Spelling suggestions: "subject:"photoemission spectroscopy"" "subject:"photoemissions spectroscopy""
41 |
Characterization of Self-Assembled Monolayers of Oligo(phenyleneethynylene) Derivatives on GoldWatcharinyanon, Somsakul January 2007 (has links)
Oligo(phenyleneethynylene) (OPE) molecules are a class of fully conjugated aromatic molecules, that attract attention for their application as “molecular wires” in molecular electronic devices. In this thesis work, self-assembled monolayers (SAMs) formed from a variety of OPE derivatives have been studied. The chemical properties, structure, and packing density of the SAMs have been characterized utilizing techniques such as high-resolution X-ray photoemission spectroscopy (HRXPS), near-edge X-ray absorption fine structure spectroscopy (NEXAFS), Infrared reflection absorption spectroscopy (IRRAS), contact angle measurements, and atomic force microscopy (AFM). In a first study, three OPE-derivatives, with benzene, naphthalene and anthracene, respectively, inserted into the backbone, and an acetyl-protected thiophenol binding group were found to form SAMs on Au(111) substrates with lower molecular surface densities and larger molecular inclination as the lateral π-system increases. In a second study, porphyrin was introduced as the end group to a wire-like molecule such as OPE. The purpose was to obtain well-organized and functionalized surfaces with optical and redox properties. Three porphyrin-functionalized OPEs had different binding groups, an acetyl-protected thiophenol, a benzylic thiol, and a trimethylsilylethynylene group, and were found to form SAMs on gold surfaces with difference in structure and degree of order. The molecules with the acetyl-protected thiophenol binding group were found to form a high quality SAM compared to the other two. This SAM exhibits a well-ordered and densely packed layer. This study gives rise to a better understanding of SAM formation of OPE derivatives, and will form a base for further investigations of charge transport properties of these molecular films, which is of interest for applications in molecular electronic devices.
|
42 |
Core Level Spectroscopy of Water and IceNordlund, Dennis January 2004 (has links)
A core level spectroscopy study of ice and water is presented in this thesis. Combining a number of experiments and spectrum calculations based on density functional theory, changes in the local valence electronic structure are shown to be sensitive to the local H-bonding configurations. Exploiting this sensitivity, we are able to approach important scientific problems for a number of aggregation states; liquid water, the water-metal interface, bulk and surface of hexagonal ice. For the H-bonded model system hexagonal ice, we have probed the occupied valence electronic structure by x-ray emission and x-ray photoelectron spectroscopy. Stepwise inclusion of different types of interactions within density functional theory, together with a local valence electron population analysis, show that it is essential to include intermolecular charge transfer together with internal s-p rehybridizations in order to describe the changes in electronic structure seen in the experiment. The attractive electrostatic interaction between water molecules is enhanced by a decrease in Pauli repulsion. A simple electrostatic model due to charge induction from the surrounding water is unable to explain the electronic structure changes. By varying the probing depth in x-ray absorption the structure of the bulk, subsurface and surface regions is probed in a thin ice film. A pronounced continuum for fully coordinated species in the bulk is in sharp contrast to the spectrum associated with a broken symmetry at the surface. In particular molecular arrangements of water with one uncoordinated OH group have unoccupied electronic states below the conduction band that are responsible for a strong anisotropic pre-edge intensity in the x-ray absorption spectrum. The topmost layer is dominated by an almost isotropic distribution of these species, which is inconsistent with an unrelaxed surface structure. For liquid water the x-ray absorption spectrum resembles that of the ice surface, indicating a domination of species with broken hydrogen bond configurations. The sensitivity to the local hydrogen bond configuration, in particular the sensitivity to broken bonds on the donor side, allows for a detailed analysis of the liquid water spectrum. Most molecules in liquid water are found in two-hydrogen-bonded configurations with one strong donor and one strong acceptor hydrogen bond. The results, consistent with diffraction data, imply that most molecules are arranged in strongly H-bonded chains or rings embedded in a disordered cluster network. Molecular dynamics simulations are unable to describe the experimental data. The water overlayer on the close-packed platinum surface is studied using a combination of core-level spectroscopy and density functional theory. A new structure for water adsorption on close-packed transition metal surfaces is found, where a weakly corrugated non-dissociated overlayer interacts via alternating oxygen-metal and hydrogen-metal bonds. The latter results from a balance between metal-hydrogen bond formation and OH bond weakening. The ultrashort core-hole lifetime of oxygen provides a powerful probe of excited state dynamics via studies of the non-radiative or radiative decay following x-ray absorption. Electrons excited into the pre-edge state for single donor species at the ice surface remain localized long enough for early time solvation dynamics to occur and these species are suggested as strong pre-existing traps to the hydrated electron. Fully coordinated molecules in the bulk contribute to a strong conduction band with electron transfer times below 0.5 femtoseconds. Upon core-ionization, both protons are found to migrate substantial distances on a femtosecond timescale. This unusually fast proton dynamics for non-resonant excitation is captured both by theory and experiment with a measurable isotope effect.
