• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 31
  • 13
  • 10
  • 10
  • 9
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Multifunctional Nanocomposites and Particulate Composites with Nanocomposite Binders for Deformation and Damage Sensing

Sengezer, Engin Cem 28 August 2017 (has links)
At present, structural health monitoring efforts focus primarily on the sensors and sensing systems for detecting instances and locations of damage through techniques such as X-ray, micro CT, acoustic emission, infrared thermography, lamb wave etc., which only detect cracks at relatively large length scales and rely heavily on sensors and sensing systems which are external to the material system. As an alternative to conventional commercially available SHM techniques, the current work explores processing-structure-property relationships starting from carbon nanotube (CNT) based nanocomposites to particulate composites with nanocomposite binder/matrix materials, i.e. hybrid particulate composites to investigate deformation and damage sensing capabilities of inherently sensing materials and structures through their piezoresistive (coupled electro-mechanical) response. Initial efforts focused on controlling the dispersion of CNTs and orientation of CNT filaments within nanocomposites under dielectrophoresis to guide design and fabrication process of nanocomposites by tuning CNT concentration, applied AC electric field intensity, frequency and exposure time. It is observed that a combination of exposure time to AC electric field and the AC field frequency are the key drivers of filament width and spacing and that the network for filament formation is much more efficient for pristine CNTs than for acid treated functionalized CNTs. With the knowledge obtained from controlling the morphological features, AC field-induced long range alignment of CNTs within bulk nanocomposites was scaled up to form structural test coupons. The morphology, electrical and mechanical properties of the coupons were investigated. The anisotropic piezoresistive response both for parallel and transverse to CNT alignment direction within bulk composite coupons under various loading conditions was obtained. It is observed that control of the CNT network allows for the establishment of percolation paths and piezoresistive response well below the nominal percolation threshold observed for random, so called well-dispersed CNT network distributions. The potential for use of such bulk nanocomposites in SHM applications to detect strain and microdamage accumulation is further demonstrated, underscoring the importance of microscale CNT distribution/orientation and network formation/disruption in governing the piezoresistive sensitivities. Finally, what may be the first experimental study in the literature is conducted for real-time embedded microscale strain and damage sensing in energetic materials by distributing the CNT sensing network throughout the binder phase of inert and mock energetic composites through piezoresistive response for SHM in energetic materials. The incorporation of CNTs into inert and mock energetic composites revealed promising self-diagnostic functionalities for in situ real-time SHM applications under quasi-static and low velocity impact loading for solid rocket propellants, detonators and munitions to reduce the stochastic nature of safety characterization and help in designing insult tolerant energetic materials. / Ph. D.
22

Electromechanical Behavior of Chemically Reduced Graphene Oxide and Multi-walled Carbon Nanotube Hybrid Material

Benchirouf, Abderrahmane, Müller, Christian, Kanoun, Olfa 14 May 2016 (has links) (PDF)
In this paper, we propose strain-sensitive thin films based on chemically reduced graphene oxide (GO) and multi-walled carbon nanotubes (MWCNTs) without adding any further surfactants. In spite of the insulating properties of the thin-film-based GO due to the presence functional groups such as hydroxyl, epoxy, and carbonyl groups in its atomic structure, a significant enhancement of the film conductivity was reached by chemical reduction with hydro-iodic acid. By optimizing the MWCNT content, a significant improvement of electrical and mechanical thin film sensitivity is realized. The optical properties and the morphology of the prepared thin films were studied using ultraviolet-visible spectroscopy (UV-Vis) and scanning electron microscope (SEM). The UV-Vis spectra showed the ability to tune the band gap of the GO by changing the MWCNT content, whereas the SEM indicated that the MWCNTs were well dissolved and coated by the GO. Investigations of the piezoresistive properties of the hybrid nanocomposite material under mechanical load show a linear trend between the electrical resistance and the applied strain. A relatively high gauge factor of 8.5 is reached compared to the commercial metallic strain gauges. The self-assembled hybrid films exhibit outstanding properties in electric conductivity, mechanical strength, and strain sensitivity, which provide a high potential for use in strain-sensing applications.
23

Design, Development and Performance Analysis of Micromachined Sensors for Pressure and Flow Measurement

