• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 619
  • 175
  • 44
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 829
  • 352
  • 229
  • 224
  • 196
  • 175
  • 134
  • 131
  • 107
  • 91
  • 85
  • 81
  • 76
  • 71
  • 68
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Modeling coupled thermohaline flow and reactive solute transport in discretely-fractured porous media

Graf, Thomas 11 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2005-2006 / Un modèle numérique tridimensionnel a été développé pour la simulation du système chimique quartz-eau couplé avec l’écoulement à densité et viscosité variable dans les milieux poreux discrètement fracturés. Le nouveau modèle simule aussi le transfert de chaleur dans les milieux poreux fracturés en supposant que l’expansion thermique du milieu est négligeable. Les propriétés du fluide, densité et viscosité, ainsi que les constantes chimiques (constant de taux de dissolution, constant d’équilibre, coefficient d’activité) sont calculées en fonction de la concentration des ions majeurs et de la température. Des paramètres de réaction et d’écoulement, comme la surface spécifique du minéral et la perméabilité sont mis jour à la fin de chaque pas de temps avec des taux de réaction explicitement calculés. Le modèle suppose que des changements de la porosite et des ouvertures de fractures n’ont pas d’impact sur l’emmagasinement spécifique. Des pas de temps adaptatifs sont utilisés pour accélérer et ralentir la simulation afin d’empêcher des résultats non physiques. Les nouveaux incréments de temps dépendent des changements maximum de la porosité et/ou de l’ouverture de fracture. Des taux de réaction au niveau temporel L+1 (schéma de pondération temporelle implicite) sont utilisés pour renouveler tous les paramètres du modèle afin de garantir la stabilité numérique. Le modèle a été vérifié avec des problèmes analytiques, numériques et physiques de l’écoulement à densité variable, transport réactif et transfert de chaleur dans les milieux poreux fracturés. La complexité de la formulation du modèle permet d’étudier des réactions chimiques et l’écoulement à densité variable d’une façon plus réaliste qu’auparavant possible. En premier lieu, cette étude adresse le phénomène de l’écoulement et du transport à densité variable dans les milieux poreux fracturés avec une seule fracture à inclinaison arbitraire. Une formulation mathématique générale du terme de flottabilité est dérivée qui tient compte de l’écoulement et du transport à densité variable dans des fractures de toute orientation. Des simulations de l’écoulement et du transport à densité variable dans une seule fracture implanté dans une matrice poreuse ont été effectuées. Les simulations montrent que l’écoulement à densité variable dans une fracture cause la convection dans la matrice poreuse et que la fracture à perméabilité élevée agit comme barrière pour la convection. Le nouveau modèle a été appliqué afin de simuler des exemples, comme le mouvement horizontal d’un panache de fluide chaud dans un milieu fracturé chimiquement réactif. Le transport thermohalin (double-diffusif) influence non seulement l’écoulement à densité variable mais aussi les réactions chimiques. L’écoulement à convection libre dépend du contraste de densité entre le fluide (panache chaud ou de l’eau salée froide) et le fluide de référence. Dans l’exemple, des contrastes de densité sont généralement faibles et des fractures n’agissent pas comme des chemins préférés mais contribuent à la dispersion transverse du panache. Des zones chaudes correspondent aux régions de dissolution de quartz tandis que dans les zones froides, la silice mobile précipite. La concentration de silice est inversement proportionnelle à la salinité dans les régions à salinité élevée et directement proportionnelle à la température dans les régions à salinité faible. Le système est le plus sensible aux inexactitudes de température. Ceci est parce que la température influence non seulement la cinétique de dissolution (équation d’Arrhenius), mais aussi la solubilité de quartz. / A three-dimensional numerical model is developed that couples the quartz-water chemical system with variable-density, variable-viscosity flow in fractured porous media. The new model also solves for heat transfer in fractured porous media, under the assumption of negligible thermal expansion of the rock. The fluid properties density and viscosity as well as chemistry constants (dissolution rate constant, equilibrium constant and activity coefficient) are calculated as a function of the concentrations of major ions and of temperature. Reaction and flow parameters, such as mineral surface area and permeability, are updated at the end of each time step with explicitly calculated reaction rates. The impact of porosity and aperture changes on specific storage is neglected. Adaptive time stepping is used to accelerate and slow down the simulation process in order to prevent physically unrealistic results. New time increments depend on maximum changes in matrix porosity and/or fracture aperture. Reaction rates at time level L+1 (implicit time weighting scheme) are used to renew all model parameters to ensure numerical stability. The model is verified against existing analytical, numerical and physical benchmark problems of variable-density flow, reactive solute transport and heat transfer in fractured porous media. The complexity of the model formulation allows chemical reactions and variable-density flow to be studied in a more realistic way than previously possible. The present study first addresses the phenomenon of variable-density flow and transport in fractured porous media, where a single fracture of an arbitrary incline can occur. A general mathematical formulation of the body force vector is derived, which accounts for variable-density flow and transport in fractures of any orientation. Simulations of variable-density flow and solute transport are conducted for a single fracture, embedded in a porous matrix. The simulations show that density-driven flow in the fracture causes convective flow within the porous matrix and that the highpermeability fracture acts as a barrier for convection. The new model was applied to simulate illustrative examples, such as the horizontal movement of a hot plume in a chemically reactive fractured medium. Thermohaline (double-diffusive) transport impacts both buoyancy-driven flow and chemical reactions. Free convective flow depends on the density contrast between the fluid (hot brine or cool saltwater) and the reference fluid. In the example, density contrasts are generally small and fractures do not act like preferential pathways but contribute to transverse dispersion of the plume. Hot zones correspond to areas of quartz dissolution while in cooler zones, precipitation of imported silica prevails. The silica concentration is inversely proportional to salinity in high-salinity regions and directly proportional to temperature in low-salinity regions. The system is the most sensitive to temperature inaccuracy. This is because temperature impacts both the dissolution kinetics (Arrhenius equation) and the quartz solubility.
142

