• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 188
  • 106
  • 37
  • 17
  • 13
  • 8
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 458
  • 114
  • 101
  • 96
  • 86
  • 60
  • 56
  • 54
  • 53
  • 51
  • 47
  • 45
  • 40
  • 39
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
381

Diversidade genética em \"caxetais\" da Mata Atlântica brasileira: uma abordagem filogeográfica para Tabebuia cassinoides / Genetic diversity in \'caxetais\' in Brazilian Atlantic forest: a phylogeographical approach to T. cassinoides

Pretti, Vania Quibao 29 November 2012 (has links)
A Mata Atlântica representa um dos Biomas mais diversos do Planeta. No entanto, ainda pouco se sabe sobre os processos que levaram à alta diversidade de plantas nesta região. A maior parte dos estudos na Mata Atlântica trata este Bioma de forma ampla, sem considerar os diversos tipos vegetacionais encontrados na região. Apesar de ser dominado pela Floresta Pluvial Montana, este Bioma ainda inclui outros tipos vegetacionais periféricos, tais como: as Florestas Pluviais Baixo Montanas, Florestas Pluviais de Altitude, Florestas Pluviais Ripária, Florestas Pluviais em Manchas e as Florestas Paludosas Litorâneas, popularmente conhecidas como \"caxetais\". O nome \"caxetal\" foi dado devido à predominância da espécie Tabebuia Cassinoides (Lam.) DC., a qual é popularmente conhecida como \"caxeta\". Esta formação vegetal tem distribuição restrita a áreas com solos permanentemente encharcados do norte de Santa Catarina até o norte do Espírito Santo, onde ocorre de forma naturalmente fragmentada, formando ilhas ao longo de sua extensão de ocorrência. Populações com distribuição fragmentada são modelos em potencial para estudos de genética de populações, visto que a delimitação geográfica de populações naturais é um dos maiores problemas para estudos dessa natureza. Diante desse cenário, a presente tese teve como objetivo: (1) verificar como a distribuição geográfica da espécie arbórea T. cassinoides, agregada, bem delimitada e fragmentada na paisagem, pode influenciar na estruturação da diversidade genética em nível local; (2) caracterizar o grau de variabilidade genética inter e intrapopulacional em populações naturais de T. cassinoides ao longo da Mata Atlântica; e, (3) determinar a estrutura filogeográfica de T. cassinoides. Para tanto foram analisados dados de oito marcadores de microssatélites nucleares, além do sequenciamento da região trnC-ycf6 do DNA plastidial (cpDNA). Os dados genéticos obtidos foram primeiramente utilizados para o conhecimento da diversidade genética e estruturação da população em nível local, na região de Iguape (SP). Nossos resultados sugerem que a fragmentação dessas populações é somente geográfica, devido a suas necessidades edáficas, bem como que o modo de distribuição agregada e naturalmente fragmentada não indica a subdivisão genética das mesmas. A caracterização da variabilidade genética inter e intra-populacional em populações naturais de T. cassinoides ao longo de toda sua área de distribuição, com base nos marcadores de microssatélites nucleares indicou que a espécie possui baixos níveis de diversidade genética, e que 61% dessa diversidade é encontrada dentro das populações e 39% entre elas. Além disso, estes resultados evidenciaram significativos níveis de correlação entre distância genética e distância geográfica, sugerindo assim a presença de isolamento por distância. Nossos resultados indicam ainda a região geográfica do Rio de Janeiro como centro de diversidade para T. cassinoides. Uma forte estruturação genética foi encontrada para os dados de DNA nuclear e plastidial. Os resultados da análise de cpDNA, sugerem que a espécie T. cassinoides está dividida em três grupos filogeográficos: Norte, Central e Sul. Já os resultados de DNA nuclear apenas se diferenciam dos anteriores por considerar os grupos filogeográficos Norte e Central como um único grupo. Dados de modelagem de nicho ecológico foram gerados e associados com análises demográficas e de estruturação populacional visando um melhor entendimento dos padrões filogeográficos da espécie e inferências sobre a ocorrência de possíveis alterações populacionais ocorridas nos últimos 21 mil anos (Last Glacial Maximum - LGM) e 6 mil anos (Holocene Optimum - HO). Os resultados destas análises sugerem a estabilidade do tamanho populacional e das possíveis áreas de ocorrência de T. cassinoides no LGM e no HO. Assim, aventamos a hipótese de que a quebra de fluxo gênico entre as regiões filogeográficas propostas no presente estudo sejam anteriores ao LGM. Esse padrão converge com