Singh, Jaspreet January 2014 (has links) (PDF)
Now-a-days sensors are not limited only to industry or research laboratories but have come to common man’s usage. From kids toys to house hold equipment like washing machine, microwave oven as well as in automobiles, a wide variety of sensors and actuators can be easily seen. The aim of the present thesis work is to discuss the design, development, fabrication and testing of miniaturized piezoresistive, absolute type, low pressure sensor and flow sensor. Detailed performance study of these sensors in different ambient conditions (including harsh environment such as radiation, temperature etc.) has been reported. Extensive study on designing of thin silicon diaphragms and optimization of piezoresistor parameters is presented. Various experiments have been performed to optimize the fabrication and packaging processes. In the present work, two low range absolute type pressure sensors (0-0.5 bar and 0-1 bar) and a novel flow sensor (0-0.1 L min-1) for gas flow rate measurement are developed. The thesis is divided into following six chapters. Chapter 1: It gives a general introduction about miniaturization, MEMS technology and its applications in sensors area. A brief overview of different micromachining techniques is presented, giving their relative advantages and limitations. Literature survey of various types of MEMS based pressure sensors along with recent developments is presented. At the end, the motivation for the present work and organization of the thesis is discussed. Chapter 2: In this chapter, various design aspects of low, absolute type pressure sensors (0-0.5 bar and 0-1 bar) are discussed in detail. Static analysis of the silicon diaphragms has been carried out both analytically as well as through finite element simulations. Piezoresistive analysis is carried out to optimize the piezoresistor dimensions and locations for maximum sensitivity and minimum nonlinearity. All the Finite Element Analyses (FEA) were carried out using Coventorware software. A novel approach for the selection of resistor parameters (sheet resistance, length to width ratio) is reported . Finally, the expected performance of the designed sensors is summarized. Chapter 3: This chapter is divided into two parts. The first part presents the fabrication process flow adopted to develop these low range absolute pressure sensors. Two fabrication process approaches (wet etching and dry etching) which are used to fabricate the thin diaphragms are discussed in detail. Following an overall description, various aspects of the fabrication are elaborated on, like mask design, photolithography process, ion-implantation, bulk micromachining and wafer bonding. The required parameters for implantation doses, annealing cycles, low stress nitride deposition and anodic bonding are optimized through extensive experimental trials. The second part of this chapter discusses about the different levels of packaging involved in the realization of pressure sensors. Finite Element Analyses (FEA) of Level -0 and Level-1 packages has been carried out using ANSYS software to optimize the packaging materials. Exhaustive experimental studies on the selection of die attach materials and their characterization is carried out. Based upon these studies, the glass thickness and die-attach materials are selected. Chapter 4: The chapter discusses the measurement of the fabricated devices. The wafer level characterization which includes I-V characterization, measurement of offset and full scale output is discussed first. And then the temperature coefficient of resistance and offset is measured at wafer level itself. The performance characteristics like sensitivity, nonlinearity, hysteresis and offset of packaged pressure sensors is presented for all the variants (0.5 bar and 1 bar sensors fabricated by KOH and DRIE process) and their comparison with simulated values shows a close match. The measurement of dynamic characteristics using in-house developed test set-up are presented. The next section discussed detailed study about the stability of the developed sensors. The last part of this chapter reports the harsh environment characterization of the sensors viz. high temperature, humidity exposure, radiation testing etc. Chapter 5: The development of a novel micro-orifice based flow sensor for the flow rate measurement in the range of L min-1 is presented in this chapter. The sensing element is a thin silicon diaphragm having four piezoresistors at the edges. A detailed theoretical analysis showing the relationship between output voltage generated and flow rate has been discussed. The flow sensor is calibrated using an in-house developed testing set-up. Novelty of the design is that the differential pressure is measured at the orifice plate itself without the need of two pressure sensors or u-tube which is required otherwise. Chapter 6: This chapter summarizes the salient features of the work presented in this thesis with the conclusion. And then the scope for carrying out the further work is discussed.
24

Impact du packaging sur le comportement d'un capteur de pression piézorésistif pour application aéronautique / Impact of packaging on piezoresistive pressure sensor behaviour for aeronautical applications

