• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 304
  • 166
  • 12
  • 2
  • 1
  • 1
  • Tagged with
  • 476
  • 298
  • 113
  • 110
  • 92
  • 91
  • 77
  • 74
  • 71
  • 67
  • 63
  • 56
  • 55
  • 46
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Électrodéposition et électropolymérisation de monocouches organiques conductrices

Pilon, Catherine January 2006 (has links) (PDF)
De nouveaux arylthiophènes, soit le 4-(thièn-3-yl)benzènethiol (3TPT) et le 4-(thièn-3-yl)benzylthiol (3TBT) ont été synthétisés, électrodéposés et électropolymérisés sur un substrat d'or. L'objectif de ce projet était de former des monocouches organiques conjuguées dont la conductivité serait modulée par un évènement de reconnaissance moléculaire (par l'utilisation de bioconjugués) ou atomique (tel que la complexation de métaux divalents avec des groupements carboxylates). Des arylthiols, soit le thiophénol (TP), le diphénylthiol (DPT) et le p-dithiophénol (p-DTP) ont été utilisés comme composés modèles afin de mettre au point une méthode de déposition électrochimique efficace générant des monocouches complètes et organisées. Le p-DTP a été utilisé comme modèle dans le transport électronique à cause de la délocalisation des électrons-π dans le système aromatique et aussi de par sa possibilité de former des fils moléculaires. L'électrodéposition oxydative de ces arylthiols et arylthiophènethiols génère un taux de recouvrement élevé et reproductible comparativement à l'adsorption spontanée. Des études XPS ont suggérées que l'adsorption des arylthiophènethiols se fait par le soufre lié au noyau benzène tandis que le soufre du thiophène demeure libre. Dans le cas du p-DTP où il y a présence de deux soufres aromatiques, les études XPS indiquent que seulement un des deux soufres est lié à la surface. L'ajout d'une fonction méthylène d'espacement entre le noyau aromatique et la fonction d'ancrage thiol augmente la libre rotation des molécules et génère des taux de recouvrement plus élevés. Les monocouches électrodéposées de p-DTP se polymérisent linéairement de manière à former des fils moléculaires d'environ six unités. Les monocouches de 3TPT et de 3TBT ont été polymérisées oxydativement et efficacement par les carbones en alpha du soufre du thiophène. Dans ce type de polymère de surface, les électrons peuvent voyager autant perpendiculairement et parallèlement à la surface conductrice grâce au système totalement conjugué. Une copolymérisation mixte a aussi été faite, c'est-à-dire entre les unités adsorbées et un thiophène fonctionnalisé en solution, soit le 3-acétonitrilethiophène (3ACNT). Les résultats XPS indique que ce type de copolymérisation de surface forme des fils moléculaires ce qui contraste avec ce qui a été observé pour polymérisation entre les adsorbats. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Nanotechnologies, Chimie interfaciale, Électropolymérisation, Spectroscopie, Thiophènes, Monocouches organiques conductrices.
12

Études de la dispersion et de l'encapsulation des nanotubes de carbone en milieu aqueux

Zhong, Wei Heng 01 1900 (has links) (PDF)
Depuis leur découverte, les nanotubes de carbone (CNT) ont connu de nombreux succès en raison de leurs performances mécaniques, électriques et thermiques exceptionnelles. L'exploitation de ces propriétés requiert néanmoins de pouvoir isoler les CNT, de les manipuler et de les localiser au sein d'un matériau d'architecture plus ou moins complexe. Pour cela, il est souvent nécessaire de disperser les CNT en raison de leur très grande insolubilité dans tout solvant. De nombreuses stratégies de dispersion reposent sur la stabilisation des CNT par des tensioactifs. Cependant, très peu d'études visent à déterminer les forces colloïdales mises en jeu, un des paramètres clés de la dispersion. Ainsi, la dispersion des CNT reste souvent un art plutôt qu'un processus bien contrôlé et maîtrisé. Dans cette étude, le mécanisme d'adsorption en milieu aqueux de quatre tensioactifs usuels a été clarifié, en particulier grâce à la détermination de leur isotherme d'adsorption. En se basant sur les résultats d'adsorption, des dispersions concentrées et sans agrégats de CNT ont été préparées et ensuite utilisées pour la formulation des nanocomposites polymériques. Une seconde méthode de dispersion est basée sur l'encapsulation des CNT par une écorce polymérique. Alors que la majorité de telles méthodes requiert la modification covalente des CNT, ce qui entraîne la détérioration des propriétés des CNT, nous présentons une méthode de dispersion et d'encapsulation des CNT qui ne nécessite pas de modification covalente de leur surface. Cette méthode se base sur l'adsorption physique des polymères préparés par polymérisation par transfert de chaîne de type addition et fragmentation, appelée polymérisation RAFT. Cette procédure d'encapsulation est versatile et permet la formation d'une couche polymérique homogène et continue sur la surface des CNT. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : nanotubes de carbone (CNT), dispersion, isotherme d'adsorption, encapsulation, polymérisation RAFT.
13

