• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 53
  • 53
  • 31
  • 19
  • 16
  • 16
  • 16
  • 14
  • 14
  • 14
  • 11
  • 10
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

ELECTRICAL MONITORING OF DEGRADATION AND DISSOLUTION KINETICS OF BIORESPONSIVE POLYMERS FOR IN SITU ASSESSMENT OF MICROBIAL ACTIVITY

Jose Fernando Waimin (13222980) 10 August 2022 (has links)
<p>Microbes play key roles in processes that shape the world around us having direct impact in crop  production,  food  safety,  digestion,  and  overall  health.  Developing  tools  to  monitor  their activity in-situ is the key towards better understanding the true impact of microbial activity in these processes and, eventually, harnessing their potential. Many conventional techniques for microbial activity assessment require sample collection, expensive benchtop equipment, skilled technicians, and   destructive   sample   processing   which   makes   their   adaptation   for   in-situ   monitoring cumbersome. The need for technologies for in-situ monitoring has led to the development of many sensordesigns,  capable  of  detecting  single  strains  of  bacteria  to  low  limits  of  detection  (LOD). These designs, however, are limited to their complex manufacturing procedures, cost, and delicacy which makes them difficult to implement outside of a laboratory setting into harsh environments.</p> <p>In  the  last  25  years,  impedimetric  sensing  methods  have  been used  as  powerful  analytical tools  to  characterize  the  degradation  and  dissolution  of  polymers.  Known  for  their  robustness, these techniqueswere mainly used for characterizing polymer’s properties as corrosion-protective layers on metals. At the time, someresearchers pondered onthe potential use of this technique for biosensing  applications.In  this  thesis,  the  ability  of  monitoring  microbial  activity  in-situ  was explored by  integratingdifferent  bioresponsive  polymers  with  low-cost electronic  impedimetricplatformsand assessing their degradation kinetics in response to microbes</p> <p>This  novel  use  of  impedimetric  sensing  methods  and  approach  towards  microbial  activity sensing was systematically studied in different  areas including  agriculture, food packaging, and healthcare.  Microbes,  the  good,  the  bad,  and  the  ugly,  were  studied  within  their  ecosystems  to demonstrate  the  ability  of  using  the  described  systems  in  in-situ  monitoring.  In  agriculture, polymer  degradation  was  successfully  correlated  to  the  concentration  of  decomposing  bacteria directly in soil. In food packaging, spoilage of chicken samples was successfully detected within their package through a non-reversible system. In healthcare, a wireless and electronic-free wound monitoring  system  capable of  detecting  early  onset  of  infection  while  delivering  therapeutics without the need of external actuation was achieved. Further developments of this technology will present the key towards monitoring microbial activity in-situ in a large scale, providing solutions to  humanity’s  toughest  upcoming  challenges  including  food  production,  food  safety,  and healthcare.</p>
42