resultados encontrados para outras espécies de comunidades vegetais periféricas e diverge daqueles encontrados para espécies do núcleo principal da Floresta Ombrófila Densa, evidenciando a importância de estudos com espécies de diferentes comunidades vegetais da Floresta Atlântica para um melhor entendimento dos processos que moldaram a evolução das espécies nesse complexo bioma / The Atlantic Forest is one of the most biodiverse biomes on the planet. Nevertheless, little is known about the processes that have engendered such highly diverse plantlife in this region. Most studies on the Atlantic Forest approach the biome from an ample scope, without considering the various vegetational types that are found therein. Though broadly termed Montane Rain Forest, this biome also contains other peripheral forms of vegetation, such as Submontane Rain Forest, Cloud Forest, Riparian Rainforest, Rainforest Patches and Coastal Swamp Forest, commonly known as \"caxetais\" (plur). The term \"caxetal\" (sing) derives from the overwhelming predominance of Tabebuia cassinoides (Lam.) DC., the \"caxeta\". This naturally fragmented vegetational formation is found in patches on permanently waterlogged soils all the way from the north of Santa Catarina state up to northern most Espírito Santo. Populations with fragmented distribution are potential models for populational genetics studies, seen as the geographical delimitation of natural populations is one of the biggest problems facing research of this kind. In the light of this, the present thesis aims to: (1) verify how the aggregated, well-delimited and fragmented geographical distribution of the tree species T. cassinoides might influence the structuring of genetic diversity on a local level; (2) ascertain the degree of inter and intra-populational genetic variability in natural T. cassinoides populations throughout the Atlantic Forest, and (3) determine the phylogeographical structure of T. cassinoides. In order to achieve this we analyzed data for eight nuclear microsatellite markers and sequencing for the trnC-ycf6 region of plastidial DNA (cpDNA). The genetic data obtained was first used to generate knowledge concerning genetic diversity and populational structuring on a local level, in the Iguape (São Paulo state) region. Our results suggest that the fragmentation of these populations is geographical only, due to their edaphic needs, and that this locally aggregated and naturally fragmented mode of distribution does not indicate genetic subdivision. The characterization of inter and intra-populational genetic variability for T. cassinoides throughout its range of distribution, based on nuclear microsatellite markers, showed that the species has low levels of genetic diversity and that 61% of this diversity is encountered within, and 39% among, the populations. Furthermore, the results evince high and significant levels of correlation between genetic and geographic distance, thus suggesting that this isolation is distance-related. Our findings also indicate that the geographical region of Rio de Janeiro is the center of T. cassinoides diversity. Considerable genetic structuring was identified from the nuclear and plastidial DNA, though with partial distinctions. Results for cpDNA analysis suggest that T. cassinoides is divided into three phylogeographical groups: North, Central and South. Nuclear DNA analysis, however, took the Central and North phylogeographical groups to be one and the same. Ecological niche modeling data were generated and associated with demographic analyses and findings on populational structuring so that we could determine the species\' phylogeographical patterns and infer the occurrence of possible populational alterations during two distinct periods: 21 thousand years ago (the Last Glacial Minimum) and over the last 6 thousand years (Holocene Optimum - HO). The results of these analyses suggest that population sizes remained stable in possible areas of occurrence during the LGM and HO. Based on these findings we suggest the hypotheses that the stemming of gene flow among the phylogeographical regions proposed by this study predates the LGM. This pattern converges with results found for other species of peripheral vegetal communities but diverges from those for species from the Dense Coastal Hydrophilic Forest nucleus. As such, our research underscores the importance of further studies with different vegetal communities that comprise the Atlantic Forest in order to foster a better understanding of the processes that shaped the evolution of species in this complex biome
382