Le Neal, Jean-François 02 December 2011 (has links)
La protection de nombreux capteurs de pression en milieux hostiles se résume souvent en un boitier métallique hermétique rempli d’huile enveloppant la puce. La pression agit alors sur une membrane métallique qui agit sur la puce par l’intermédiaire de l’huile jugée incompressible. Cette encapsulation présente des difficultés de réalisation non négligeables et surtout une limitation des capteurs en température. Les travaux réalisés au cours de cette thèse concernent une encapsulation au niveau wafer du capteur de pression. L’idée principale est d’intégrer la protection de la puce dans le processus de fabrication sur wafer. L’intérêt est alors d’obtenir une protection réalisée de manière collective, réduisant ainsi drastiquement les coûts de production. De plus, une encapsulation au niveau wafer offre la possibilité de réduire considérablement les dimensions du capteur tout en le gardant résistant. La suppression d’éléments intermédiaires telle que l’huile entre la pression et la puce en elle même permet enfin d’espérer des applications possibles à température plus élevée. Une fois l’encapsulation réalisée au niveau wafer, il est nécessaire de réaliser le packaging de premier niveau. Le packaging de premier niveau offre un support à la puce, ce qui la rend manipulable et testable, tant par ses dimensions que par la présence de connexions électriques. L’assemblage au niveau wafer et de premier niveau constituent donc les deux niveaux de packaging qui peuvent avoir une influence directe sur le comportement de la puce.Au niveau de l’encapsulation de niveau wafer, trois techniques d’assemblage (wafer bonding) ont été analysées : le scellement anodique, le scellement eutectique et le scellement direct. Le scellement anodique est la technique la plus éprouvée pour assembler un wafer de verre sur un wafer de silicium. Le scellement eutectique représente une technique moins commune mais offrant l’intérêt d’utiliser deux wafers silicium, limitant la différence de dilatation thermique entre les deux wafers et permettant d’usiner plus facilement le wafer d’encapsulation. Enfin la technique du direct bonding donne l’opportunité d’éviter d’utiliser une couche intermédiaire métallique entre les deux wafers, à condition d’avoir deux surfaces à assembler très propres et de très bonne qualité. La technique de soudure anodique a permis de livrer les capteurs qui ont pu confirmer l’intérêt des capteurs WLP pour des applications hautes températures. Les techniques silicium-silicium ont été évaluées mais n’ont pas donné lieu à des capteurs WLP testables.Au niveau de l’encapsulation de niveau un, la technique de Flip-Chip à été utilisée pour reporter la puce sur son support. Cette technique consiste à retourner la puce et l’assembler par thermocompression. Les plots de connexions de la puce pour cet assemblage ont pu être réalisés par ball bumping. Des cycles en température (-55°C à +125°C ou 150°C) ont pu être réalisés sur les puces scellées par scellement anodique. L’erreur totale en précision de ces capteurs WLP est du même ordre que les capteurs Auxitrol actuels avec une compensation numérique. Le principal atout des capteurs WLP est une non-linéarité de l’offset en température divisée par deux. Cette caractéristique est importante dans le cas où l’on utilise une compensation analogique qui peut résister à des températures plus élevées que la compensation numérique. Les capteurs WLP offre donc l’opportunité d’avoir des applications au-delà de 200°C, chose alors jusqu’alors prohibée par l’utilisation de l’huile / Protection of most of the pressure sensors working in harsh environment consist in oil filled metallic unit including the sensor die. In that case, pressure is applied on a metallic membrane moving the silicon membrane of the die across an incompressible fluid. The main drawbacks of the standard encapsulation are a complex fabrication process and most of all a sensor limitation in high temperatures. The topic of this PhD thesis is about wafer-level packaging (WLP) of the pressure sensor. The main idea is to integrate the die protection in the fabrication process at wafer level. Advantage is to obtain a collective protection fabrication reducing production costs. Moreover, a wafer-level encapsulation allows a possible reduction of sensor dimensions keeping it reliable. Removing intermediary elements allows also high temperature applications. Once encapsulation realised on the wafer, it is necessary to build the first-level packaging. First-level packaging makes the die usable in terms of electrical connection and dimensions. Wafer and first-levels are both packaging levels with important impact on the die behaviour.At wafer-level packaging, three wafer bonding technologies have been investigated: anodic bonding, Au-Si eutectic bonding and direct bonding. Anodic bonding is the most known technology to assemble a glass wafer with a silicon wafer. Eutectic bonding represents a promising technique to bond two silicon wafers allowing less CTE mismatch between wafers material and an easier micromachining of silicon instead of glass material. Direct bonding is also interesting to bond two silicon wafers, without using intermediary metallic layer but needing really clean surfaces to assemble. Anodic bonding process gave us the opportunity to deliver WLP sensors showing interest for high temperature applications. Silicon-Silicon technologies have been evaluated but did not give representative WLP sensors.At first-level packaging, the Flip-chip technology have been used for die attach. This technique consists in flipping the die and making the die attach by thermocompression with stud bumps on the die connection pads.Temperature cycling (-55°C to +125°C or more) have been realised on anodic WLP sensors. Accuracy total error of these WLP sensors is in the same order than standard Auxitrol sensors with digital compensation. the main advantage of the WLP sensors is a offset non-linearity in temperature divided by two. This characteristic is important in the case of analogical compensation that can resist to higher temperatures than digital compensation elements. In definitive, WLP sensors offer a good opportunity to have application over 200°C, prohibited at present with the presence of oil for standard Auxitrol sensor
25