Implementation of Superabsorbent Polymers for Internally Cured Concrete

Caitlin Jamie Adams (15300313) 17 April 2023 (has links)
<p>Hydrated portland cement provides the solid adhesive matrix necessary to bind aggregate (sand and gravel) into concrete. The hydration reaction requires water, however the products of the reaction limit further diffusion of water to unreacted cement. Superabsorbent polymer (SAP) hydrogel particles absorb mixing water, then subsequently desorb when the relative humidity drops, serving as internal water reservoirs within the cement matrix to shorten diffusion distances and promote the hydration reaction in a process called internal curing. Internally cured cementitious mixtures exhibit an increased degree of hydration and reduced shrinkage and cracking, which can increase concrete service life. Increased service life can, in turn, reduce overall demand for portland cement production, thereby lowering CO2 emissions.</p> <p>This dissertation addresses practical implementation questions key to the translation of SAP hydrogel internal curing technology to from the benchtop to the field in transportation applications, including: (1) What effects do mix design adjustments made to increase mixture flow when using SAP have on cementitious mixture properties? and (2) What effect do cementitious binder characteristics have on SAP performance?</p> <p>The addition of SAP to a cementitious mixture changes the mixture’s flow behavior. Flow behavior is an important aspect of concrete workability and sufficient flow is necessary to place well consolidated and molded samples. Often, additional water is added to mixtures using SAP to account for the absorbed water, however cementitious mixture workability is often tuned using high range water reducing admixtures (e.g., polycarboxylate ester-based dispersants). Fresh and hardened properties of mortars were characterized with respect to flow modification method (using the mortar flow table test; compressive strength at 3, 7, and 28 days; flexural strength at 7 and 28 days; and microstructural characterization of 28-day mortars). At typical doses, it was found that the addition of extra water lowers the resulting compressive and flexural strength, while high range water reducing admixtures administered at doses to achieve sufficient mortar flow did not compromise compressive or flexural strength.</p> <p>The SAPs used in cement are generally poly(acrylamide-acrylic acid) hydrogels and are not chemically inert in high ionic-load environments, such as cement mixtures. The behavior of an industrial SAP formulation with characterized across five different cement binder compositions with respect the cement hydration reaction (using isothermal calorimetry, thermogravimetric analysis of hydration product fraction, and scanning electron microscopy (SEM)/energy dispersive x-ray spectroscopy (EDS) microstructural analysis), the absorption behavior of the SAP, and the fresh and hardened properties of SAP-cement composites (mortar flow and compressive and flexural strength). The change in properties induced by the addition of SAP was similar across ASTM Type I cements from three manufacturing sources, suggesting that SAP internal curing can be implemented predictably over time and geography. Excitingly, in analysis of cement systems meeting different ASTM standards (Type III and Type I with 30% replacement by mass with ground blast furnace slag), synergistic and mitigating reaction behaviors were observed, respectively, in Type III and slag cement, suggesting that further study of SAP with these cement systems could be of particular interest.</p>
43

<strong>On the Tunability of Highly Anisotropic Composite Piezoelectric Films: Processing and Applications</strong>

Jesse C Grant (16317756) 13 June 2023 (has links)
<p>  </p> <p>Polymer films possess many advantageous properties, such as mechanical flexibility, toughness, impact resistance, optical transparency, light weight, and low cost, but their behavior related to temperature stability and thermal conductivity and lack of select functionalities render them unsuitable for key applications. In the context of smart materials, piezoelectric ceramics and single crystals provide unmatched electromechanical couplings, mechanical strength, and chemical inertness, at the expense of being brittle, opaque, and high cost. A synergistic combination of properties can be achieved by combining both materials in an anisotropically structured ceramic/polymer composite (with quasi-1–3 connectivity) by the application of external electric field (E-field). In a process called dielectrophoresis, the particles align into through-thickness columns comprising a nanocolumn forest. As a result, the complementary properties greatly enhance the resulting performance, promising to revolutionize the class of smart materials with high-performance applications in actuators, sensors, and transducers. These particle-filled composites also allow for great design flexibility regarding the type of functionalization and the connectivity of each phase. Following the materials-science paradigm comprising the sequence of processing, structure, and properties, the work on these piezoelectric composite materials is broadly organized into materials selection, processing, and applications.</p> <p>In the first study, the kinetics of particle-chain alignment are modeled as a linear step-growth polymerization and the rheokinetics are modeled with the dual-Arrhenius chemoviscosity model. Employing the direct piezoelectric effect, a characterization of the vibration response of the composites complements an evaluation of their suitability as vibration sensor for motor fault detection. Second, for impact sensing, the efficacy of the piezoelectric composite films is evaluated with respect to a novel conceptual sensing system for automotive applications, such as vehicle-to-pedestrian collision detection. Third, applying the indirect piezoelectric effect for sound production as an electroacoustic loudspeaker, the piezoelectric composite films represent a novel approach to flat-panel loudspeakers that are tunable in modulus, with opportunities for mechanical flexibility, optical transparency, and large-area coverage.</p>
44