|
43 |
Self-assembled molecular arrays of distinct types of substituted metal phthalocyanines on crystalline metal substratesToader, Marius 29 November 2012 (has links) (PDF)
Trotz einer Vielzahl von Forschungsarbeiten auf dem Gebiet der Phthalocyanin-basierten organischen Verbindungen fehlt nach wie vor ein umfassendes Verständnis des Zusammenspiels zwischen strukturellen und elektronischen Eigenschaften, die sich bei der Abscheidung dieser Stoffe auf anorganische kristallinen Substraten ausbilden. Vor diesem Hintergrund wurden für die vorliegende Arbeit vier metallbasierte Phthalocyanine ausgewählt und mittels organischer Molekularstrahl-Abscheidung (OMBD) im Ultrahochvakuum (UHV) auf Ag (111) Einkristalle adsorbiert. Für die anschließende eingehende Untersuchung dieser Proben wurden insbesondere Rastertunnelmikroskopie (STM) und -spektroskopie (STS) angewandt. Ergänzend kamen Ultraviolett- und Röntgen-Photoelektronenspektroskopie (UPS und XPS) zum Einsatz, wodurch komplementäre Informationen gewonnen wurden. Die aus diesen Untersuchungen resultierenden Ergebnisse liefern einen wesentlichen Beitrag zum oben genannten Forschungsgebiet.
Die in dieser Arbeit untersuchten Metall-Phthalocyanine (MePc) wurden so ausgewählt, dass eine möglichst große Vielfalt an geometrischen und elektronischen Eigenschaften abgedeckt wurde.
Planare cobaltbasierte Phthalocyanin-Moleküle wurden in zwei Konfigurationen untersucht: einerseits das protonierte CoPc, das sich als organischer p-Halbleiter verhält, und andererseits das vollständig fluorinierte F16CoPc, das n-Halbleitereigenschaften besitzt. Bei beiden Systemen zeigte sich an der Position des Cobaltions eine Kopplung zwischen den Molkülorbitalen des Adsorbats und den Elektronenzuständen des Substrates.
Das nichtplanare Zinn-Phthalocyanin ist von besonderem Interesse aufgrund seiner beiden möglichen Adsorptionskonformationen up und down, bei denen sich das Sn-Ion oberhalb beziehungsweise unterhalb des Phthalocyaninliganden befindet. Damit stellt dieses System einen möglichen Kandidaten für Anwendungen als molekularer Schalter oder als Speichereinheit dar. In der vorliegenden Studie werden lokalisierte Schaltvorgänge einzelner Moleküle zusammen mit der Möglichkeit einer kontrollierten molekularen Nanostrukturierung gezeigt.
Lutetium (III) bisphthalocyanin wurde ausgewählt als Vertreter einer neuen Gruppe von MePc, die eine Sandwichstruktur ausbilden, bei der zwei π-konjugierte Phthalocyaninliganden über ein Seltenerd-Ion miteinander verbunden sind. Die Untersuchung dieses Systems liefert wichtige neue Erkenntnisse, wie zum Beispiel ein umfassendes Verständnis der Vorgänge bei der Selbstassemblierung innerhalb der ersten und zweiten organischen Monolage. Zudem wurde bei der Charakterisierung des Tunneltransports durch einzelne Moleküle mittels STS ein negativer differentieller Widerstand (NDR) gefunden, der von der Anzahl molekularer Lagen abhängt.