Assemblages macromoléculaires (multi)stimulables à base de pillar[n]arènes / (Multi)stimulable macromolecular assemblies based from pillar[n]arene

Laggoune, Nérimel 28 November 2016 (has links)
Les pillar[n]arènes constituent une famille de macrocycles aromatiques dont l’une des caractéristiques est de présenter une cavité hydrophobe riche en électrons leur permettant ainsi de former des complexes d’inclusion avec des molécules présentant un déficit en électron. L’auto-assemblage de macromolécules à partir de briques élémentaires possédant des propriétés de reconnaissance moléculaire est une voie de choix pour former des matériaux modulables sur commande via l’application de stimuli (température, le pH,… ). Comparé aux dérivés de cyclodextrines ou calixarènes, peu d’articles traitent de l’utilisation de pillar[n]arènes pour concevoir des systèmes macromoléculaires stimulables. C’est pourquoi, nous avons développé une stratégie générale permettant, à partir d’un dérivé de pillar[5]arène porteur d’une fonction trithiocarbonate, de synthétiser de manière contrôlée diverses briques macromoléculaires douées de propriétés de reconnaissance moléculaire et donc capable de former des architectures supramoléculaires diverses avec des (macro)molécules complémentaires. / The pillar[n]arene are an aromatic macrocycles whose one of characteristics is to present a hydrophobic cavity rich in electrons allowing them to form inclusion complexes with molecules deficient in electrons. Self-assembly of macromolecules from building blocks having molecular recognition properties is a way of choosing to form modular materials to order via the application of stimuli (temperature, pH, ...). Compared with cyclodextrin derivatives or calixarenes, few articles discuss the use of pillar[n]arene to design stimulable macromolecular systems. Therefore, we developed a general strategy which, from a derivative pillar[5]arene carrier of trithiocarbonate function to synthesize a controlled manner various macromolecular bricks endowed with molecular recognition properties and therefore able to form various supramolecular architectures with (macro)molecules complementary.
14

Contribution à l'étude de la polymérisation : formation, propriétés et constitution des polyindènes, en particulier du "triindène"

Gauvin, Dominique January 1934 (has links)
Québec Université Laval, Bibliothèque 2018
15

Une étude computationnelle de la polymérisation par (hétéro)arylation directe : [A Computational Study of Direct (Hetero)arylation Polymerization]