ORGANIC ELECTROCHROMIC MATERIALS AND DEVICES: OPTICAL CONTRAST AND STABILITY CONSIDERATIONS

Kuluni Perera (15351412) 25 April 2023 (has links)
<p> In an era of advancing printed electronics, solution-processable organic semiconductors continue to make significant strides in electronic and optoelectronic applications. Electrochromic (EC) technology, which encompass reversible optical modulation under electrochemical biasing, has progressed rapidly over the past half-century and developed into niche commercial-scale devices for auto-tinting glasses as well as low-power, non-emissive displays. To utilize the advantages of organic electrochromic materials in next-generation devices, it is imperative to understand their fundamental material properties, interactions with other device components, and the underlying electrochemistry that governs the overall optical and electrochemical response of the complete electrochromic device. This dissertation presents a discussion on the synergistic role of organic electrochromes, charge-balancing layers and electrolytes in determining two key performance metrics, namely the optical contrast and operational stability, of an electrochromic device (ECD). The absorption features of colored-to-transmissive switching conjugated polymers have been investigated by exploring material design strategies in conjunction with analytical approaches to optimize and enhance the optical contrast. In parallel, transmissive redox-active radical polymer counter electrodes have been developed as compatible charge-balancing layers and integrated into devices by pairing with electrochromic polymers (ECPs) to achieve stable and high-contrast optical modulation. Electrochemical activity of both conjugated and radical polymer electrodes in different ionic and solvent environments have been further examined to understand material-electrolyte interactions governing mixed ionic-electronic conduction. Finally, a small molecular approach to realizing transparent-to-colored electrochromism is discussed, where distinct substituent-induced degradation pathways of conjugated radical cations were revealed. Overall, this research aims to assist future development of robust, ultra-high contrast organic electrochromic platforms.  </p>
45

Cellulose-Based Hydrogels for High-Performance Buildings and Atmospheric Water Harvesting

Noor Mohammad Mohammad (17548365) 04 December 2023 (has links)
<p dir="ltr">Smart windows, dynamically adjusting optical transmittance, face global adoption challenges due to climatic and economic variability. Aiming these issues, we synthesized a methyl cellulose (MC) salt system with high tunability for intrinsic optical transmittance (89.3%), which can be applied globally to various locations. Specifically, the MC window has superior heat shielding potential below transition temperatures while turning opaque at temperatures above the Lower Critical Solution Temperature (LCST), reducing the solar heat gain by 55%. Such optical tunability is attributable to the particle size change triggered by the temperature-induced reversible coil-to-globular transition. This leads to effective refractive index and scattering modulation, making them prospective solutions for light management systems, an application ahead of intelligent fenestration systems. MC-based windows demonstrated a 9°C temperature decrease compared to double-pane windows on sunny days and a 5°C increase during winters in field tests, while simulations predict an 11% energy savings.</p><p dir="ltr">Incorporating MC-based phase change materials in passive solar panels indicated optimized energy efficiency, offering a sustainable alternative. Real-time simulations validate practical applicability in large-scale solar panels. Furthermore, a temperature-responsive sorbent with a dark layer demonstrates an optimal optical and water uptake performance. Transitioning between radiative cooling and solar heating, the sorbent exhibits high water harvesting efficiency in lab and field tests. With an adjustable LCST at 38 ℃, the cellulose-based sorbent presents a potential solution for atmospheric water harvesting, combining optical switching and temperature responsiveness for sustainable water access. Furthermore, the ubiquitous availability of materials, low cost, and ease-of-manufacturing will provide technological equity and foster our ambition towards net-zero buildings and sustainable future.</p>
46