|
44 |
Chalcogen modification of GaAs(100) surfaces and metal/GaAs(100) contactsHohenecker, Stefan 24 March 2002 (has links) (PDF)
Der Einfluss der Modifikation der technologisch relevanten GaAs(100) Oberfläche durch Chalkogene, i.e. Selen, Schwefel und Tellur, wird in dieser Arbeit untersucht. Es wird ein Modell vorgestellt, das die Eigenschaften der modifizierten Oberfläche beschreibt. In einem zweiten Schritt werden die so modifizierten Oberflächen mit Metallen unterschiedlicher Reaktivität und verschiedenen Elektronegativitäten bedampft. Die Bandbreite dieser Eigenschaften wird durch die Metalle Indium und Silber, das Alkalimetall Natrium, das Erdalkalimetall Magnesium und das Halbmetall Antimon abgebildet. Die Untersuchung des Einflusses der Chalkogene auf die chemischen Eigenschaften und die Barrierenhöhe der Metall/GaAs(100) Grenzfläche bilden einen weiteren Schwerpunkt. Die Änderung der Barrierenhöhe wird dabei mit Hilfe des Modells metallinduzierter Bandlückenzustände (metal induced gap states) erklärt. Als experimentelle Techniken werden Photoemissionsspektroskopie, Raman Spektroskopie und Strom-Spannungsmessungen verwendet. / The influence of a modification of the technological relevant GaAs(100) surface by chalcogens, i.e. selenium, sulphur and tellurium, is evaluated in this work. A model is proposed, which describes the properties of the modified surface. In a second step metals of different reactivity and electronegativity have been evaporated onto these modified surfaces. Among these materials were the metals indium and silver, the alkali metal sodium, the earth alkali metal magnesium and the half metal antimony. The investigation of the influence of chalcogens on the chemical properties and the barrier height of the metal/GaAs(100) interface is another point of interest. The change in barrier height is explained by the model of metal induced gap states (MIGS). Photoemission spectroscopy, Raman spectroscopy and current-voltage-measurement have been used as experimental techniques.
|
45 |
Cohesive and Spectroscopic properties of the Lanthanides within the Hubbard I ApproximationLocht, Inka Laura Marie January 2015 (has links)
We describe the rare-earth elements using the Hubbard I approximation. We show that the theory reproduces the cohesive properties, like the volume and bulk modulus, and we find an excellent agreement between theory and experiment for the (inverse) photo emission spectra of the valence band. In addition we reproduce the spin and orbital moments of these elements. This licentiate thesis contains an introduction to the cohesive, magnetic and spectral properties of the rare-earth elements, to density functional theory and to density functional theory in combination with dynamical mean-field theory within the Hubbard I approximation. We also focus on some technical details, e.g. the optimal basis used in the electronic structure code and the role of charge self-consistency in properly describing the valence electrons.
|
46 |
Investigation of structural properties in biomolecular systems using synchrotron-based spectroscopiesKummer, Kurt 11 August 2010 (has links) (PDF)
Solid state approaches to structural properties like diffraction or microscopy techniques often cannot be applied to biomolecular systems, at least not without special postpreparation which often corrupts the desired properties of the pristine systems. In this work the capabilities of synchrotron-based, soft X-ray spectroscopies as an alternative way to unravel structural properties of such systems are tested. To this end, three exemplary systems were investigated each with the focus on another facet and characteristic length scale. The first example are DNA-alkanethiol self-assembled monolayers, also known as DNA microarrays or DNA chips, for which a way to monitor and controllably tune the structural composition on the mesoscopic scale of many thousands of molecules was sought for. The second example focuses on the single-molecule and submolecular scale in metalprotein hybrid compounds with the aim to identify the binding site of metal atoms or ions within protein molecules and the underlying interaction mechanisms. The most fundamental structural scale, the level of single bonds and molecular orbitals, is addressed in the last example where it was tried to elaborate an approach to map the topology of molecular orbitals based upon X-ray absorption properties. This approach was put to the practical test for the characteristic pi*peptide orbitals in protein backbones. For all three investigated examples, spectroscopies using soft X-ray synchrotron radiation were able to extract the desired information, thus confirming that they may grant alternative access to structural properties of soft-matter systems in cases where standard approaches fail. / Klassische Festkörpertechniken zur Strukturuntersuchung, wie Streu- oder Mikroskopiemethoden, können häufig nicht auf Biomolekülsysteme angewandt werden, zumindest nicht ohne spezielle Postpräparation, die die ursprünglichen Eigenschaften