Neuartige Sensoren zur Erfassung von Dehnungen in Faserverbundwerkstoffen (Structural Health Monitoring)

Mäder, Thomas 27 January 2015 (has links) (PDF)
Dehnungssensoren werden zur Überwachung von sicherheitsrelevanten Bauteilen, besonders in Bauteilen aus faserverstärkten Polymermatrixverbundwerkstoffen eingesetzt. Durch deren Integration in das Bauteilinnere werden sie vor schädigenden mechanischen sowie korrosiven Einwirkungen geschützt. Dies gewährleistet eine zuverlässige sowie dauerhafte Funktion. Verschiedene Ansätze zur Weiterentwicklung integrierbarer Dehnungssensoren werden international untersucht. Die Verringerung des Sensordurchmessers auf Abmaße im Bereich des Durchmessers von Verstärkungsfasern ist dabei ein bedeutendes Entwicklungsziel. Insbesondere bei der Integration in Bauteile aus faserverstärkten Kunststoffen sorgen zum Durchmesser von Fasern vergleichbare Sensordurchmesser für eine optimale Sensoranbindung. Die Bildung von Harznestern sowie schwächender Unstetigkeiten kann mittels dünner Sensoren verhindert werden. Dies gewährleistet eine artefaktefreie Dehnungsmessung. Drei verschiedene Ansätze für neuartige Dehnungssensoren mit kleinem Querschnitt wurden in dieser Arbeit untersucht. / Strain sensors are used for structural health monitoring issues, certainly in parts with high safety requirements made of fibre-reinforced plastic composites. The integration of these sensors inside the parts protects them against any mechanical and corrosive impact. The sensor functionality can be enhanced by integration. There is a lot of international research effort to further develop integratable strain sensors. Different approaches are currently pursued. This thesis presents the results of investigations on three different approaches for novel strain sensors. The main goal of these investigations was to minimise the sensor diameter down to the diameter of reinforcing fibres. The small diameter allows for an optimum and artefact free integration of the sensors. The formation of resin nests and notches to the material structure can be prevented by integrating sensor with a smaller diameter. The strain measurement and monitoring is enhanced and more reliable then.
26

Análise do potencial de calibração da força óptica através de dispositivos de microscopia de força atômica / Analysis of the calibration potential of optical force through atomic force microscopy devices

Marques, Gustavo Pires, 1978- 20 August 2018 (has links)
Orientador: Carlos Lenz Cesar / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-20T14:50:59Z (GMT). No. of bitstreams: 1 Marques_GustavoPires_M.pdf: 1771357 bytes, checksum: 8ee6919633e2615608f25b33bec98e96 (MD5) Previous issue date: 2005 / Resumo: O microscópio de força atômica é uma ferramenta que possibilita a medida de forças precisamente localizadas com resoluções no tempo, espaço e força jamais vistas. No coração deste instrumento está um sensor a base de uma viga (cantilever) que é responsável pelas características fundamentais do AFM. O objetivo desta pesquisa foi usar a deflexão deste cantilever para obter uma calibração rápida e precisa da força da armadilha da pinça óptica, assim como testar e comparar com os método tradicionalmente utilizados para este propósito. Para isso, foi necessário analisar e entender o condicionamento de sinais utilizados no AFM. Foram estudados cantilever tradicionais, cujo sistema de detecção é baseado na deflexão de um feixe laser em conjunto com fotodetectores, bem como cantilevers piezoresistivos. Cantilevers piezoresistivos fornecem uma alternativa simples e conveniente aos cantilevers ópticos. A integração de um elemento sensorial dentro do cantilever elimina a necessidade de um laser externo e de um detector utilizados na maioria dos AFMs. Isto elimina a etapa delicada de alinhamento da laser ao cantilever e fotodetector que normalmente precede uma medida com AFM, uma simplificação que expande o potencial do AFM para o uso em meios adversos, como câmaras de ultra alto vácuo ou, como no caso específico das Pinças Ópticas, onde existem esferas em solução líquida e também restrições de dimensão / Abstract: The atomic force microscope (AFM) is a tool that enables the measurement of precisely localized forces with unprecedented resolution in time, space and force. At the heart of this instrument is a cantilever probe that sets the fundamental features of the AFM. The objective of this research has been using the deflection of this cantilever to get a fast and accurate calibration of optical tweezers trap force, as well as testing and comparing to the traditionally used methods of calibration for this purpose. For that it was necessary to resolve and understand the sensors signals conditioning used in the AFM. Traditional cantilevers, whose detection system is based on the deflection of a laser beam in addition with a photodetector, as well as piezoresistive cantilevers has been studied. Piezoresistive cantilevers provide a simple and convenient alternative to optically detected cantilevers. Integration of a sensing element into the cantilever eliminates the need for the external laser and detector used in most AFMs. This removes the delicate step of aligning the laser to the cantilever and photodetector which usually precedes an AFM measurement, a simplification which expands the potential of the AFM for use in difficult environments such as ultrahigh vacuum chambers or, as in Optical Tweezers specific case, where there are spheres into a liquid solution as well as dimensional constraints / Mestrado / Física / Mestre em Física
27

