrochemical activity in a three-electrode cell was demonstrated by a TiO2/CIS@ZnS heterostructure with atomic Cu : In : S and Zn : Cu ratios of 1 : 5 : 10 and 1 : 1. The optimized TiO2/CIS@ZnS photoanodes were tested in two-electrode solar cells with aqueous polysulfide electrolyte and TiO2/Cu2S heterostructures produced by a photo-assisted method as counter-electrodes. Under illumination by a 30 mW cm−2 xenon lamp, the optimized cells showed the average light conversion efficiency of 8.15%, the average open-circuit voltage of −0.6 V and the average fill factor of 0.42. The cells revealed excellent stability and reproducibility of photoelectrochemical parameters with around one percent variation of the light conversion efficiency around an average value for six identical solar cells. / Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
54

Oxydation thermique du chrome pur en atmosphère contrôlée : propriétés semiconductrices et structurales de la chromine / Pure chromium thermal oxidation in controlled atmosphere : chromia semiconducting and structural properties

Parsa, Yohan 08 November 2018 (has links)
La durabilité chimique des alliages métalliques résulte notamment de la nature des défauts ponctuels assurant le transport au travers du film d’oxydation formé en surface. L'élaboration de couches d'oxyde modèles par oxydation thermique en pression contrôlée et ALD (Atomic Layer Deposition) et l'étude de leurs propriétés semi conductrices (conditionnées par la nature des défauts ponctuels) devrait permettre une meilleure compréhension des mécanismes de formation de ces couches d'oxyde. / The chemical durability of the metal alloy results in particular from the nature of point defects providing transport through the oxidation film formed on the surface. Models oxide layers, grown by thermal oxidation and Alomic Layer Deposition, will be studied by photoelectrochemistry. This will provide us information about the semiconductive properties of the oxide, determined by the point defect in the oxide layer, and should allow us a better understanding of the formation mechanism of these oxide.
55

Etude (photo)-électrochimique en réacteur simulé du phénomène de shadow corrosion des alliages de zirconium / (Photo)-electrochemical study of the shadow corrosion phenomenon of zirconium alloys in simulated reactors

Skocic, Milan 27 May 2016 (has links)
Des méthodes électrochimiques classiques, et des caractérisations photoélectrochimiques (PEC), utiliséesex-situ et in-situ, ont permis d’étudier le phénomène de Shadow Corrosion, considéré ici comme une corrosion galvanique entre des alliages de zirconium et de nickel, corrosion influencée par l’environnement chimique et l’irradiation de ces alliages. Une cellule électrochimique simulant les conditions d’un réacteur à eau bouillante (REB), permettant l’illumination UV--Visible des échantillons et le contrôle de la chimie de l’eau, a été conçue, développée et validée. Cette cellule a permis de mesurer pour la première fois des spectres en énergie de photocourant d’un alliage de zirconium, in-situ en milieu REB simulé. Par ailleurs, les résultats expérimentaux obtenus tendent à montrer que les impuretés de type cations métalliques jouent un rôle important dans le mécanisme d’activation du couplage galvanique, donc potentiellement dans le mécanisme d’activation du phénomène de Shadow Corrosion, alors que la présence d’oxygène et/ou de peroxyde d’hydrogène n’induit pas de différences significatives du comportement électrochimique des échantillons. Il est montré également que l’illumination UV--Visible des échantillons, qui amplifie notablement les courants de couplage, est un paramètre important du phénomène de Shadow Corrosion. / Conventional electrochemical methods as well as photoelectrochemical characterisations (PEC), performedex-situ et in-situ, were used to study the Shadow corrosion phenomenon, considered as a galvanic corrosion between Zr-based and Ni-based alloys. The Shadow corrosion is influenced by the chemical environment and the irradiation of these alloys. An electrochemical cell , simulating the conditions of a boiling water reactor (BWR), allowing the illumination of the samples with UV--Visible as well as monitoring the water chemistry was designed, developed and validated. The cell allowed, for the first time, recording of emph{in-situ} photocurrent energy spectra on a Zr-based alloy in simulated BWR environment. Furthermore, the obtained experimental results pointed out that the metallic cation impurities played an important role in the activation mechanism of the galvanic coupling, thus potentially in the activation mechanism of the Shadow corrosion phenomenon, whereas the presence oxygen and/or hydrogen peroxide did not induce significant differences in terms of electrochemical behavior of the samples. It was also shown that the illumination of the sample with UV--visible light, which significantly amplified the galvanic current, is an important parameter of the Shadow corrosion phenomenon.
56