Evolution in Neotropical Herpetofauna: Species Boundaries in High Andean Frogs and Evolutionary Genetics in the Lava Lizard Genus Microlophus (Squamata: tropiduridae): A History of Colonization and Dispersal

Benavides, Edgar 07 December 2006 (has links)
In this collection of papers I have summarized my investigations into the field of evolutionary genetics and more specifically into patterns of biodiversity and evolutionary processes. The lizards (and frogs) studied here share common features in that they are largely present in unique environments, which are also regions that are biologically understudied. Most of these taxa show high degrees of endemism, interesting natural history characteristics, and each group manifests distinctive adaptations of general evolutionary interest. My work in the genus Telmatobius has been a progressive approach that began in my MS program, and it first focused on alpha taxonomy, morphological variation, and species boundaries. This work led to new studies initiated and completed at BYU involving further taxonomic revision (Formas et al., 2003; Chapter 1), and then revisiting and re-evaluating species boundaries established earlier (with allozyme markers) and this time with population level molecular (mitochondrial DNA) markers (Chapter 2). Our results indicate that the striking differences in size, coloration and general appearance in the various Lake Titicaca morphotypes are not genetically based. Further, there is evidence that these morphotypes have evolved very rapidly after demographic bottlenecks eroded present genetic variability. Telmatobius frogs of Lake Titicaca are listed by the International (IUCN) as critically endangered. We support this classification and further suggest studies to explore open questions like the possibility of adaptation along ecological resource gradients. Lizards of the genus Microlophus are interesting but for different reasons, and studies of this group constitutes the bulk of my dissertation work. The genus includes both Galapagos insular species, and continental taxa distributed in a linear gradient along > 4000 km of the western coast of South America. In studying Microlophus I first tackled the unresolved phylogenetic relationships within the genus (Chapter 3) and then pay attention to phylogeographic aspects of the most speciose lizard radiation in the Galapagos Archipelago (Chapter 4). Chapter 3 is a single manuscript provisionally accepted in the journal Systematic Biology. This paper introduces the lizard genus Microlophus (“lava lizards”) as a study system, and includes a large nuclear data set accompanied by an equally large mitochondrial data set (7877 characters in total). This paper explicitly differentiates among sequence alignments of gene regions that vary in tempo and class of mutational events. We show that this recognition is important and we suggest ways to appropriately deal with the alignment of multi-locus non-coding DNA data sets. A secondary finding in this study is that mtDNA and nDNA topologies are discordant with each other but that both are strongly supported, and that the nuclear topology is concordant with species distribution patterns along coastal South America. We hypothesize that in this particular region of the tree, the nuclear genome recovers a topology that is closer to the species tree, and conflicts occur due to likely secondary contact of distantly related taxa, suggesting that unique taxonomic relationships in the mtDNA gene tree are the result of hybridization. This last point highlights the value of dense taxonomic and character sampling for teasing apart different aspects of evolutionary processes. Chapter 4 is a manuscript to be submitted to the journal Evolution; in this study we further investigate the most speciose radiation of Microlophus in the Galapagos, based on an unparalleled sampling of most islands and small islets in the Archipelago. We use mtDNA sequences to both test hypothesized between-island colonization routes, as well as the expectation that within-island phylogeographic structure should be greater on older islands. Our mtDNA gene tree is strongly supported and allows rejection of previous alternatives, and we propose a novel sequence of between-island colonization events. Our results also reject the idea of phylogeographic structure been related solely to island age. Instead, we provide evidence to suggest that active volcanism as a major player in the generation of genetic diversity in within-island environments, and this is further compounded by the seemingly stochastic nature of within-island long-distance colonization routes mediated by ocean currents. We suggest that the direction and intensity of these currents, as currently understood, are insufficient to generate a priori hypotheses of oceanic colonization routes and their influence on gene flow. We do show that the standard stepping-stone model of migration, where genetic interchange is only possible among neighboring localities, does not explain much of the within-island population genetic structure unraveled by this study. From a biological conservation perspective the study of patterns of recent evolutionary history in the Galapagos provides with a window to evolutionary processes that have shaped and continue to impact the generation of biodiversity in the Galapagos Archipelago. Islands have long been viewed as natural laboratories of evolutionary change, and thus all island isolates are or could be distinctly important components of the larger, archipelago-wide processes. We provide working hypotheses for some of the demographic processes that might be generating within- and between-island biodiversity in this clade of lizards; confirmation of these explanations with independent data will have management implications for conserving the unique patterns observed in the Galapagos biota, but also the processes that generated these patterns.
383

Phylogeographic Patterns of Tylos (Isopoda: Oniscidea) in the Pacific Region Between Southern California and Central Mexico, and Mitochondrial Phylogeny of the Genus

Lee, Eun Jung 1974- 14 March 2013 (has links)
Isopods in the genus Tylos are distributed in tropical and subtropical sandy intertidal beaches throughout the world. These isopods have biological characteristics that are expected to severely restrict their long-distance dispersal potential: (1) they are direct developers (i.e., as all peracarids, they lack a planktonic stage); (2) they cannot survive in the sea for long periods of immersion (i.e., only a few hours); (3) they actively avoid entering the water; and (4) they are restricted to the sandy intertidal portion that is wet, but not covered by water. Because of these traits, high levels of genetic differentiation are anticipated among allopatric populations of Tylos. We studied the phylogeographic patterns of Tylos in the northern East Pacific region between southern California and central Mexico, including the Gulf of California. We discovered high levels of cryptic biodiversity for this isopod, consistent with expectations from its biology. We interpreted the phylogeographic patterns of Tylos in relation to past geological events in the region, and compared them with those of Ligia, a co-distributed non-vagile coastal isopod. Furthermore, we assessed the usefulness of the shape of the ventral plates of the fifth pleonite for distinguishing genetically divergent lineages of Tylos in the study area. Finally, mitochondrial phylogenenetic analyses to identify the most appropriate outgroup taxa for Tylos in the study area, which included 17 of the 21 currently recognized species, provided important insights on the evolutionary history of this genus.
384

Conservación de la biodiversidad acuática en el Sureste Ibérico: métodos y estrategias a partir de inventarios de coleópteros acuáticos

Abellán Ródenas, Pedro 18 December 2006 (has links)
La presente tesis doctoral aborda distintas estrategias y metodologías en el contexto de la conservación de la biodiversidad de ecosistemas de aguas continentales en el Sureste Ibérico, utilizando inventarios de coleópteros acuáticos. En primer lugar, se propone un método para evaluar la vulnerabilidad de especies y para asignar prioridades de conservación a especies y poblaciones de insectos. A continuación, se compara la eficacia de diferentes métodos de selección de áreas y se estudia el rendimiento de las áreas protegidas en el contexto de la conservación de la biodiversidad de sistemas acuáticos. Por otro lado, se testa el comportamiento de tres índices de diferenciación taxonómica con relación a los niveles de impacto antrópico en aguas continentales. Finalmente, se estudia la variación genética y la filogeografía de Ochthebius glaber, un escarabajo acuático raro y amenazado endémico de arroyos hipersalinos del sur y sureste de la Península Ibérica.
385