Étude de micropoutres sérigraphiées pour des applications capteurs

Lakhmi, Riadh 18 November 2011 (has links)
Dans cette thèse, des structures MEMS de type micropoutre ont été conçues pour des applications capteurs. Un procédé de fabrication alternatif au silicium, associant la technique de sérigraphie à l'utilisation d’une couche sacrificielle (SrCO3), a été utilisé pour la réalisation de micropoutres piezoélectriques (PZT, matériau servant à la fois d’actionneur et de transducteur) dans un premier temps. Des tests de détection en phase gazeuse ont été réalisés avec et sans couche sensible avec succès à l’aide du mode de vibration non conventionnel 31-longitudinal. Le toluène a notamment pu être détecté à des concentrations voisines de 20ppm avec une couche sensible PEUT. D’autres espèces telles que l’eau, l’éthanol ou l’hydrogène ont été détectés sans couches sensibles afin de s’affranchir des contraintes liées à celle-ci (vieillissement notamment). Des tests préliminaires de caractérisation en milieu liquide ont également été réalisés avec dans l’optique la détection d’espèces en phase liquide. Par ailleurs, un capteur de force a été conçu et réalisé avec le même procédé de fabrication. Ce dernier est composé d’une micropoutre en matériau diélectrique sur laquelle est intégrée une piezorésistance servant à la transduction du signal associé à la déformation subie par la micropoutre. Des détections de force en mode statique (sans actionneurs) ont permis de caractériser les capteurs, notamment en termes de sensibilité, de gamme de force et de force minimale détectable ou encore de linéarité. / The project concerns the conception, fabrication and characterization of cantilever-type MEMS structures for sensors applications. An alternative process to silicon related ones, associating the screen-printing technique to a sacrificial layer (SrCO3), was used to realize piezoelectric cantilevers (PZT material utilized as actuator and transducer) in a first time. Detections in gas phase were performed successfully with and without sensitive layer thanks to the unusual 31-longitudinal vibration mode. Namely, we were able to detect toluene at concentrations as low as 20ppm with a PEUT sensitive layer. Other species like water, ethanol or hydrogen could be detected without sensitive layer in order to get rid of the sensitive layer-related issues (ageing for example). Preliminary characterizations were carried out in liquid phase in a view to perform liquid phase detection. Besides, a cantilever-based force sensor, fabricated thanks to the same fabrication process was designed. This last one integrates a piezoresistor allowing the transduction of the mechanical signal linked to the strain overcome by the microcantilever. Force detections in static mode (without any actuator) permitted the sensors’ characterization. Indeed, their sensitivity, force range, minimal detectable force and linearity were carried out.
28

Synthesis and Characterization of Strain Sensitive Multi-walled Carbon Nanotubes/Epoxy based Nanocomposites