dieser Systeme oft verfälscht. In dieser Arbeit soll untersucht werden, inwieweit Röntgenspektroskopien basierend auf Synchrotronstrahlung einen alternativen Zugang zu Struktureigenschaften solcher Systeme bieten. Dazu wurden drei Systeme exemplarisch untersucht, jeweils mit Schwerpunkt auf einen anderen Aspekt und charakteristischen Längenbereich. Für selbstorganisierende DNA-Alkanthiol-Schichten, sogenannte DNA-Chips, wurde nach eine Weg gesucht, ihre strukturelle Zusammensetzung auf der mesoskopischen Ebene vieler tausend Moleküle zu bestimmen und kontrolliert zu modifizieren. Metallisierte Proteinstrukturen wurden auf Einzelmolekül- bzw. submolekularer Ebene untersucht, mit dem Ziel, die Orte der Metallanlagerung innerhalb des Proteins und die zugrundeliegenden Wechselwirkungsmechanismen zu identifizieren. Die unterste strukturelle Ebene, der Bereich einzelne Bindungen und Molekülorbitale, wurde adressiert am Beispiel der pi*peptide Orbitale des Proteinrückrats. Dafür wurde eine Methode zur Kartographierung einzelner Orbitale anhand von Röntgenabsorptionseigentschaften herausgearbeitet und praktisch getestet. In allen drei Fällen konnten Röntgenspektroskopien die nötigen Informationen liefern und damit ihr Potential für Strukturuntersuchungen in weicher Materie unter Beweis stellen.
|
47 |
Změny elektronické struktury bimetalických systémů při interakci s molekulami plynu / Electronic structure of bimetallic systems - study of gas molecule interactionPíš, Igor January 2013 (has links)
Bimetallic Rh-V system was studied by means of surface science experimental methods. Properties of ultra-thin Rh-V layers supported by γ-Al2O3 were compared with model systems prepared by vacuum V deposition on Rh(111), Rh(110) and polycrystalline rhodium. Formation of ordered V- Rh(111)-(2×2), V-Rh(110)-(2×1) and V-Rh(110)-(1×2) subsurface alloys and their electronic and atomic structure were investigated and models of the surface reconstructions were proposed. Influence of the subsurface alloy formation on interaction with CO and O2 molecules as well as the influence of the molecule adsorption on this alloy was investigated. The bond between CO molecules and Rh-V alloy surface was weakened due to pronounced changes in surface valence band structure. Oxygen which adsorbed on the alloy surface reacted with the subsurface vanadium at elevated temperature and blocked the interaction of the metal substrate with CO molecules.
|
48 |
Internal Structure and Self-Assembly of Low Dimensional MaterialsMukherjee, Sumanta January 2013 (has links) (PDF)
The properties of bulk 3D materials of metals or semiconductors are manifested with various length scales(e.g., Bohr excitonic radius, magnetic correlation length, mean free path etc.) and are important in controlling their properties. When the size of the material is smaller than these characteristics length scales, the confinement effects operate reflecting changes in their physical behavior. Materials with such confinement effects can be designated as low dimensional materials. There are exceedingly large numbers of low dimensional materials and the last half a century has probably seen the maximum evolution of such materials in terms of synthesis, characterization, understanding and modification of their properties and applications. The field of” nanoscience and nanotechnology”, have become a mature field within the last three decades where, for certain application, synthesis of materials of sizes in the nanometer range can be designed and controlled.
Interface plays a very important role in controlling properties of heterogeneous material of every dimensionality. For example, the interface forms in 2D thin films or interface of heterogeneous nanoparticles(0D). In recent times, a large number of remarkable phenomena have triggered understanding and controlling properties arises due to nature of certain interface. In the field of nanoparticles, it is well known that the photoluminescence property depends very strongly on the nature of interface in heterostructured nanoparticles. In the recent time a large variety of heterostructured nanoparticles starting from core-shell to quantum dot-quantum well kind has been synthesized to increase the photoluminescence efficiency up to 80%. Along with improvement of certain properties due to heterostructure formation inside the nanoparticles, the techniques to understand the nature of those interfaces have improved side by side. It has been recently shown that variable energy X-ray Photoemission Spectroscopy (XPS) can be employed to understand the nature of interfaces (internal structure) of such heterostructure nanoparticles in great detail with high accuracy. While most of the previous studies of variable energy XPS, uses photonenergies sensitive to smaller sized particle, we have extended the idea of such nondestructive approach of understanding the nature of buried interfaces to bigger sized nanoparticles by using photon energy as high as 8000eV, easily available in various 3rd generation synchrotron centers.