Phylogeography in sexual and parthenogenetic European oribatida / Phylogeograhie von sexuellen und parthenogenetischen europäischen Oribatiden

Rosenberger, Martin 07 December 2010 (has links)
No description available.
386

BIOGEOGRAPHY AND DIVERSIFICATION OF THE ANDEAN SEEDSNIPES (Thinocoridae): AN ANTARCTIC AVIAN LINEAGE ?

IBARGUCHI, GABRIELA 18 August 2011 (has links)
South America and the Andes harbour a rich biodiversity. High levels of in-situ speciation, survival of relict lineages into modern times, and mixing of biotas (Gondwanian and North American), have been demonstrated to contribute to the extant biodiversity. Here I examined the four species in the shorebird family Thinocoridae (seedsnipes) as a test case of complementary hypotheses about the origins of this diversity: 1) that some lineages arose from cold-adapted Antarctic ancestors (post-Gondwana), and 2) that the Andes have promoted diversification through vicariance and via the creation of novel alpine niches. First, I reviewed the tectonic and environmental history of the Andes, and the major biogeographic patterns in South America. Second, I reviewed Antarctic and Southern Hemisphere paleoenvironments, putative refugia, colonisation routes, molecular and biogeographic studies, and found strong evidence supporting the role of Antarctica as a source of global cold-hardy biodiversity. Third, I developed universal protocols to purify mitochondrial DNA (mtDNA). Using these methods, I uncovered nuclear pseudogenes, true mtDNA heteroplasmy, and possible hybridisation between seedsnipe lineages. Fourth, I investigated geographic patterns in seedsnipe morphology in four species. I also investigated the relationships of ecogeographic variables related to cold on morphology. I found strong and significant regional differences particularly in the smaller Thinocorus species, including an effect of the high Central Andes. Altitude, latitude, and wind (the effect of cold) have shaped seedsnipe morphology; Thinocoridae as a group generally support Bergmann’s and Allen’s rules. Fifth, based on phylogeographic and phylogenetic analyses of mtDNA and hemoglobin sequences, a putative southern origin for seedsnipes was supported, and an early origin in alpine habitats is suggested. Sixth, I compared data on Andean uplift and glaciation in South America, and found concordance between seedsnipe diversity, known areas of endemism in other taxa, and paleoenvironmental history. Finally, I briefly examined molecular evolution in hemoglobins and mtDNA and found preliminary evidence of adaptations to high altitude (hemoglobins) and to cold (mtDNA and hemoglobins). In summary, an Antarctic ancestor for seedsnipes, pre-adapted for life in the Andes, is supported. Antarctica may have contributed a great proportion of cold-hardy biodiversity to the South and globally. / Thesis (Ph.D, Biology) -- Queen's University, 2011-08-17 23:30:31.324
387