SMART CAPSULE WITH STIMULI-RESPONSIVE POLYMERS FOR TARGETED SAMPLING FROM THE GASTROINTESTINAL TRACT

Sina Nejati (17029686) 25 September 2023 (has links)
<p dir="ltr">The gastrointestinal (GI) tract and its diverse microbial community play a significant role in overall health, impacting various aspects such as metabolism, physiology, nutrition, and immune function. Disruptions in the gut microbiota have been associated with metabolic diseases, colorectal cancer, diabetes, obesity, inflammatory bowel disease, Alzheimer's disease, and depression. Despite recognizing the importance of the gut microbiota, the interrelationship between microbiota, diet, and disease prevention remains unclear. Current techniques for monitoring the microbiome often rely on fecal samples or invasive endoscopic procedures, limiting the understanding of spatial variations in the gut microbiota and posing invasiveness challenges. To address these limitations, this dissertation focuses on the design and development of an electronic-free smart capsule platform capable of targeted sampling of GI fluid within specific regions of the GI tract. The capsule can be retrieved for subsequent bacterial culture and sequencing analysis. The capsule design is based on stimuli-responsive polymers and superabsorbent hydrogels, chosen for their proven safety, compatibility, and scalability. By leveraging the pH variation across the GI tract, the pH-sensitive polymeric coatings dissolve at the desired region, activating the sampling process. The superabsorbent hydrogel inside the capsule collects the sampled GI fluid and facilitates capsule closure upon completion of sampling. Systematic studies were conducted to identify suitable pH-responsive polymer coatings, superabsorbent hydrogels, and processing conditions that effectively operated within the physiological conditions of the GI tract. The technology's effectiveness and safety were validated through rigorous <i>in vitro</i> and <i>in vivo</i> studies using pig models. These studies demonstrated the potential of the technology for targeted sampling of GI fluid in both small and large intestinal regions, enabling subsequent bacterial culture and gene sequencing analysis. Additionally, the capsule design was enhanced with the integration of a metal tracer, enabling traceability throughout the GI tract using X-ray imaging and portable metal detectors for ambulatory screening. This technology holds promise as a non-invasive tool for studying real-time metabolic and molecular interactions among the host, diet, and microbiota in challenging-to-access GI regions. Its application in clinical studies can provide new insights into diet-host-microbiome interactions and contribute to addressing the burden faced by patients and their families dealing with GI-related diseases.</p>
47

Theoretical and experimental study of non-spherical microparticle dynamics in viscoelastic fluid flows

Cheng-Wei Tai (12198344) 06 June 2022 (has links)
<p>Particle suspensions in viscoelastic fluids (e.g., polymeric fluids, liquid crystalline solutions, gels) are ubiquitous in industrial processes and in biology. In such fluids, particles often acquire lift forces that push them to preferential streamlines in the flow domain. This lift force depends greatly on the fluid’s rheology, and plays a vital role in many applications such as particle separations in microfluidic devices, particle rinsing on silicon wafers, and particle resuspension in enhanced oil recovery. Previous studies have provided understanding on how fluid rheology affects the motion of spherical particles in simple viscoelastic fluid flows such as shear flows. However, the combined effect of more complex flow profiles and particle shape is still under-explored. The main contribution of this thesis is to: (a) provide understanding on the migration and rotation dynamics of an arbitrary-shaped particle in complex flows of a viscoelastic fluid, and (b) develop guidelines for designing such suspensions for general applications.</p> <p><br></p> <p>In the first part of the thesis, we develop theories based on the second-order fluid (SOF) constitutive model to provide solutions for the polymeric force and torque on an arbitrary-shaped solid particle under a general quadratic flow field. When the first and second normal stress coefficients satisfy  <strong>Ψ</strong><sub>1</sub>  = −2 <strong>Ψ</strong> <sub>2</sub> (corotational limit), the fluid viscoelasticity modifies only the fluid pressure and we provide exact solutions to the polymer force and torque on the particle. For a general SOF with  <strong>Ψ</strong> <sub>1</sub> ≠  −2 <strong>Ψ</strong> <sub>2</sub>, fluid viscoelasticity modifies the shear stresses, and we provide a procedure for numerical solutions. General scaling laws are also identified to quantify the polymeric lift based on different particle shapes and orientation. We find that the particle migration speed is directly proportional to the length the particle spans in the shear gradient direction (L<sub>sg</sub>), and that polymeric torques lead to unique orientation behavior under flow.</p> <p><br></p> <p>Secondly, we investigate the migration and rotational behavior of prolate and oblate spheroids in various viscoelastic, pressure-driven flows. In a 2-D slit flow, fluid viscoelasticity causes prolate particles to transition to a log-rolling motion where the particles orient perpendicular to the flow-flow gradient plane. This behavior leads to a slower overall migration speed (i.e., lift) of prolate particles towards the flow centerline compared to spherical particles of the same volume. In a circular tube flow, prolate particles align their long axis along the flow direction due to the extra polymer torque generated by the velocity curvature in all radial directions. Again, this effect causes prolate particles to migrate slower to the flow centerline than spheres of the same volume. For oblate particles, we quantify their long-time orientation and find that they migrate slower than spheres of the same volume, but exhibit larger migration speeds than prolate particles. Lastly, we examine the effect of normal stress ratio ? <strong>α</strong>  = <strong>Ψ</strong> <sub>2</sub> /<strong>Ψ</strong><sub>1 </sub>on the particle motion and find that this parameter only quantitatively impacts the particle migration velocity but has negligible effect on the rotational dynamics. We therefore can utilize the exact solution derived under the corotational limit (?<strong>α</strong> = −1/2) for a quick and reasonable prediction on the particle dynamics.</p> <p><br></p> <p>We next experimentally investigate the migration behavior of spheroidal particles in microfluidic systems and draw comparisons to our theoretical predictions. A dilute suspension of prolate/oblate microparticles in a density-matched 8% aqueous polyvinylpyrrolidone (PVP) solution is used as the model suspension system. Using brightfield microscopy, we qualitatively confirm our theoretical predictions for flow Deborah numbers 0 < De < 0.1 – i.e., that spherical particles show faster migration speed than prolate and oblate particles of the same volume in tube flows.</p> <p><br></p> <p>We finally design a holographic imaging method to capture the 3-D position and orientation of dynamic microparticles in microfluidic flow. We adopt in-line holography setup and propose a straightforward hologram reconstruction method to extract the 3-D position and orientation of a non-spherical particle. The method utilizes image moment to locate the particle and localize the detection region. We detect the particle position in the depth direction by quantifying the image sharpness at different depth position, and uses principal component analysis (PCA) to detect the orientation of the particle. For a semi-transparent particle that produces complex diffraction patterns, a mask based on the image moment information can be utilized during the image sharpness process to better resolve the particle position.</p> <p><br></p> <p>In the last part of this thesis, we conclude our work and discuss the future research perspectives. We also comment on the possible application of current work to various fields of research and industrial processes.</p> <p><br></p>
48