Sanli, Abdulkadir 03 April 2018 (has links)
Among various nanofillers, carbon nanotubes (CNTs) have attracted a significant attention due to their excellent physical properties. Incorporation of a very low amount of CNTs in polymer matrices enhances mechanical, thermal and optical properties of conductive polymer nanocomposites (CPNs) tremendously. For mechanical sensors, the piezoresistive property of CNTs/polymer nanocomposites exhibits a great potential for the realization of stable, sensitive, tunable and cost-effective strain sensors. Achieving homogeneous CNTs dispersion within the polymer matrices, understanding their complex piezoresistivity and conduction mechanisms, as well as the response of the nanocomposites under humidity and temperature effects, is highly required for the realization of piezoresistive CNTs/polymer based nanocomposites. This research primarily aims to synthesize and characterize CNTs/polymer based strain sensitive nanocomposites, which are cost-effective, applicable on both rigid and flexible substrates and require a non-complex fabrication process. A comprehensive understanding of the complex conduction and piezoresistive mechanisms of CNTs/polymer nanocomposites and their responses under humidity and temperature effects is another purpose of this thesis. For this purpose, synthesis and complex electromechanical characterization of multiwalled carbon nanotubes (MWCNTs)/epoxy nanocomposites are realized. In order to realize strain sensors for the strain range up to 1 % the use of epoxy is focused due to its good adhesion, dimensional stability, and good mechanical properties. The nanocomposites with up to 1 wt.% MWCNTs are synthesized by a non-complex direct mixing method and the final nanocomposites are deposited on flexible Kapton and rigid FR4 substrates and their corresponding morphological, electrical, electromechanical, as well as the response of the nanocomposite under humidity and temperature influences, are examined. The deformation over the sensor area is tested by digital image correlation (DIC) under quasi-static uniaxial tension. Quantitative piezoresistive characterization is performed by electrochemical impedance spectroscopy (EIS) over a wide range of frequencies. Further, dispersion quality of MWCNTs in the epoxy polymer matrix is monitored by scanning electron microscopy (SEM). Additionally, in order to tailor the piezoresistivity of the strain sensor, an R-C equivalent circuit is derived based on the impedance responses and the corresponding parameters are extracted from the applied strain. Obtained SEM images confirm that MWCNTs/epoxy nanocomposites with different MWCNTs concentrations have a good homogeneity and dispersion. Atomic force microscopy (AFM) analysis show that the samples have relatively good surface topography and fairly homogeneous CNTs networks. Higher sensitivity is achieved in particular at the concentrations close to the percolation threshold. A non-linear piezoresistive behavior is observed at low MWCNTs concentrations due to the dominance of tunneling effect. The strain sensitive nanocomposites deposited on FR4 substrates present high-performance strain sensing properties, including high sensitivity, good stability, and durability after cyclic loading and unloading. In addition, MWCNTs/epoxy nanocomposites show quite a small creep, low hysteresis under cyclic tensile and compressive loadings and fast response and recovery times. Nanocomposites provide an opportunity to measure 2-D strain in one position including amplitude and direction for complex configuration of structures in real-time systems or products. In contrast to present solutions for multi-directional strain sensing, MWCNTs/epoxy based nanocomposites give promising results in terms of durability, easy-processability, and tunable piezoresistivity. Unlike commercially-available approaches for crack/damage identification, MWCNTs/epoxy nanocomposites are capable of detecting the applied crack directly over a certain area. From the humidity influence, it has been found that resistance of nanocomposites increases with the increase of humidity exposure due to swelling of the polymer. Temperature investigations show that MWCNTs/epoxy nanocomposites give negative temperature coefficient (NTC) response due to thermal activation of charge carriers and the temperature sensitivity increases with the increase of filler concentration. The proposed approach can be further developed by combining differently fabricated sensors for realizing a compact structural health monitoring system or multi-functional sensor, where pressure, strain, temperature, and humidity can be monitored simultaneously. / Unter den verschiedenen Nanofillern haben CNTs aufgrund ihrer hervorragenden physikalischen Eigenschaften eine bedeutende Aufmerksamkeit erregt. Die Einarbeitung einer sehr geringen