Diversity and phylogeography of eastern Guiana Shield frogs

Fouquet, Antoine January 2008 (has links)
The Guiana Shield is a sub-region of Amazonia, one of the richest areas on earth in terms of species number. It is also one of the most pristine areas and is still largely unexplored. Species number, distribution, boundaries and their evolutionary histories remain at least unclear but most of the time largely unknown. This is the case for most Anurans, a group which is recognized as threatened globally and is disappearing even from pristine tropical forests. Given the pace of forest destruction and the growing concerns about climate change it is urgently necessary to obtain a better estimate of regional biodiversity in Amazonian frogs as well as a better understanding of the origin and distribution of Anuran diversity. Furthermore, given their sensitivity to climatic conditions, amphibians are a good model to investigate the influence of paleoclimatic events on Neotropical diversification which was supposedly the driving force on biotic evolution during Pleistocene in the Guiana Shield. I first test species boundaries in two species Scinax ruber and Rhinella margaritifera. These species are widely distributed, abundant and largely recognized as species complexes. I used an original species delineation method based on the combined use of mitochondrial and nuclear DNA in phylogenetic and phylogeographic analyses. Phylogenetic analyses demonstrated the polyphyly of Scinax ruber and Rhinella margaritifera. These species consist of multiple lineages that may all merit species status. Conflicting signals of mitochondrial and nuclear markers indicated the possibility of ongoing hybridization processes. Phylogeographic analyses added further information in support of the specific status of these lineages. Our results highlight the utility of combining phylogenetic and phylogeographic methods, as well as the use of both mitochondrial and nuclear markers within one study. This approach helped to better understand the evolutionary history of taxonomically complex groups of species. The assessment of the geographic distribution of genetic diversity in tropical amphibian communities can lead to conclusions that differ strongly from prior analyses based on the occurrence of currently recognized species alone. Such studies, therefore, hold the potential to contribute to a more objective assessment of amphibian conservation priorities in tropical areas. Subsequently, I tested if these first results on cryptic species are generalisable, questioning what would potentially be a minimum estimate of the number of cryptic frog species in Amazonia and the Guiana Shield, using mtDNA with multiple complementary approaches. I also combined isolation by distance, phylogenetic analyses, and comparison of molecular distances to evaluate threshold values for the identification of candidate species among these frogs. In most cases, geographically distant populations belong to genetically highly distinct lineages that could be considered as candidate new species. This was not universal among the taxa studied and thus widespread species of Neotropical frogs really do exist, contra to previous assumptions. Moreover, the many instances of paraphyly and the wide overlap between distributions of inter- and intra-specific distances reinforce the hypothesis that many cryptic species remain to be described. In our data set, pairwise genetic distances below 0.02 are strongly correlated with geographical distances. This correlation remains statistically significant until genetic distance is 0.05, with no such relation thereafter. This suggests that for higher genetic distances allopatric and sympatric cryptic species prevail. Based on our analyses, we propose a more inclusive pairwise genetic distance of 0.03 between taxa to target lineages that could correspond to candidate species. Using this approach, we identify 129 candidate species, two-fold greater than the 60 species included in the current study. This leads to estimates of around 170 to 460 frog taxa unrecognized in Amazonia-Guianas. As a consequence the global amphibian decline detected especially in the Neotropics may be worse than realised. The Rhinella margaritifera complex is characterisized by the presence of many cryptic species throughout its wide distribution, ranging from Panama to Bolivia and almost entire Amazonia. French Guiana has long been thought to harbor two species of this group, though molecular data analysed in previous chapters indicated as many as five lineages. I tested whether morphological measurements are correlated or not with genetic data using discriminant analysis and if diagnostic characteristics among the previously determined lineages can be used to describe these new species. This is a novel integrative method which can lead to a facilitation of the description of cryptic species that have been detected by phylogenetic and/or phylogeographic studies. These analyses, combined with published data of other Rhinella species, indicated that two of these lineages represent previously unnamed species. Two of the remaining are allocable to R. margaritifera while the status of the fifth is still unclear because so far it is morphologically indistinguishable from R. castaneotica. Determining if codistributed species responded to climate change in an independent or concerted manner is a basic objective of comparative phylogeography. Species boundaries, histories, ecologies and their geographical ranges are still to be explored in the Guiana Shield. According to the refugia hypothesis this region was supposed to host a forest refugium during climatic oscillations of the Pleistocene but the causes and timing for this have been criticized. We investigated patterns of genetic structure within 18 frog species in the eastern Guiana Shield to explore species boundaries and their evolutionary history. We used mtDNA and nuclear DNA and complementary methods to compare the genetic diversity spatially and temporally. With one exception all the species studied diversified repeatedly within the eastern Guiana Shield during the last 4 million years. Instead of one Pleistocene forest refugium the Guiana Shield has probably hosted multiple refugia during late Pliocene and Pleistocene. Most of these Pleistocene refugia were probably situated on the coast of French Guiana, Amapà, Suriname and Guyana. This diversification likely resulted from forest fragmentation. Many species deserve taxonomic revisions and their ranges to be reconsidered. The local endemism of the Anuran fauna of the Guiana Shield is likely to be much higher and some areas consequently deserve more conservation efforts. Specifically I questioned whether major intraspecific diversification started before the Pleistocene and occurred within the Guiana Shield or ex situ. According to ecological characteristics of the species involved I will test different diversification hypotheses. The consequences on the diversity and the endemism of the Guiana Shield will be explored. My results demonstrate that we have been grossly underestimating local biological diversity in the Guiana Shield but also in Amazonia in general. The order of magnitude for potential species richness means that the eastern Guiana Shield hosts one of the richest frog fauna on earth. In most of the species studied high levels of mtDNA differentiation between populations call for a reassessment of the taxonomic status of what is being recognised as single species. Most species display deep divergence between eastern Guiana Shield populations and Amazonian ones. This emphasizes that the local endemism in the Guiana Shield of these zones is higher than previously recognized and must be prioritised elements taken into account in conservation planning. Nevertheless, a few other species appear widely distributed showing that widespread species do exist. This underlines the fact that some species have efficient dispersal abilities and that the frog fauna of the eastern Guiana Shield is a mixture of old Guianan endemic lineages that diversified in situ mostly during late Pliocene and Pleistocene and more recently exchanged lineages with the rest of Amazonia. Recognizing this strong historical component is necessary and timely for local conservation as these zones are likely to be irremediably modified in the near future.
388