Developing the Next Generation of Perovskite Solar Cells

Blake P Finkenauer (12879047) 15 June 2022 (has links)
<p>  </p> <p>Organic-inorganic halide perovskites are at the brink of commercialization as the next generation of light-absorbing materials for solar energy harvesting devices. Perovskites have large absorption coefficients, long charge-carrier lifetimes and diffusion lengths, and a tunable absorption spectrum. Furthermore, these materials can be low-temperature solution-processed, which transfers to low-cost manufacturing and cost-competitive products. The remarkable material properties of perovskites enable a broad product-market fit, encompassing traditional and new applications for solar technology. Perovskites can be deposited on flexible substrates for flexible solar cells, applied in thermochromic windows for power generation and building cooling, or tuned for tandem solar cell application to include in high-performance solar panels. However, perovskites are intrinsically unstable, which has so far prevented their commercialization. Despite large research efforts, including over two thousand publications per year, perovskite solar cells degrade in under one year of operation. In a saturated research field, new ideas are needed to inspire alternative approaches to solve the perovskite stability problem. In this dissertation, we detail research efforts surrounding the concept of a self-healing perovskite solar cell.</p> <p>     A self-healing perovskite solar cell can be classified with two distinctions: mechanically healing and molecularly healing. First, mechanically self-healing involves the material’s ability to recover its intrinsic properties after mechanical damage such as tares, lacerations, or cracking. This type of healing was unique to the organic polymer community and ultra-rare in semiconducting materials. By combining a self-healing polymer with perovskite material, we developed a self-healing semiconducting perovskite composite material which can heal using synergistic grain growth and solid-state diffusion processes at slightly elevated temperatures. The material is demonstrated in flexible solar cells with improved bending durability and a power conversion efficiency reaching 10%. The addition of fluidic polymer enables macroscopic perovskite material movement, which is otherwise brittle and rigid. The results inspire the use of polymer scaffolds for mechanically self-healing solar cells.</p> <p>     The second type of healing, molecular healing, involves healing defects within the rigid crystal domains resulting from ion migration. The same phenomenon which leads to device degradation, also assists the recovery of the device performance after resting the device in the dark. During device operation, perovskite ions diffuse in the perovskite lattice and accumulate at the device interfaces where they undergo chemical reactions or leave the perovskite layer, ultimately consuming the perovskite precursors. The photovoltaic performance can be recovered if irreversible degradation is limited. Ideally, degradation and recovery can match day and night cycling to dramatically extend the lifetime of perovskite solar cells. In this dissertation, we introduce the application of chalcogenide chemistry in the fabrication of perovskite solar cells to control the thin film crystallization process, ultimately to reduce defects in the perovskite bulk and introduce surface functionality which extends the device stability. This new strategy will help improve molecularly self-healing perovskite solar cell by reducing irreversible degradation. Lastly, we present a few other new ideas to inspire future research in perovskite solar cells and assist in the commercialization of the next generation of photovoltaics.</p>
49