Etude du comportement d'un alliage chromino-formeur comme matériau d'interconnecteur pour l'Electrolyse à Haute Température / Study of a chromia-forming alloy behavior as interconnect material for High Temperature Vapor Electrolysis

Guillou, Sebastien 01 December 2011 (has links)
Dans les systèmes d’Electrolyse Haute Température (EHT), le matériau choisi comme interconnecteur doit avoir une bonne résistance à la corrosion sous air et sous mélange H2/H2O à 800 °C, et maintenir une bonne conductivité sur de longues durées. Dans ce cadre, l’objectif de ce travail était, d’une part, d’évaluer un alliage ferritique commercial (l’alliage K41X) comme matériau d’interconnecteur pour l’application EHT. Dans ce but, ont été mis en place des essais d’oxydation en four et en thermoblance pour accéder aux cinétiques d’oxydation, et des mesures de résistivité pour évaluer le paramètre ASR (Area Specific Resistance) à 800°C. D’autre part, l’étude a permis d’apporter des éléments de compréhension plus fondamentaux sur les mécanismes d’oxydation des alliages chromino-formeurs, en particulier sous mélange H2-H2O, par le biais d’essais et de caractérisations spécifiques (Photoélectrochimie, traçage isotopique, essais de longues durées). Cette double stratégie est également appliquée pour l’étude d’une solution de revêtement (obtenu à l’aide de la MOCVD) basée sur l’oxyde pérovskite LaCrO3 qui présente des propriétés de conductivité élevée particulièrement intéressante en vue de l’application EHT. Ainsi, cette étude amène également des éléments de compréhension sur le rôle du lanthane comme élément réactif dont l’effet est souvent discuté dans la littérature. Pour les deux milieux, à 800°C, la couche d’oxyde formée est une couche duplexe Cr2O3/(Mn,Cr)3O4 , recouverte dans le cas du mélange H2-H2O par une fine couche d’oxyde spinelle Mn2TiO4 . Sous air, le mécanisme de croissance déterminé ici est cationique, en accord avec la littérature. La présence d’un revêtement LaCrO3 ne modifie pas ce mécanisme mais ralentit la cinétique de croissance de la couche sur les premières centaines d’heure. De plus, le revêtement améliore l’adhérence et la conductivité de la couche d’oxyde. Sous mélange H2-H2O, le mécanisme de croissance se révèle anionique. La présence de revêtement ralentit la cinétique d’oxydation. Bien que .d’épaisseurs similaires, les couches d’oxyde présentent sous air une résistivité d’un ordre de grandeur inférieure à celle mesurée sous H2-H2O. Il est mis en évidence que la forte résistivité de l’alliage en milieu H2-H2O est liée à la présence de protons issus de la vapeur d’eau présents dans la couche d’oxyde. Le revêtement ne permet néanmoins pas d améliorer la conductivité sous H2-H2O. / In High Temperature Vapor Electrolysis (HTVE) system, the materials chosen for the interconnectors should have a good corrosion behaviour in air and in H2-H2O mixtures at 800°C, and keep a high electronic conductivity over long durations as well. In this context, the first goal of this study was to evaluate a commercial ferritic alloy (the K41X alloy) as interconnect for HTVE application. Oxidation tests in furnace and in microbalance have therefore been carried out in order to determine oxidation kinetics. Meanwhile, the Area Specific Resistance (ASR) was evaluated by Contact Resistance measurements performed at 800°C. The second objective was to improve our comprehension of chromia-forming alloys oxidation mechanism, in particular in H2/H2O mixtures. For that purpose, some specific tests have been conducted: tracer experiments, coupled with the characterization of the oxide scale by PEC (PhotoElectroChemistry). This approach has also been applied to the study of a LaCrO3 perovskite oxide coating on the K41X alloy. This phase is indeed of high interest for HTVE applications due to its high conductivity properties. This latter study leads to further understanding on the role of lanthanum as reactive element, which effect is still under discussion in literature.In both media at 800°C, the scale is composed of a Cr2O3/(Mn,Cr)3O4 duplex scale, covered in the case of H2-H2O mixture by a thin scale made of Mn2TiO4 spinel. In air, the growth mechanism is found to be cationic, in agreement with literature. The LaCrO3 coating does not modify the direction of scale growth but lowers the growth kinetics during the first hundreds hours. Moreover, with the coating, the scale adherence is favored and the conductivity appears to be slightly higher. In the H2-H2O mixture, the growth mechanism is found to be anionic. The LaCrO3 coating diminishes the oxidation kinetics. Although the scale thickness is about the same in both media, the ASR parameter is one order of magnitude higher in H2/H2O than in air. Specific contact resistance tests show that the higher resistivity in the H2/H2O mixture is closely linked to the presence of protons in the scale. Moreover, tracer experiments show that these protons come from the water molecule dissociation, and not from the H2 molecule. In H2/H2O, the LaCrO3 coating does not increase the conductivity
57