Menge an CNTs in Polymermatrizen verbessert die mechanischen, thermischen und optischen Eigenschaften von CPNs enorm. Für mechanische Sensoren bietet die piezoresistive Eigenschaft von CNTs/Polymer-Nanokompositen ein großes Potenzial zur Realisierung stabiler, empfindlicher, abstimmbarer und kostengünstiger Dehnungssensoren. Die Erzielung einer homogenen CNT-Dispersion innerhalb der Polymermatrizen, das Verständnis ihrer komplexen Piezoresistivitäts- und Leitungsmechanismen sowie die Reaktion der Nanokomposite unter Feuchte- und Temperatureinflüssen ist für die Realisierung piezoresistiver CNTs/Polymer-basierter Nanokomposite unerlässlich. Diese Arbeit zielt darauf ab, CNTs/polymerbasierte dehnungsempfindliche Nanokomposite herzustellen und zu charakterisieren. Diese Nanokompositen sollen kostengünstig, sowohl auf starren als auch auf flexiblen Substraten anwendbar sein und ein nicht komplexes Herstellungsverfahren erfordern. Ein umfassendes Verständnis der komplexen leitungs- und piezoresistive Mechanismen von CNTs/ Polymer-Nanokompositen und deren Reaktionen unter Feuchtigkeits- und Temperatureinflüssen ist ein weiteres Ziel dieser Arbeit. Zu diesem Zweck werden Synthese und komplexe elektromechanische Charakterisierung von MWCNTs/epoxy nanocomposites realisiert. Um Dehnungssensoren für den Dehnungsbereich bis zu 1 % realisieren zu können, wird der Einsatz von Epoxy aufgrund seiner guten Haftung, Dimensionsstabilität und guten mechanischen Eigenschaften fokussiert. Zufällig verteilte MWCNTs mit bis zu 1 wt.% MWCNTs-Konzentration ist durch ein direktes Mischen synthetisiert und die Nanokomposite werden auf flexiblen Kapton und starren FR4 Substraten durch Siebdruck appliziert und anschließend deren morphologische, elektrische, elektromechanische sowie die Reaktion des Nanocomposits unter Feuchtigkeits- und Temperatureinflüssen untersucht. Die Verformung über den Sensorbereich wird duch die Digital Image Correlation (DIC) Methode unter quasi-statischer uniaxialer Spannung getestet. Die quantitative piezoresistive Charakterisierung wird mit elektrische Impedanzspektroskopie (EIS) in einem breitem Frquenzspektrum durchgeführt. Ferner wird die Dispersionsqualität von MWCNTs in der Epoxidepolymermatrix durch Scanning Electron Microscopy (SEM) überprüft. Zusätzlich ist, um die Piezoresistivität des Dehnungssensors abzustimmen, eine RC-Äquivalenzschaltung auf der Grundlage der Impedanzantworten abgeleitet und die entsprechenden Parameter unter Belastung extrahiert. Erhaltene SEM-Bilder bestätigen, dass MWCNTs/Epoxide-Nanokomposite mit unterschiedlichen MWCNTs-Konzentrationen eine gute Homogenität und Dispersion aufweisen. Die atomic force microscopy (AFM) Untersuchung zeigt, dass die Proben relativ gute Oberflächentopographie und ziemlich homogene CNT-Netzwerke aufweisen. Eine höhere Empfindlichkeit wird insbesondere bei den Konzentrationen nahe der Perkolationsschwelle erreicht. Eine nichtlineare Piezoresistivität wird bei niedrigen MWCNTs Konzentrationen aufgrund der Dominanz des Tunnelwirkungseffekts beobachtet. Die auf FR4-Substraten applizierten dehnungsempfindlichen Nanokomposite weisen ausgezeichnete Dehnungsmessungseigenschaften einschließlich hohe Empfindlichkeit, gute Stabilität und Haltbarkeit nach zyklischer Be- und Entlastung auf. Darüber hinaus zeigen MWCNTs/Epoxide-Nanokomposite ein geringes Kriechen, eine kleine Hysterese unter zyklischen Zug- und Druckbelastungen, sowie schnelle Reaktionsund Wiederherstellungszeiten. Nanokomposite bieten die Möglichkeit, 2-D-Dehnungen in einer Position einschließlich Amplitude und Richtung innerhalb einer Materialstruktur in Echtzeitsystemen oder Produkten zu messen. Im Gegensatz zu aktuellen Lösungen für die multi-direktionale Dehnungsmessung, bieten die MWCNTs/Epoxide-Nanokomposite vielversprechende Ergebnisse in Bezug auf Langlebigkeit, leichte Verarbeitung und einstellbare Piezoresistivität. Im Unterschied zu kommerziell verfügbaren Ansätzen wird festgestellt, dassMWCNTs/Epoxide-Nanokomposite zur Riss-/Schadenserkennung in der Lage sind, den angelegten Riss direkt über einen bestimmten Bereich zu detektieren. Aus dem Einfluss der Feuchtigkeit hat sich herausgestellt, dass die Resistenz von Nanokompositen mit zunehmender Feuchtigkeitsbelastung durch Quellung des Polymers zunimmt. Temperaturuntersuchungen zeigen, dass MWCNTs/Epoxide-Nanokomposite aufgrund der thermischen Aktivierung von Ladungsträgern auf Temperatureinflüsse reagieren und die Temperaturempfindlichkeit mit der Erhöhung der Füllstoffkonzentration zunimmt. Der vorgeschlagene Ansatz kann durch die Kombination unterschiedlich hergestellte Sensoren zur Realisierung eines kompakten zur Überwachung des Zustands von Strukturen oder von multifunktionalen Sensoren weiterentwickelt werden, bei denen gleichzeitig Druck, Dehnung, Temperatur und Feuchtigkeit überwacht werden können.
29