NONDESTRUCTIVE PROCESSING OF PRINTED BIMODAL MATREIALS FOR FABRICATION OF MULTI-FUNCTIONAL FLEXIBLE DEVICES

Amin Zareei (15339034) 24 April 2023 (has links)
<p>  </p> <p>Printed electronics (PE) is one of the fastest growing technologies in the 21<sup>st</sup> century. Recent reports have shown that PE market will reach 4.9 billion by 2032. PE refers to additive deposition of materials to fabricate electrical circuits, interconnects, and devices. </p> <p>The quest for developing nondestructive processes that enables additive manufacturing of low-cost PEs on heat-sensitive substrates with novel functionalities has resulted in several recent developments in the field which includes investigation of selective and optical sintering processes such as photonic sintering and laser sintering, to name a few. Broadly, this dissertation is an effort to study these sintering technologies for additive manufacturing of bimodal (metal/metal, metal/inorganic, and metal/organic) printed material compositions.  </p> <p>In the first section, nondestructive sintering technologies is combined with chemical sintering to develop bimodal metallic conductive pastes for the fabrication of biodegradable and non-biodegradable printed devices for applications in food packaging and wireless smart drug delivery.</p> <p>Next, a process is developed via near-infrared (NIR) technology to enable soldering and mounting electrical components onto printed materials using low-temperature bimodal metal/organic solder pastes. The developed optimized process is used to fabricate a flexible printed hybrid device for remote assessment of the wound exudate absorption in dressings.</p> <p>Lastly, laser processing is used to fabricate an antibacterial bimodal silver containing glass ceramics coating directly on temperature-sensitive polymeric surgical meshes. The integrated bioceramic coating on the mesh exhibits long-lasting antibacterial properties against Gram-positive and Gram-negative strains of bacteria. </p> <p>The results of this dissertation will open a new route of research to fabricate low-cost devices with bimodal materials with applications in medical device, healthcare, and packaging industries. </p> <p><br></p>
50