Blaskovits, Terence January 2018 (has links)
En comparaison avec d’autres techniques de couplage-croisé adaptées à la synthèse de polymères conjugués, la polymérisation par (hétéro)arylation directe (PHAD) s’avère avantageuse d’une perspective industrielle et environnementale. En effet, elle permet d’éviter l’utilisation d’agents de transmétallation nécessaires aux méthodes classiques de polymérisation. La réaction de PHAD exploite l’activation de liens aromatiques carbone-hydrogène (C–H) pour une synthèse efficace de polymères conjugués avec une excellente économie d’atomes. La réaction d’(hétéro)arylation directe permet la formation d’un lien entre deux atomes de carbone d’hybridation sp2 à partir d’un lien C–H via l’état de transition de la métallation-déprotonation concertée (CMD). La majorité des polymères conjugués utilisés en électronique organique contient des unités de répétition à base de thiophène. Cet hétérocycle, possédant des propriétés électroniques et stériques désirables, sont fonctionnalisés avec des groupes donneurs ou accepteurs d’électrons, ainsi qu’avec des chaînes aliphatiques à des fins de solubilité. Cependant, l’utilisation du motif thiophène peut mener à des défauts structuraux dans la chaîne polymère puisqu’elle comporte plusieurs liens C–H activables en PHAD. Si un lien C-H non-désiré (en position β du motif thiophène) est activé plutôt que le lien en position α, un défaut en β peut alors être incorporé de manière covalente dans la structure polymérique résultante. La présence de défauts en β mène à une perturbation de la conjugaison du polymère et de l’organisation du matériau à l’état solide, des facteurs qui peuvent réduire les performances en dispositifs d’électronique organique. Étant donné l’omniprésence du motif thiophène au sein des polymères conjugués et sa sélectivité parfois problématique, une étude computationnelle du mécanisme de l’arylation directe sur des unités thiophènes modèles a été entreprise dans le cadre de ce projet. En utilisant la théorie de la fonctionnelle de la densité et le cluster couplé, les barrières d’activation pour l’état de transition de la CMD de plusieurs substrats modèles ont été calculées et analysées par la méthode de la distorsion-interaction. L’effet activant d’un halogène sur les liens C–H adjacents à celui-ci a été étudié. Les résultats permettront de guider la conception de monomères pour la réalisation de matériaux régioréguliers par PHAD. / The direct (hetero)arylation polymerization (DHAP) reaction harnesses the single-step activation and arylation of aromatic carbon-hydrogen bonds for the efficient synthesis of conjugated polymers. By avoiding the need for transmetalating agents used in other polymerization techniques, the number of synthesis steps is reduced, the need for expensive and often unstable reagents is minimized and the production of toxic organometallic by-products is eliminated. These factors contribute to a reaction which is more favourable than traditional methods for the preparation of conjugated polymers from an industrial and an environmental perspective. Most high-performing conjugated polymers for organic electronic applications contain thiophene-based repeating units. These heterocycles possess desirable electronic features and are easily functionalized with electron-accepting or -donating substituents or solubilizing side-chains to tune their electronic and physical properties. However, the issue has arisen over the selectivity of the concerted metalation-deprotonation (CMD) transition state, the key step of the direct arylation mechanism which determines the selectivity of C–H bond activation. There are multiple reactive C–H bonds on thiophene monomers, and if the undesired bond (the “Cβ–H” bond) were to be activated, it would generate a β-defect in the resulting polymer. This may lead to a disruption in both the π-conjugation of the polymer and the supramolecular organization of the material in the solid state, factors which can contribute to reduced performance in organic electronic devices. Given the ubiquity of thiophene-based units in conjugated polymers and the assumed issues regarding selectivity, we used computational techniques to study the direct arylation mechanism on model thiophene substrates possessing various electronic features. Using density functional theory and coupled-cluster methods, activation barriers for the CMD transition states of various C–H bonds were calculated and analyzed using the distortion/interaction model. The activating effect of a halide on thiophene was also studied. The results suggest that there are inherent features of selectivity for electron-rich or electron-poor thiophenes, and that the location of the halogen greatly influences coupling selectivity by activating the undesirable Cβ–H bond. These findings could guide the design of monomers amenable to high-selectivity DHAP protocols.
16

Développement de polymères tt-conjugués de type n (accepteurs) par poly (hétéro)arylation directe et fabrication de cellules solaires tout polymère