Diversity and phylogeography of eastern Guiana Shield frogs

Fouquet, Antoine January 2008 (has links)
The Guiana Shield is a sub-region of Amazonia, one of the richest areas on earth in terms of species number. It is also one of the most pristine areas and is still largely unexplored. Species number, distribution, boundaries and their evolutionary histories remain at least unclear but most of the time largely unknown. This is the case for most Anurans, a group which is recognized as threatened globally and is disappearing even from pristine tropical forests. Given the pace of forest destruction and the growing concerns about climate change it is urgently necessary to obtain a better estimate of regional biodiversity in Amazonian frogs as well as a better understanding of the origin and distribution of Anuran diversity. Furthermore, given their sensitivity to climatic conditions, amphibians are a good model to investigate the influence of paleoclimatic events on Neotropical diversification which was supposedly the driving force on biotic evolution during Pleistocene in the Guiana Shield. I first test species boundaries in two species Scinax ruber and Rhinella margaritifera. These species are widely distributed, abundant and largely recognized as species complexes. I used an original species delineation method based on the combined use of mitochondrial and nuclear DNA in phylogenetic and phylogeographic analyses. Phylogenetic analyses demonstrated the polyphyly of Scinax ruber and Rhinella margaritifera. These species consist of multiple lineages that may all merit species status. Conflicting signals of mitochondrial and nuclear markers indicated the possibility of ongoing hybridization processes. Phylogeographic analyses added further information in support of the specific status of these lineages. Our results highlight the utility of combining phylogenetic and phylogeographic methods, as well as the use of both mitochondrial and nuclear markers within one study. This approach helped to better understand the evolutionary history of taxonomically complex groups of species. The assessment of the geographic distribution of genetic diversity in tropical amphibian communities can lead to conclusions that differ strongly from prior analyses based on the occurrence of currently recognized species alone. Such studies, therefore, hold the potential to contribute to a more objective assessment of amphibian conservation priorities in tropical areas. Subsequently, I tested if these first results on cryptic species are generalisable, questioning what would potentially be a minimum estimate of the number of cryptic frog species in Amazonia and the Guiana Shield, using mtDNA with multiple complementary approaches. I also combined isolation by distance, phylogenetic analyses, and comparison of molecular distances to evaluate threshold values for the identification of candidate species among these frogs. In most cases, geographically distant populations belong to genetically highly distinct lineages that could be considered as candidate new species. This was not universal among the taxa studied and thus widespread species of Neotropical frogs really do exist, contra to previous assumptions. Moreover, the many instances of paraphyly and the wide overlap between distributions of inter- and intra-specific distances reinforce the hypothesis that many cryptic species remain to be described. In our data set, pairwise genetic distances below 0.02 are strongly correlated with geographical distances. This correlation remains statistically significant until genetic distance is 0.05, with no such relation thereafter. This suggests that for higher genetic distances allopatric and sympatric cryptic species prevail. Based on our analyses, we propose a more inclusive pairwise genetic distance of 0.03 between taxa to target lineages that could correspond to candidate species. Using this approach, we identify 129 candidate species, two-fold greater than the 60 species included in the current study. This leads to estimates of around 170 to 460 frog taxa unrecognized in Amazonia-Guianas. As a consequence the global amphibian decline detected especially in the Neotropics may be worse than realised. The Rhinella margaritifera complex is characterisized by the presence of many cryptic species throughout its wide distribution, ranging from Panama to Bolivia and almost entire Amazonia. French Guiana has long been thought to harbor two species of this group, though molecular data analysed in previous chapters indicated as many as five lineages. I tested whether morphological measurements are correlated or not with genetic data using discriminant analysis and if diagnostic characteristics among the previously determined lineages can be used to describe these new species. This is a novel integrative method which can lead to a facilitation of the description of cryptic species that have been detected by phylogenetic and/or phylogeographic studies. These analyses, combined with published data of other Rhinella species, indicated that two of these lineages represent previously unnamed species. Two of the remaining are allocable to R. margaritifera while the status of the fifth is still unclear because so far it is morphologically indistinguishable from R. castaneotica. Determining if codistributed species responded to climate change in an independent or concerted manner is a basic objective of comparative phylogeography. Species boundaries, histories, ecologies and their geographical ranges are still to be explored in the Guiana Shield. According to the refugia hypothesis this region was supposed to host a forest refugium during climatic oscillations of the Pleistocene but the causes and timing for this have been criticized. We investigated patterns of genetic structure within 18 frog species in the eastern Guiana Shield to explore species boundaries and their evolutionary history. We used mtDNA and nuclear DNA and complementary methods to compare the genetic diversity spatially and temporally. With one exception all the species studied diversified repeatedly within the eastern Guiana Shield during the last 4 million years. Instead of one Pleistocene forest refugium the Guiana Shield has probably hosted multiple refugia during late Pliocene and Pleistocene. Most of these Pleistocene refugia were probably situated on the coast of French Guiana, Amapà, Suriname and Guyana. This diversification likely resulted from forest fragmentation. Many species deserve taxonomic revisions and their ranges to be reconsidered. The local endemism of the Anuran fauna of the Guiana Shield is likely to be much higher and some areas consequently deserve more conservation efforts. Specifically I questioned whether major intraspecific diversification started before the Pleistocene and occurred within the Guiana Shield or ex situ. According to ecological characteristics of the species involved I will test different diversification hypotheses. The consequences on the diversity and the endemism of the Guiana Shield will be explored. My results demonstrate that we have been grossly underestimating local biological diversity in the Guiana Shield but also in Amazonia in general. The order of magnitude for potential species richness means that the eastern Guiana Shield hosts one of the richest frog fauna on earth. In most of the species studied high levels of mtDNA differentiation between populations call for a reassessment of the taxonomic status of what is being recognised as single species. Most species display deep divergence between eastern Guiana Shield populations and Amazonian ones. This emphasizes that the local endemism in the Guiana Shield of these zones is higher than previously recognized and must be prioritised elements taken into account in conservation planning. Nevertheless, a few other species appear widely distributed showing that widespread species do exist. This underlines the fact that some species have efficient dispersal abilities and that the frog fauna of the eastern Guiana Shield is a mixture of old Guianan endemic lineages that diversified in situ mostly during late Pliocene and Pleistocene and more recently exchanged lineages with the rest of Amazonia. Recognizing this strong historical component is necessary and timely for local conservation as these zones are likely to be irremediably modified in the near future.
389