The nature of the interface also plays an important role in multilayer thin films. Major components of various electronic devices, like read head memory devices, field effect transistors etc., rely on interface properties of certain multilayer thin film materials. In recent time wide range of unusual phenomenon such as high mobility metallic behavior between two insulating oxide, superconductivity, interface ferroelectricity, unusual magnetism, multiferroicity etc. has been observed at oxide interface making it an interesting field of study. We have shown that variable energy photoemission spectroscopy with high photon energies, can be a useful tool to realize such interfaces and controlling the properties of multilayered devices, as well as to understand the origin of unusual phenomenon exists at several multilayer interfaces.
Chapter1 provides a brief description of low dimensional materials, overall perspective of interesting properties in materials with reduced dimensionality. We have emphasized on the importance of determining the internal structure of buried interface of different dimensionalities. We have given a brief overview and importance of different interfaces that we have studied in the subsequent chapters dealing with specific interfaces. Chapter 2 describes experimental and theoretical methods used for the study of interface and self-assembly reported in this thesis. These methods are divided into two categories. The first section deals with different experimental techniques, like, UV-Visible absorption and photoluminescence spectroscopy, X-Photoelectron Spectroscopy(XPS), X-Ray diffraction, Transmission Electron Microscopy(TEM) etc. This section also includes brief overview on synchrotron radiation and methods used for detail analysis of interface structure using variable energy XPS. In the second part of this chapter, we have discussed theoretical methods used in the present study. \
In Chapter 3A we have combined low energy XPS, useful to extract information of the surface of the nanoparticles, with high energy XPS, important to extract bulk information and have characterized the internal structure of nanoparticle system of different heterogeneity. We have chosen two important heterostructure systems namely, inverted core-shell(CdScore-CdSeshell) type nanoparticles and homogeneous alloy(CdSeS)type nanoparticles. Such internal structure study revealed that the actual internal structure of certain nanomaterial can be widely different from the aim of the synthesis and knowledge of internal structure is a prerequisite in understanding their property. We were able to extend the idea of variable energy XPS to higher energy limit. Many speculations have been made about the probable role of interface in controlling properties, like blinking behavior of bigger sized core-shell nanoparticles, but no conclusive support has yet been given about the nature of such interface. After successfully extending the technique to determine the internal structure of heterostructured nanoparticles to very high photon energy region, we took the opportunity to determine the internal structure of nanoparticles of sizes as large as 12nm with high energy photoemission spectroscopy for the first time.
In Chapter 3B we emphasize on the importance of interface structure in controlling the behavior of bigger sized nanoparticles systems, the unsettled issues regarding their internal structure, and described the usefulness of high energy XPS in elucidating the internal structure of such big particles with grate accuracy to solve such controversies.
The existence of high density storage media relies on the existence of highly sensitive magnetic sensors with large magnetoresistance. Today almost all sensor technologies used in modern hard disk drives rely on tunnel magnetoresistance (TMR)
CoFeB-MgO-CoFeB structures. Though device fabrication is refined to meet satisfactory quality assurance demands, fundamental understanding of the refinement in terms of its effect on the nature of the interfaces and the MgO tunnel barrier leading to improved TMR is still missing. Where, the annealing condition required to improve the TMR ratio is itself not confirmatory its effect on the interface structure is highly debatable. In particular, it has been anticipated that under the proposed exotic conditions highly mobile B will move into the MgO barrier and will form boron oxide. In Chapter 4 we are able to shed definite insights to heart of this problem. We have used high energy photoemission to investigate a series of TMR structures and able to provide a systematic understanding of the driving mechanisms of B diffusion in CoFeBTMR structures. We have solved the mix-up of annealing temperature required and have shown that boron diffusion is limited merely to a sub-nanometer thick layer at the interface and does not progress beyond this point under typical conditions required for device fabrication. We have given a brief overview on the evolution of magnetic storage device and have described various concepts relevant for the study of such systems.