Robitaille, Amélie 02 February 2021 (has links)
Cette thèse porte principalement sur le développement de nouveaux polymères de type n à base de naphtalène diimide et de pérylène diimide obtenus par polymérisation par (hétéro)arylation directe (PHAD) pour la fabrication de cellules solaires tout polymère. Tout d’abord, les deux premiers chapitres portent sur le développement d’une méthode robuste de PHAD sur des polymères bien connus de la littérature, le PNDIOD-T2 et le PNDIBS deux analogues à base de naphtalène diimide. Les polymères synthétisés via cette méthode ont été comparés à des matériaux synthétisés par une méthode dite classique dans le domaine; la polymérisation croisée de Stille-Migita. Cela a permis d’étudier la structure des matériaux pour en évaluer la régiorégularité; une caractéristique clef dans l’électronique organique étant donné que quelques pourcents de défauts au sein des structures peuvent entraîner une diminution importante des performances. Dans le cadre de ces chapitres, il a été possible de développer une méthode permettant d’obtenir des matériaux plus régiorégulier que lors de l’utilisation de la méthode classique; chose très peu répandue dans la littérature, mais au combien important. En effet, la PHAD est une méthode plus simple, plus écoresponsable que sa comparse ce qui ouvrirait les portes pour la réduction des coûts à l’échelle industrielle en plus de permettre la création d’énergies vertes via de la chimie verte. À la suite du développement de cette méthode, un nouveau défi était donc de développer de nouveaux matériaux accepteurs d’électrons. Pour ce faire, nous avons choisi de synthétiser des matériaux de types accepteur-accepteur pour moduler les propriétés optoélectroniques. Cette technique visait à diminuer les niveaux énergétiques des matériaux afin d’être plus complémentaire à ceux des matériaux donneurs. De cette façon, il serait possible d’obtenir une absorption des photons du soleil sur une plus large gamme de longueur d’onde afin d’améliorer les performances des cellules solaires organiques. Malheureusement, malgré la réussite d’obtention de propriété optoélectroniques désirées, les polymères synthétisés ne présentent pas des caractéristiques photovoltaïques intéressantes, ce qui pourrait s’expliquer par une morphologie de la couche active inadéquate. / This thesis focuses on the development of new n-type polymers based on naphthalene diimide and perylene diimide made by direct poly (hetero)arylation (DHAP) for the fabrication of all-polymer solar cells. First, the first two chapters focus on the development of a robust DHAP method on polymers well known in the literature, PNDIOD-T2 and PNDIBS. The polymers synthesized by this method were compared with materials synthesized by known conventional methods in the field; the polymerization via cross-coupling known as Stille-Migita. This allowed the structural analysis of the materials in order to evaluate their regioregularity; a key feature in organic electronics as a few percent of defects within structures result in a drastic decrease in devices performance. As part of these chapters, it has been possible to develop a method allowing to obtain more regioregular materials compared with the classical methods; this have not been observed frequently in the literature, but is an important matter. Indeed, PHAD is a simpler, more ecoresponsible production method than the Stille method, which would open the doors for the reduction of the costs on the industrial scale in addition to allowing the creation of green energy via green chemistry. As a result of the development of this method, the new challenge was therefore to develop new electron-accepting materials. To do so, we have chosen to synthesize acceptor-acceptor materials, this was to also modulate their optoelectronic properties. This technique aimed to decrease the energy levels of materials in order to be more complementary to those of donor materials. In this way, it would be possible to absorb photons from the sun over a wider wavelength range in order to improve the performance of organic solar cells. Unfortunately, despite the success in obtaining the desired optoelectronic properties, the synthesized polymers do not exhibit interesting photovoltaic characteristics, which could be explained by the inadequate morphology of the active layer.
17

Modulation de la protéine de polarité épithéliale Yurt par phosphorylation et oligomérisation