Využití porézní aluminy pro přípravu nanostrukturovaných vrstev a jejich fotoelektrochemické a optické aplikace / Utilization of porous anodic alumina for fabrication of nanostructured layers and their photoelectrochemical and optical applications

Lednický, Tomáš January 2021 (has links)
Porézní anodická alumina (PAA) je oxidová vrstva vytvořená anodickou oxidací hliníku, která má široké průmyslné využití. Její popularita zaznamenala exponenciální nárůst zejména v oblasti nanotechnologií, k čemu přispělo objevení jejího samouspořádání do struktury o nanorozměrech připomínající včelí plástev. Její jednoduchá příprava a laditelné vlastnosti z ní tvoří levný způsob výroby nanostruktur. Ve stejném duchu se tato disertační práce zabývá metodami přípravy funkčních nanostruktur za využití PAA. První část je zaměřena na výrobu pole nanosloupců z oxidu titaničitého (TiO2) a jejich možné použití jako fotoanody pro štěpení vody. TiO2 nanostloupce jsou tvořeny anodizací hliníkové vrstvy na titanovém substrátu, také nazývanou PAA-asistovaná anodizace. Táto studie demonstruje elektrochemické vlastnosti a fotoelektrochemickou aktivitu nano sloupců vytvořených z dusíkem obohacených substrátů, které byly následně různě termálně modifikovány. Hlavním poznatkem studie je, že špatné vlastnosti jsou způsobeny dutou morfologií nanosloupců. Tento poznatek vedl k rozsáhle studii zabývající se dopadem anodizačných podmínek na morfologii ale i stabilitu vytvořených nanosloupců, jejímž výsledkem byla nová strategie anodizace. Druhá část prezentuje výrobní proces přípravy uspořádané vrstvy zlatých nanočástic na transparentním substrátu pro jejich použití jako optického senzoru využívající efekt rezonance lokalizovaných povrchových plasmonů. Základem této multidisciplinární metody je využití kombinace samouspořádání PAA k výrobě šablony a následného procesu řízeného smáčení v pevné fázi tenké vrstvy zlata. Táto práce detailně popisuje technologické aspekty přípravy; od samotné výroby šablon z hliníku, přes vytváření zlatých nanočástic, až po jejich přenos na transparentní substrát. Na závěr této práce jsou kompozity z nanočástic charakterizovány, přičemž je porovnána jejich citlivost na změnu indexu lomu okolí a jejich stálost. Ze závěrů vyplývá, že tato poměrně velkoplošná a levná metoda je konkurence schopná i v oblasti senzorické citlivosti.
58

Photoelectrochemical Investigations of Semiconductor Nanoparticles and Their Application to Solar Cells

Poppe, J., Hickey, Stephen G., Eychmüller, A. January 2014 (has links)
No / The objective of this review is to provide an overview concerning what the authors believe to be the most important photoelectrochemical techniques for the study of semiconductor nanoparticles. After a short historical background and a brief introduction to the area of photoelectrochemistry, the working principles and experimental setups of the various static and dynamic techniques are presented. Experimental details which are of crucial importance for their correct execution are emphasized, and applications of the techniques as found in the recent research literature as applied to semiconductor nanoparticles are illustrated.
59