The interface between two nonmagnetic insulators LaAlO3 and SrTiO3 has shown a variety of interface phenomena in the recent times. In spite of a large number of high profile studies on the interface LaAlO3 and SrTiO3 there is still a raging debate on the nature, origin and the distribution of the two dimensional electron gas that is supposed to be responsible for its exotic physical properties, ranging from unusual transport properties to its diverse ground states, such as metallic, magnetic and superconducting ones, depending on the specific synthesis. The polar discontinuity present across the SrTiO3-LaAlO3 interface is expected to result in half an electron transfer from the top of the LaAlO 3 layer to each TiofSrTiO3 at the interface, but, the extent of localization that can make it behave like delocalized with very high mobility as well as localized with magnetic moments is not yet clear. In Chapter 5 we have given a description of this highly interesting system as well as presented the outcome of our depth resolved XPS investigation on several such samples synthesized under different oxygen pressure. We were able to describe successfully the distribution of charge carriers.
While synthesizing and understanding properties of nanoparticles is one issue, using them for device fabrication is another. For example, to make a certain device often requires specific arrangements of nanoparticles in a suitable substrate. Self-assembly formation can be a potential tool in these regards. Just like atom or ions, both nano and colloidal particles also assemble by themselves in ordered or disordered structure under certain conditions, e.g., the drying of a drop of suspension containing the colloid particles over a TEM grid. This phenomenon is known as self-assembly. Though, the process of assembly formation can be a very easy and cost-effective technique to manipulate the properties in the nano region, than the existing ones like lithography but, the lack of systematic study and poor understanding of these phenomena at microscopic level has led to a situation that, there is no precise information available in literature to say about the nature of such assembly.
In Chapter 6 we have described experiments that eliminate the dependence of the self-assembly process on many complicating factors like substrate-particle interaction, substrate-solvent interaction etc., making the process of ordering governed by minimum numbers of experimental parameter that can be easily controlled. Under simplified conditions, our experiments unveil an interesting competition between ordering and jamming in drying colloid systems similar to glass transition phenomenon
Resulting in the typical phase behavior of the particles. We establish a re-entrant behavior in the order-disorder phase diagram as a function of particle density such that there is an optimal range of particle density to realize the long-range ordering. The results are explained with the help of simulations and phenomenological theory.
In summary, we were able to extend the idea of variable energy XPS to higher energy limit advantageous for investigating internal structure of nonmaterial of various dimensionalities and sizes. We were able to comprehend nature of buried interface indicating properties of heterostructures quantum dots and thin films. Our study revealed that depth resolved XPS combined with accessibility of high and variable energies at synchrotron centers can be a very general and effective tool for understanding buried interface. Finally, we have given insight to the mechanism of spontaneous ordering of nanoparticles over a suitable substrate.
|
49 |
From Sm1-xGdxAl2 electronic properties to magnetic tunnel junctions based on Sm1-xGdxAl2 and/or [Co/Pt] electrodes : Towards the integration of Zero Magnetization ferromagnets in spintronic devices / Des propriétés électroniques de Sm1-xGdxAl2 aux jonctions tunnel comportant des électrodes Sm1-xGdxAl2 et/ou des multichouches [Co/Pt] : vers l'intégration de ferromagnétiques sans aimantation dans des dispositifs spintroniquesBersweiler, Mathias 22 October 2014 (has links)
Le contexte général de ce travail est le développement et l'intégration de nouveaux matériaux magnétiques ayant des propriétés originales et d'intérêt potentiel pour la spintronique. En tant que matériau ferromagnétique d’aimantation nulle, le composé Sm1-xGdxAl2 (SGA) suscite un intérêt particulier, puisqu’il est capable, dans son état magnétique compensé, de polariser en spin un courant d’électrons. Dans un premier temps, des expériences de photoémission résolues en angle et en spin sur synchrotron ont permis d’effectuer une analyse précise de la structure électronique selon diverses directions de la zone de Brillouin et d’estimer de manière directe la polarisation de spin au niveau de Fermi du composé SGA. Dans un second temps, une attention particulière a été portée aux multicouches [Co/Pt] et aux JTMs à base de [Co/Pt]. Les multicouches [Co/Pt] constituent la seconde électrode des JTMs à base de SGA. Leurs propriétés magnétiques (en