Gamblin, Clémence 24 September 2019 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2018-2019. / Les fonctions des cellules épithéliales reposent sur la distribution asymétrique de différents constituants cellulaires, organisation structurale nommée polarité épithéliale. Plus de 80% des cancers sont d’origine épithéliale, et l’altération de la polarité cellulaire contribue à la progression du cancer. L’élucidation des mécanismes moléculaires contrôlant la polarité épithéliale est donc primordiale. La protéine Yurt permet de maintenir l’intégrité de la membrane latérale et de limiter la croissance de la membrane apicale dans les épithéliums polarisés. Les orthologues humains de Yurt, EHM2 et EPB41L5, sont surexprimés dans des cellules cancéreuses hautement métastatiques et sont associés à un mauvais pronostic. EPB41L5 est aussi impliquée dans la transition épithélio-mésenchymateuse et dans la formation des métastases. Le développement d’inhibiteurs de EHM2 et EPB41L5 pourrait donc contrer la progression tumorale. L’objectif général de mon doctorat était de mieux comprendre les modes de régulation de ces protéines, ce qui est un préalable essentiel pour la mise en place de stratégies thérapeutiques dans le contexte du cancer. Durant la polarisation des cellules épithéliales, Yurt est confinée à la membrane latérale et assure l’intégrité de ce domaine membranaire en réprimant la machinerie apicale. Aux stades tardifs de l’embryogenèse, le recrutement apical de Yurt permet de restreindre la taille de la membrane apicale. Néanmoins, les mécanismes moléculaires soutenant la dynamique spatiotemporelle de Yurt, et les mécanismes précis par lesquels Yurt inhibe la machinerie apicale étaient non définis. Au cours de mon doctorat, nous avons montré que la kinase apicale aPKC phosphoryle Yurt pour empêcher sa localisation apicale prématurée. Une version non phosphorylable de Yurt démantèle le domaine apical, indiquant que l’exclusion apicale de Yurt dépendante de aPKC est cruciale pour la polarité épithéliale. En retour, Yurt antagonise les fonctions de aPKC pour prévenir l’apicalisation de la membrane plasmique. La capacité de Yurt à lier et restreindre les fonctions de aPKC est centrale pour son rôle dans la polarité épithéliale. En effet, déléter le site de liaison à aPKC neutralise l’activité de Yurt. Ainsi, Yurt et aPKC sont impliquées dans une relation antagoniste bidirectionnelle qui contribue à la ségrégation des domaines membranaires, ce qui soutient l’architecture fonctionnelle des tissus épithéliaux. iv Ensuite, pour comprendre plus en profondeur comment est modulée l’activité de Yurt, nous avons investigué les propriétés biochimiques de Yurt et de ses orthologues. Ces protéines appartiennent à la famille des protéines à domaine « Four-point-one, Ezrin, Radixin, Moesin » (FERM). Elles possèdent également un domaine adjacent à FERM (FA pour « FERM-adjacent »), définissant un sous-groupe de la famille FERM. Certaines protéines de cette famille ont la capacité de former des homo-oligomères, ce qui module leurs fonctions. Nos résultats indiquent que Yurt et EPB41L5 sont également capables de s’homo-oligomériser. Nous avons démontré que l’unité FERM-FA définit une interface oligomérique. De plus, nous avons montré que la phénylalanine 281 (F281) et le tryptophane 283 (W283) sont particulièrement importants pour l’interaction homotypique de Yurt. En effet, la substitution de ces résidus en arginine (R) abolit l’interaction homotypique de Yurt in vitro. Nous avons alors généré une lignée de drosophile exprimant YurtF281R, W283R à partir du locus endogène yurt grâce à la technique CRISPR/Cas9. Les embryons exprimant YurtF281R, W283R sont phénotypiquement similaires aux embryons complètement dépourvus de Yurt, suggérant fortement que la multimérisation de Yurt est cruciale pour ses fonctions in vivo. Nous avons également démontré que la kinase aPKC déstabilise l’oligomère de Yurt conduisant à une répression de ses fonctions. Ceci révèle un mécanisme par lequel cette kinase supporte la formation du domaine apical. En résumé, mes travaux de doctorat ont permis de décrypter le mécanisme d’exclusion apicale de Yurt par la kinase aPKC dans les cellules épithéliales immatures. Nous avons également mis en évidence une relation antagoniste