FILAMENT GENERATED DROPLETS DURING DROP BREAKUP, SHEET RUPTURE, AND DROP IMPACT

Xiao Liu (15339289) 24 April 2023 (has links)
<p>Free surface flows, characterized by a deformable interface between two immiscible fluids or between a liquid and a gas, play a pivotal role in numerous natural phenomena and industrial processes. The fluid-fluid interface dynamics, governed by the complex interplay of forces such as inertia, capillary force, viscous force, and possibly elastic force, significantly influence the behavior of the fluids involved. Examples of free surface flows can be observed in everyday situations, such as droplet formation from a faucet, propagation and breaking of ocean waves, and tear films that coat the eye. An in-depth understanding of free surface flows and fluid-fluid interface dynamics has extensive implications for optimizing applications like inkjet printing, coating, spraying, and droplet formation while providing insights into the intricate behavior of natural fluid systems. Most of these applications, except for coating, involve abrupt and catastrophic topological changes of interfaces present in processes such as drop breakup, sheet rupture, and drop impact, where small droplets form from liquid sheets or filaments.</p> <p>This thesis examines the dynamics of contracting liquid filaments through computational means. Previous computational simulations have assumed that initially the fluid within the filament is quiescent which, however, may not typically be the case in practical applications. Here, the effect of a realistic, non-zero initial velocity profile is considered with the hypothesis that the fact that the fluid is already in motion when it starts to contract may result in significant alterations in the filament’s final fate vis-a-vis whether it breaks up into multiple small droplets or contracts into a sphere as its ends retract toward each other. The transient system of governing equations, the three-dimensional but axisymmetric (3DA) Navier-Stokes and continuity equations subjected to interfacial boundary conditions, are solved using rigorous and robust numerical algorithms in both fully 3DA and one-dimensional (1D) settings using the Galerkin finite element (GFEM) method. The simulation results are then used to construct comprehensive phase diagrams to delineate regions where filaments break up into smaller droplets from those where filaments contract to spheres without breakup.</p> <p>Polymer additives are often present in practical applications involving filament contraction and breakup. The presence of polymer molecules in an otherwise Newtonian solvent gives rise to non-Newtonian rheology. In this thesis, the dynamics of filaments containing polymer additives are analyzed using a 1D algorithm that is developed specifically for simulating viscoelastic free surface flows where the fluid’s rheology is described by the oft-used Oldroyd-B model. In real-world applications, filaments produced from nozzles are expected to be prestressed at the instant when they are created and begin to contract. It is demonstrated that the retraction velocity of tips of highly viscous, prestressed filaments is significantly increased compared to filaments in which the polymer molecules are initially relaxed and Newtonian filaments. This enhancement is explained by examining the value of f σ: D (σ: Elastic stress; D: Rate-of-strain tensor), which can be positive or negative. This quantity is positive when the flow does work on the polymer molecules but negative when the molecules do work on the flow, i.e., when elastic recoiling or unloading takes place. In prestressed filaments, elastic unloading takes place because σ: D < 0. The elastic stresses work by pulling the fluid in axially and pushing it out radially, thereby drastically increasing the tip velocity.  However, this enhancement in contraction velocity is not observed in low to intermediate viscosity prestressed filaments and whose Newtonian counterparts typically experience end-pinching. It has been established by others that end-pinching can be precluded in either filaments of intermediate viscosity or surfactant-laden filaments of low viscosity through a process known as escape from end-pinching. In this study, we demonstrate that a similar escape can also occur in prestressed viscoelastic filaments of low-to-intermediate viscosity, as revealed by one-dimensional numerical simulations and rationalized by examining when and where the elastic recoil takes place.</p> <p>Beyond cylindrical filaments, thin liquid films or planar liquid sheets are also prevalent in atomization, curtain coating, and other processes where liquid sheet stability has been a subject of extensive research. Numerous authors have examined wave formation and growth leading to sheet breakup. Free liquid films or sheets without edges or caps at their two ends, which typically have two free surfaces and are surrounded by air or sometimes another liquid, can destabilize and rupture due to intermolecular van der Waals attractive forces, despite the stabilizing influence of surface tension. In this thesis, the dynamics of contracting free films or sheets with caps---two-dimensional (2D) drops---of Newtonian fluids is examined without considering van der Waals forces to confirm or refute the hypothesis that such systems can rupture due to finite-amplitude perturbations even in the absence of intermolecular forces. In particular, both two-dimensional and one-dimensional high-accuracy simulations are employed to demonstrate that unlike inviscid 2D drops that can rupture in the absence of van der Waals forces, 2D drops or sheets can escape from pinch-off due to the action of viscous forces which are present in real systems no matter how small their viscosity. The reopening of the interface and escape from pinch-off in 2D drops and sheets are explained by demonstrating the key role played by vorticity. New power-law relations or scaling laws are obtained as a function of Ohnesorge number (ratio of viscous to the square root of the product of inertial and capillary forces) for the value of the minimum film thickness for which 2D drops or sheets stop thinning and after which the interface begins to reopen. Simple yet powerful arguments are presented rationalizing these scaling laws. It is expected that these power-law relations should be of great interest to experimentalists who study such phenomena by high-speed visualization experiments.</p> <p>Some of the motivation for this thesis research comes from crop spraying applications in which achieving zero or negligible drift is highly desirable. To further the understanding of fluid mechanics underpinning current and future drift reduction technologies, a simplified experimental setup is adopted to generate liquid sheets and analyze their disintegration into droplets. This new setup is both simpler and more universal than commonly utilized experimental systems that use single or multiple nozzles to generate liquid sheets and spray droplets from the disintegration of free liquid films. In the current experiments, droplets of test fluids are made to collide with or impact the top planar surface of a solid cylinder or rod. A series of MATLAB codes are developed and employed to extract droplet size distributions from images that are obtained from high-speed visualization experiments. The experimental setup and the means of data analysis are then used to probe the effect of fluid properties on the dynamics of sheet disintegration and droplet size distributions. It is hoped that future researchers will be able to combine what has been done in this thesis by simulations and in this chapter via experimental observations to develop an improved mechanistic understanding of spray formation.</p>

Page generated in 0.0585 seconds