particulier l'anisotropie perpendiculaire et l'aimantation à saturation) ont été soigneusement étudiées en fonction de l'épaisseur de Pt et de la nature de la couche tampon (Pt, MgO ou Al2O3), et en liaison avec leurs caractéristiques structurales. Leur intégration dans des JTMs à base de [Co/Pt] a permis ensuite de remonter d’une part à la polarisation tunnel effective des multicouches [Co/Pt] et d’autre part aux configurations magnétiques des différentes électrodes, configurations parfaitement expliquées et reproduites par des simulations micro-magnétiques. Dans un troisième temps, les résultats de magnéto-transport au sein des JTMs SGA/MgO/[Co/Pt] sont présentés et discutés / The general context of this work is the development and integration of new magnetic materials with original properties of potential interest for spintronic applications. In this field, the Sm1-xGdxAl2 (SGA) compound drives a particular attention, as a zero-magnetization ferromagnet that can exhibit a spin polarization in its magnetic compensated state. In a first step, synchrotron-based angle and spin resolved photoemission spectroscopy experiments have permitted to perform an accurate analysis of the electronic structure along various directions of the Brillouin Zone and to get a direct estimation of the spin polarization at the Fermi level. In a second step, a special attention has been the paid to [Co/Pt] multilayers and to [Co/Pt]-based MTJs. The [Co/Pt] multilayers would constitute the second electrode in SGA-based MTJs. Their magnetic properties (especially the perpendicular anisotropy and the saturation magnetization) have been carefully investigated as a function of Pt thickness and nature of the buffer layer (Pt, MgO or Al2O3), and in close connection with structural characteristics. Their integration in [Co/Pt]-based MTJs has permitted to determine the [Co/Pt] effective tunnel polarization and to unravel the magnetic configurations of both electrodes which are perfectly explained and reproduced by micromagnetic simulations. In a third step, the results concerning the magneto-transport experiments in SGA/MgO/[Co/Pt] MTJs are presented and discussed
|
50 |
Development of the x-ray standing waves methodology to probe the interfaces of periodic multilayers / Développement de la méthodologie des ondes stationnaires pour sonder les processus physico-chimiques aux interfaces des multicouches périodiquesWu, Meiyi 14 September 2018 (has links)
La qualité des interfaces dans les multicouches périodiques est essentielle au développement de miroirs réfléchissant efficacement dans les domaines des rayons X et extrême ultraviolet (X-EUV). De manière générale, la structure des interfaces dépend des possibles interdiffusion et processus chimiques aux interfaces entre couches. L'idée principale de cette thèse est d'appliquer la technique des ondes stationnaires dans le domaine X à la caractérisation de matériaux, principalement mais non exclusivement aux multicouches périodiques. Cette méthode est basée sur l'interférence de deux faisceaux de rayons X cohérents. L'interférence constructive sur un plan anti-nodal amplifie le champ électrique tandis que l'interférence destructive minimise ce dernier sur un plan nodal. Cette technique des ondes stationnaires dans le domaine X permet l'excitation (photoémission, fluorescence, ...) d'endroits spécifiques dans un empilement périodique de matériaux. De cette manière, les spectres expérimentaux ainsi obtenus sont principalement les spectres caractéristiques des atomes situés sur un plan anti-nodal. Combinée avec d'autres techniques expérimentales telles que la spectroscopie d'émission X (XES) ou la spectroscopie de photoélectrons dans le domaine X (XPS), une information sélective en profondeur, avec une sensibilité sub-nanométrique, peut être obtenue. / The interfacial information of periodic multilayers can be crucial for the development of reflecting mirrors which operate in the X-ray and extreme ultraviolet (X-EUV) ranges. Such information may contain the interdiffusion and chemical process at the interfaces of the layers. The idea of this thesis is to apply the X-ray standing wave technique to the characterization of materials, mainly but not limited to the periodic multilayers. X-ray standing wave technique enables to enhance the excitation (photoemission, fluorescence etc.) of specific locations within a periodic stack. The nature of such advantage is the interference of two coherent X-ray beams. One may compare the X-ray standing waves with the mechanical standing waves. The constructive interference at the anti-nodal plane amplifies the electric field; while the destructive interference at the nodal plane minimizes the electric field. In this way, the experimental spectra obtained under standing wave field will be mostly the material located on the anti-nodal plane. Combined with other techniques such as X-ray emission spectroscopy and X-ray photoelectron spectroscopy, a depth-selective information with a sub-nanoscale sensitivity can be obtained.
|
Page generated in 0.0938 seconds