bidirectionnelle entre Yurt et aPKC. Ceci contribue à maintenir la bonne ségrégation des domaines membranaires, et ainsi soutenir l’architecture fonctionnelle des tissus épithéliaux. De plus, nous avons démontré que l’oligomérisation de Yurt est cruciale pour ses fonctions in vivo. Cette propriété biochimique est conservée chez son orthologue humain EPB41L5. Ceci offre donc une opportunité unique dans la lutte contre le cancer. En effet, des composés interférant avec cette oligomérisation pourraient limiter l’activité de EPB41L5, et ainsi combattre la progression tumorale. / The polarized architecture of epithelial cells along the apical-basal axis is crucial for epithelial tissue morphogenesis, physiology and homeostasis. Over 80% of cancers are of epithelial origin, and the alteration of cell polarity contributes to cancer progression. Elucidating the molecular mechanisms controlling epithelial polarity is therefore essential. The protein Yurt stabilizes the lateral membrane and limits apical membrane growth in polarized epithelia. The human Yurt orthologs EHM2 and EPB41L5 are overexpressed in many cancers. This correlates with poor outcome for patients. EPB41L5 also supports epithelial-mesenchymal transition and metastasis. Elaborating strategies limiting EHM2 and EPB41L5 activity is of special interest in oncology. The general objective of my PhD was to decipher the regulation of these proteins to pave the way for new therapeutic strategies for the treatment of cancer. During organogenesis, Yurt is confined to the lateral membrane and supports the stability of this membrane domain by repressing the apical machinery. At later stages of embryogenesis, the apical recruitment of Yurt establishes a local negative regulatory feedback loop that restricts the size of the apical membrane. However, the molecular basis sustaining the spatiotemporal dynamics of Yurt, and the precise mechanisms by which Yurt inhibits apical promoting factors were undefined. During the first part of my Ph.D., we demonstrated that aPKC phosphorylates Yurt to prevent its premature apical localization. A non-phosphorylatable version of Yurt dominantly dismantles the apical domain, showing that its aPKC-mediated exclusion is crucial for epithelial cell polarity. In return, Yurt counteracts aPKC functions to prevent apicalization of the plasma membrane. The ability of Yurt to bind and restrain aPKC signaling is central for its role in polarity, as removal of the aPKC binding site neutralizes Yurt activity. Thus, Yurt and aPKC are involved in a reciprocal antagonistic regulatory loop that contributes to the segregation of discrete and mutually exclusive membrane domains, thereby sustaining the functional architecture of epithelial tissues. To further define how Yurt activity is modulated, we investigated the biochemical properties of Yurt and its orthologs. Yurt and EPB41L5 belong to the Four-point-one, Ezrin, Radixin, Moesin (FERM) domain protein family. These proteins also contain a FERM-adjacent (FA) domain which defines a subfamily of FERM proteins. Some proteins of this superfamily have the ability to multimerize. Our results indicate that both Yurt and EPB41L5 oligomerize. Our data also establish that the FERM-FA unit forms an oligomeric interface, and that multimerization of Yurt is crucial for its function in epithelial cell polarity regulation. Finally, we demonstrated that aPKC destabilizes the Yurt oligomer to repress its functions, thereby revealing a mechanism through which this kinase supports apical domain formation. In summary, my Ph.D. work has deciphered the mechanism sustaining the apical exclusion of Yurt by aPKC in immature epithelial cells. We have also demonstrated a reciprocal antagonistic regulatory loop between Yurt and aPKC. This contributes to maintaining the proper segregation of membrane domains, and thus supporting the functional architecture of epithelial tissues. In addition, we have demonstrated that Yurt oligomerization is crucial for its in vivo functions. This biochemical property is conserved in its human ortholog EPB41L5. This offers a unique opportunity in the fight against cancer. Indeed, compounds interfering with this oligomerization could limit the activity of EPB41L5, and thus counteract tumor progression.
18