Evolutionary dynamics in ephemeral pools : inferences from genetic architecture of large branchiopods

Zofkova, Magdalena January 2007 (has links)
[Truncated abstract] I have evaluated the effects of different types of ephemeral pools on the evolutionary dynamics of two large branchiopods in Australia, the clam shrimp Lynceus and the fairy shrimp Branchinella longirostris. Both shrimps are passive dispersers, relying on their sexually produced resting eggs for continuity of populations in time and space, although their actual dispersal ability remains speculative. The two currently recognised species of the genus Lynceus (L. tatei and L. macleyanus) are widespread across Australia, and they occupy a wide range of ephemeral fresh water habitats, while the fairy shrimp Branchinella longirostris is endemic to rock pools on granite outcrops in south-western Australia. Samples of populations were collected from a total of 96 ephemeral pools at 80 locations in New South Wales, Northern Territory, Queensland, South Australia and Western Australia . . . This highlighted the contrast between the two species and their microhabitats, and implied that these microhabitats offered different opportunities for dispersal. These were identified as frequent disturbances of the clam shrimp’s egg-banks due to ‘wash-out’ effects during heavy rains and animal and human vectors attracted by the water stored in the deep pools. My comparative study shows that the difference in evolutionary dynamics observed between the two species was a consequence of their environmental interactions rather than of the microhabitats themselves. Similar to patterns detected in other passive dispersers with disjunct population distribution, evolutionary dynamics in Lynceus and B. longirostris seem to be a result of complex interactions among gene flow, population histories and ecology of their habitat. The results contribute to the emerging evidence that branchiopod crustaceans are poor dispersers and highlight the importance of local context in determining evolutionary processes within species.
390

Macro and micro-evolutionary processes within a complex of species, case study of the tropical invasive earthworm : pontoscolex corethrurus / Processus macro- et micro-évolutifs au sein d’un complexe d’espèces, cas d’étude de l’espèce tropicale et invasive de vers de terre : pontoscolex corethrurus