Synthesis and characterization of catalysts for photo-oxidation of water

Sheth, Sujitraj 11 December 2013 (has links) (PDF)
Artificial photosynthesis is often considered to have great potential to provide alternative, renewable fuels by harvesting, conversion and storage of solar energy. One promising approach is the development of modular molecular photocatalysts inspired by natural photosynthetic enzymes. The first part of this thesis deals with artificial mimics of the water oxidizing photosystem II composed of a chromophore and an electron relay as synthetic counterpart of the P680-TyrZ/His190 ensemble of photosystem II. Three ruthenium polypyridyl - imidazole - phenol complexes with varying position of a methyl group on the phenol ring (Ru-xMe) were synthesized and characterized by electrochemical and photophysical methods. As an improvement compared to earlier complexes the increased redox potential (~0.9 V vs. Ferrocene) of the phenol groups makes their function as an electron relay in a photocatalytic system for water oxidation thermodynamically possible. Time-resolved absorption studies revealed fast intramolecular electron transfer (<5-10 µs in aprotic solvent and <100 ns in water) despite the low driving force and the importance of the hydrogen bond between the phenol and the imidazole group was put in evidence. Slight differences between the three Ru-xMe complexes and investigation of the effect of external bases allowed to derive a mechanistic picture in which the imidazole is involved in a "proton domino" reaction. Accepting the phenolic proton upon ligand oxidation (within the H-bond) renders its second nitrogen site more acidic and only deprotonation of this site pulls the overall equilibrium completely towards oxidation of the ligand. Another part of this thesis comprises a chromophore-tryptophan construct synthesized using a click chemistry approach. Light-induced oxidation of Trp in this Ru-tryptophan complex was shown to follow ETPT mechanism. Depending on the pH conditions tryptophan radicals, either Trp* or TrpH*⁺ were detected and spectral measurement at different time showed the transition between the two forms. Deprotonation of the radical was dependent on the concentration of water as proton acceptor. Later part of the thesis deals with efforts to covalently bind a catalytic unit to the previously characterized chromophore-electron relay module. The click chemistry approach was not successful to obtain the final photocatalytic assembly. Therefore bimolecular activation of a Mn salen catalyst was performed and formation of Mn(IV) species was observed. As a step towards utilization of these types of photocatalysts in a photoelectrochemical cell a [Ru(bpy)₃]²⁺ chromophore with phosphonate anchoring groups (Ru-Phosphonate) was synthesized and grafted on the surface of a TiO₂ mesoporous semiconductor surface anode to perform photocurrent measurements.
60

Caractérisation photoélectrochimique d'oxydes thermiques développés sur métaux et alliages modèles / Photoelectrochemical characterization of thermal oxide developed on metal and model alloys

Srisrual, Anusara 05 July 2013 (has links)
La Corrosion Haute Température (HTC), en environnements divers et sévères, d'alliages métalliques toujours plus élaborés en termes de composition et micro-structure, est un sujet industriel et scientifique très complexe. La PhotoElectroChimie (PEC) est une technique de choix pour caractériser les propriétés physico-chimiques et électroniques des couches d'oxydation très hétérogènes formées en HTC. Sur des exemples d'alliages modèles mais représentatifs de la réalité industrielle (aciers duplex, base-Nickel 690), ce travail présente le développement et la validation d'un dispositif expérimental permettant d'appliquer pour la première fois tout l'arsenal des techniques PEC à l'échelle mésoscopique (typiquement 30 µm), ainsi que la validation d'une modélisation originale développée au SIMaP des spectres de photocourants en énergie, qui permet de les décrire et ajuster finement et d'en extraire notamment avec précision les gaps des oxydes semiconducteurs présents dans la couche thermique. / High Temperature Corrosion (HTC), in various and severe atmospheres, of continually more elaborated (composition, micro–structure) metallic alloys, is a rather complex industrial and scientific topic. PhotoElectroChemistry (PEC) acquired a special place in the characterization of physico–chemical and electronic properties of the highly heterogeneous oxidation layers formed in HTC. Through studies of model but industrially representative samples (duplex stainless steel, Ni–base alloy 690), this work presents the development and validation of an experimental set–up allowing for the first time to use the whole set of PEC techniques at the mesoscopic level (typically 30 µm), as well as the validation of an original model of photocurrent energy spectra, developed at SIMaP, allowing to well describe, and accurately fit the latter spectra, and thus yielding, notably, precise bandgap values for the semiconducting components of the thermal scale.

Page generated in 0.0764 seconds