Synthèse de nanoparticules riches en carbone par polymérisation en dispersion

Picard-Lafond, Audrey 24 April 2018 (has links)
L’intérêt porté aux nanomatériaux de carbone est en croissance en raison de leur potentiel pour une variété d’applications. Le réseau d’atomes de carbone hybridés sp², commun à tous les matériaux de cette famille, engendre d’excellentes propriétés électroniques et optiques modulées par la forme, la taille et la dimensionnalité du réseau carboné. Parmi ces nanomatériaux, les nanoparticules de carbone (CNP) disposent d’un potentiel singulier en raison de leurs propriétés de photoluminescence, leur photostabilité et leur faible toxicité. En conséquence, l’application des CNP en biomédecine, en optoélectronique et en photocatalyse est grandement étudiée. Néanmoins, les méthodes de synthèse et les techniques de séparation actuelles représentent des limitations à leur mise en œuvre. L’usage de température élevée (>100 °C) nuit au contrôle précis de la forme et de la taille des CNP, les rendements réactionnels sont faibles et la surface du matériau est chimiquement inerte. Dans ce projet, l’objectif est d’établir une méthode de synthèse de CNP palliant aux limitations des procédés actuels. Autrement dit, nous tentons de développer une méthode permettant un contrôle précis de la forme et de la taille des particules en évitant l’utilisation de températures élevées. La stratégie est basée sur la polymérisation en dispersion d’unités organiques riches en alcynes, utilisées comme source métastable de carbone. D’une part, la polymérisation de monomères riches en alcynes permet de synthétiser en une étape simple des polyynes qui, en raison de leur instabilité, réagissent spontanément pour produire un matériau composé majoritairement d’atomes de carbone hybridés sp². D’autre part, la polymérisation en dispersion assure un contrôle morphologique des particules durant la synthèse. En plus de l’objectif principal, la fonctionnalisation en surface des particules est envisagée en exploitant la réactivité d’alcynes résiduels de la structure carbonée. Aussi, nous tentons d’échanger le monomère alcynique afin de bonifier les propriétés de photoluminescence des particules issues du procédé. / The interest in carbon nanomaterials is expanding due to their potential for various applications. The network of sp²-hybridized carbon atoms, common to all materials of this family, generates excellent electronic and optical properties which are modulated by the shape, the size and the dimensionality of the carbon network. Among these nanomaterials, carbon nanoparticles (CNP) have a singular potential due to their photoluminescence properties, their photostability and their low toxicity. Accordingly, the application of CNP in biomedicine, optoelectronics and photocatalysis is greatly studied. However, the current synthetic methods and separation techniques represent limitations to their implementation. The use of high temperatures (>100 °C) hinders the precise control over shape and size of the CNP, the synthetic yields are low and the materials’ surface is chemically inert. In this project, the objective is to establish a route for CNP synthesis which surpasses the limitations of the current preparation methods. In other words, we are trying to develop a method allowing a precise control of the particles’ shape and size, while avoiding the use of high temperatures. The strategy is based on the dispersion polymerization of alkyne-rich organic units, used as a metastable carbon source. On one hand, the polymerization of alkyne-rich monomers allows the one-step synthesis of polyynes which, due to their instability, react spontaneously to produce a material composed mainly of sp²-hybridized carbon atoms. On the other hand, dispersion polymerization ensures a morphological control of the particles during their synthesis. Adding to the main objective, surface functionalization of the particles is intended by exploiting the reactivity of residual alkynes in the carbon structure. Also, we try to exchange the alkyne-rich monomer in order to improve the photoluminescence properties of the particles obtained from the developed process.
19

Synthèse et caractérisation de polyesters à partir du diméthylcétène et de composés carbonylés

Brestaz, Marc 22 October 2009 (has links) (PDF)
L'objectif de cette étude est de synthétiser et de caractériser des polyesters entre le diméthylcétène et des composés carbonylés choisis (acétone, méthyléthylcétone et acéthaldéhyde) par deux voies distinctes : une copolymérisation directe, et une voie passant d'abord par la synthèse de la beta-lactone puis sa polymérisation par ouverture de cycle. La caractérisation a mis en évidence la structure parfaitement alternée du polyester entre le diméthylcétène et l'acétone, et des structures plus complexes avec la méthyléthylcétone et l'acétaldéhyde. Les analyses ont également montré le caractère polymorphe complexe de ces copolymères. Les trois beta-lactones correspondantes ont également été synthétisées. Seule la polymérisation de la beta-lactone avec l'acétaldéhyde a été menée à bien, du fait de son faible encombrement stérique. Enfin, une étude cinétique par infrarouge a également été effectuée et a permis de mieux connaître les cinétiques de polymérisation par ouverture de cycle.
20

Synthèse et caractérisation de nouveaux polymères obtenus à partir de l'éthylcétène

Hayki, Najib 06 July 2011 (has links) (PDF)
L'objectif de cette étude est de synthétiser de nouveaux polymères aux propriétés spécifiques, en utilisant pour la première fois comme monomère un aldocétène : l'éthylcétène. La synthèse de l'éthylcétène a été entreprise en utilisant deux procédés distincts :d'une part la méthode de McCarney, qui a permis de le préparer dans un solvant par entraînement à la vapeur, et d'autre part le craquage de l'anhydride butyrique à 575°C sous 40mbar.La polymérisation ionique de l'éthylcétène a ensuite été réalisée, dans différentes conditions de solvant, de température et avec plusieurs amorceurs. La polymérisation anionique a abouti uniquement à la formation d'un polyester amorphe, tandis que la polymérisation cationique a conduit exclusivement à un polymère de structure polycétone,d'une grande stéréorégularité avec une cristallinité moyenne de 0,34. Une caractérisation fine de ces polymères a été effectuée par IRTF-ATR, RMN, TGA, DSC, GPC et diffraction desRX.

Page generated in 0.1098 seconds