Neuartige Sensoren zur Erfassung von Dehnungen in Faserverbundwerkstoffen (Structural Health Monitoring)

Mäder, Thomas 27 January 2015 (has links)
Dehnungssensoren werden zur Überwachung von sicherheitsrelevanten Bauteilen, besonders in Bauteilen aus faserverstärkten Polymermatrixverbundwerkstoffen eingesetzt. Durch deren Integration in das Bauteilinnere werden sie vor schädigenden mechanischen sowie korrosiven Einwirkungen geschützt. Dies gewährleistet eine zuverlässige sowie dauerhafte Funktion. Verschiedene Ansätze zur Weiterentwicklung integrierbarer Dehnungssensoren werden international untersucht. Die Verringerung des Sensordurchmessers auf Abmaße im Bereich des Durchmessers von Verstärkungsfasern ist dabei ein bedeutendes Entwicklungsziel. Insbesondere bei der Integration in Bauteile aus faserverstärkten Kunststoffen sorgen zum Durchmesser von Fasern vergleichbare Sensordurchmesser für eine optimale Sensoranbindung. Die Bildung von Harznestern sowie schwächender Unstetigkeiten kann mittels dünner Sensoren verhindert werden. Dies gewährleistet eine artefaktefreie Dehnungsmessung. Drei verschiedene Ansätze für neuartige Dehnungssensoren mit kleinem Querschnitt wurden in dieser Arbeit untersucht. / Strain sensors are used for structural health monitoring issues, certainly in parts with high safety requirements made of fibre-reinforced plastic composites. The integration of these sensors inside the parts protects them against any mechanical and corrosive impact. The sensor functionality can be enhanced by integration. There is a lot of international research effort to further develop integratable strain sensors. Different approaches are currently pursued. This thesis presents the results of investigations on three different approaches for novel strain sensors. The main goal of these investigations was to minimise the sensor diameter down to the diameter of reinforcing fibres. The small diameter allows for an optimum and artefact free integration of the sensors. The formation of resin nests and notches to the material structure can be prevented by integrating sensor with a smaller diameter. The strain measurement and monitoring is enhanced and more reliable then.
30

Electromechanical Behavior of Chemically Reduced Graphene Oxide and Multi-walled Carbon Nanotube Hybrid Material

Benchirouf, Abderrahmane, Müller, Christian, Kanoun, Olfa 14 May 2016 (has links)
In this paper, we propose strain-sensitive thin films based on chemically reduced graphene oxide (GO) and multi-walled carbon nanotubes (MWCNTs) without adding any further surfactants. In spite of the insulating properties of the thin-film-based GO due to the presence functional groups such as hydroxyl, epoxy, and carbonyl groups in its atomic structure, a significant enhancement of the film conductivity was reached by chemical reduction with hydro-iodic acid. By optimizing the MWCNT content, a significant improvement of electrical and mechanical thin film sensitivity is realized. The optical properties and the morphology of the prepared thin films were studied using ultraviolet-visible spectroscopy (UV-Vis) and scanning electron microscope (SEM). The UV-Vis spectra showed the ability to tune the band gap of the GO by changing the MWCNT content, whereas the SEM indicated that the MWCNTs were well dissolved and coated by the GO. Investigations of the piezoresistive properties of the hybrid nanocomposite material under mechanical load show a linear trend between the electrical resistance and the applied strain. A relatively high gauge factor of 8.5 is reached compared to the commercial metallic strain gauges. The self-assembled hybrid films exhibit outstanding properties in electric conductivity, mechanical strength, and strain sensitivity, which provide a high potential for use in strain-sensing applications.

Page generated in 0.0518 seconds