Taheri, Shabnam 06 March 2018 (has links)
Pontoscolex corethrurus est le ver de terre le plus répandu dans les zones tropicales et sub-tropicales ; il est par conséquent très étudié en science du sol. Il est présent dans toutes sortes d’habitats, des sols pauvres de prairie aux sols riches de forêt primaire, et ses caractéristiques écologiques sont bien connues. Ses caractéristiques biologiques ont été moins étudiées. Peu de données sur la variation génétique au sein de cette morphoespèce sont disponibles à l’exception de la découverte en 2014 de deux lignées génétiquement différentes dans l’île São Miguel des Açores. De plus, son degré de ploïdie n’est pas connu et sa stratégie de reproduction n’est pas bien décrite. L’un des objectifs de cette thèse était de comprendre les mécanismes et les caractéristiques qui font de P. corethrurus un envahisseur efficace. Notre deuxième objectif était de rechercher des lignées cryptiques dans le monde entier et de décrire leurs relations phylogénétiques. Un troisième objectif était d’identifier quelle lignée était invasive et de caractériser la structure génétique de ses populations dans les aires native et d’introduction. Le dernier objectif était de tester si les différentes espèces du complexe avaient différents degrés de ploïdie, ce qui pourrait expliquer l’isolement reproducteur entre ces espèces. Une synthèse bibliographique de 265 études couvrant tous les aspects des connaissances sur P. corethrurus a montré que la stratégie – r et la plasticité de ce ver sont les caractéristiques clefs qui lui permettent d’envahir avec succès différents habitats. Afin d’étudier la diversité cryptique au sein de P. corethrurus à une échelle mondiale, j’ai examiné 792 spécimens collectés dans 25 pays et îles différents. Ces spécimens ont été analysés à l’aide de deux marqueurs mitochondriaux (COI et ADNr 16S), deux marqueurs nucléaires (internal transcribed spacers 2 et ADNr 28S) et une matrice de données de séquence multilocus obtenue à l’aide de la méthode AHE (Anchored Hybrid Enrichment). De plus, un total de 11 caractères morphologiques, internes comme externes, ont été étudiés dans toutes les lignées caractérisées génétiquement. Quatre espèces cryptiques (L1, L2, L3 et L4) ont été observées au sein du complexe d’espèces P. corethrurus. Elles ont été trouvées en sympatrie dans plusieurs localités et des analyses basées sur des marqueurs AFLP n’ont pas montré d’hybridation entre L1 et L3. La possibilité d’isolement reproducteur lié à des degrés de ploïdie différents a été évaluée à l’aide d’expérimentations de cytogénétique pour lesquelles plusieurs obstacles ont été rencontrés, à différentes étapes. Des résultats n’ont été obtenus que pour L4 (2n = 70). L’une des espèces du complexe, L1, était géographiquement répandue. Cette espèce correspondait aux spécimens topotypiques (échantillons provenant du jardin de Fritz Müller où P. corethrurus a été décrit en premier en 1856). Nous avons ciblé cette espèce invasive dans une étude de génétique des populations et de phylogéographie. En utilisant le gène COI et des marqueurs AFLP, nous avons révélé une faible diversité génétique dans la zone tropicale, probablement due à des évènements de colonisation récents et à une reproduction asexuelle. Cependant, la diversité génétique relativement élevée dans certaines populations, associée à un déséquilibre de liaison relativement faible, suggère aussi des évènements de reproduction sexuelle. A ce jour, c’est le premier travail réalisé à l’échelle mondiale sur la diversité génétique cryptique, la génétique des populations et la phylogéographie d’une espèce de vers de terre pérégrine dans la zone tropicale. J’ai produit la première revue complète des caractéristiques de P. corethrurus. De plus, son statut taxinomique a été clarifié ainsi que sa stratégie de reproduction qui est mixte (parthénogénèse et amphimixie). Ces informations seront utiles pour les expérimentations et les recherches futures sur les espèces du complexe P. corethrurus / Pontoscolex corethrurus is the most widespread earthworm species in the tropical and sub-tropical zones, it is hence one of the most studied earthworm in soil science. Ecological aspects of P. corethrurus, which is known to be present in a wide range of habitats from poor soils of pasture to rich soils of primary forest, were intensively investigated but biological aspects are less addressed. In particular, information on the genetic variation within the morphospecies is scarce except for the finding of two genetically differentiated lineages in São Miguel Island of Azores archipelago in 2014. Moreover, the ploidy degree of the morphospecies is not yet known and its reproduction strategy is not well understood. One of the objectives of this thesis was to understand the mechanisms and characteristics which make P. corethrurus a successful invader. Our second objective was to look for cryptic lineages in the whole world and to describe the phylogenetic relationships between them. A third objective was to identify which lineage was invasive and to characterize its population genetic structure in the native and the introduced ranges. The last objective was to test if the different species of the complex have different ploidy degrees (polyploid complex). This could eventually explain the reproductive isolation among these species. A bibliographic synthesis of 265 studies covering all subjects of knowledge on P. corethrurus showed that the r strategy and plasticity of this earthworm are the key characteristics which make it a successful invader in different habitats. In order to investigate the cryptic diversity within P. corethrurus in a world-wide scale, I examined 792 specimens collected from 25 different countries and islands. These specimens were analyzed using two mitochondrial (COI and 16S rDNA) and two nuclear (internal transcribed spacers 2 and 28S rDNA) markers and a large-scale multilocus sequence data matrix obtained using the Anchored Hybrid Enrichment (AHE) method. In addition, a total of 11 morphological characters, both internal and external, were investigated in all genetically characterized lineages. Four cryptic species (L1, L2, L3 and L4) were found within the P. corethrurus species complex, and four potentially new species within the genus Pontoscolex. The cryptic species were observed in sympatry at several localities, and analyses based on AFLP markers showed no hybridization among L1 and L3. The possibility of reproductive isolation among species of the complex because of different ploidy degrees was investigated by cytogenetic experimentations. Due to different obstacles encountered at different steps of the experimentations, results were just obtained for L4 (2n=70). One of the species belonging to the complex, L1, was particularly widespread per comparison with the others. This species corresponded to topotype specimens (samples from Fritz Müller’s garden where P. corethrurus was first described in 1856). Thus, we focused on this invasive species in a population genetics and phylogeography study. Using COI gene and AFLP markers, we revealed low genetic diversity through the tropical zone, probably due to recent colonization events and asexual reproduction type. Meanwhile, due to weak linkage disequilibrium and relatively high genetic diversity in some populations, sexual reproduction was suggested for L1.To date, this is the first study investigating at a world-wide scale, cryptic species diversity, population genetics and phylogeography of a peregrine earthworm species throughout tropical zone. I produced the first comprehensive review of all ecological and biological aspects of P. corethrurus. Moreover, the taxonomic status of P. corethrurus was clarified as well as its reproduction strategy which is mixed (parthenogenetic and sexual). All these findings represent potentially useful information for future experimentations and researches on species of P. corethrurus complex

Page generated in 0.055 seconds