Synthèse, caractérisation et étude des propriétés thermodynamiques d'hydrogénation de nanocomposites matériaux poreux / métaux-alliages / Synthesis, characterization and study of thermodynamic Hydrogen storage properties of Metal-Alloy nanoparticles / Porous Materials nanocomposites

Campesi, Renato 13 November 2008 (has links)
Plusieurs verrous scientifiques et technologiques empêchent aujourd’hui de développer une technique et/ou un matériau qui permette de stocker une quantité importante d’hydrogène à pression et température ambiante dans un volume et un poids acceptable pour des applications embarquées. Une possible solution consiste à synthétiser des matériaux hybrides (matériaux poreux/métaux ou alliages) où les processus d’adsorption et d’absorption pourraient coopérer pour obtenir une capacité de stockage d’hydrogène en adéquation avec les besoins des applications. Notre travail a consisté à identifier et caractériser différents matériaux poreux ayant une organisation de pores bien définie et une taille de l’ordre de quelques nanomètres. Parmi eux, ont été choisis : une réplique de carbone (CT) et un réseau organométallique (MOF-5). De plus, plusieurs métaux nobles (Ni, Pd et Pt) ont été choisis pour leur facilité à dissocier l’hydrogène et à former des alliages (Pd-Ni) avec différentes compositions en milieu aqueux (oxydant). Une méthode d’imprégnation par voie chimique ainsi que le broyage mécanique ont été utilisés pour la synthèse des hybrides. L’étude des propriétés structurales, texturales et thermodynamiques (hydrogénation) des composites CT/Pd a montré qu’un effet coopératif existe entre les pores du CT et les nanoparticules métalliques pendant le processus d’ad/absorption d’hydrogène. Cette interaction entraîne une amélioration de la capacité d’hydrogénation par rapport à chacun des constituants de l’hybride. / Nowadays many technological and scientific constraints have limited the finding of a suitable system and/or material able to reversibly store hydrogen at room temperature and ambient pressure for automotive application. An interesting way to overcome such limits could be the synthesis of hybrid materials (porous materials/metals or alloys composites) for which the adsorption and absorption processes can be combined in order to get higher hydrogen storage capacity. In this work, several porous materials displaying a well defined nanometric pore structure have been investigated. Among them a carbon template (CT) and a metal organic framework (MOF-5) have been chosen. In addition, several noble metals (Ni, Pd and Pt) have been used due to their ability to dissociate hydrogen and to form alloys. Two synthesis routes have been followed in order to synthesize hybrid composites: metal salts infiltration and mechanical grinding. In particular, the investigation of the structural, textural and hydrogen storage properties of the CT/metal composites has proven that a synergic mechanism between the CT pores and the metallic nanoparticles takes place during the hydrogen ad/absorption process. This interaction leads to an enhancement of the hydrogen storage capacity of each hybrid component taken separately.
143

Synthèse, caractérisation et étude des propriétés thermodynamiques d'hydrogénation de nanocomposites matériaux poreux / métaux-alliages

Campesi, Renato 13 November 2008 (has links) (PDF)
Plusieurs verrous scientifiques et technologiques empêchent aujourd'hui de développer une technique et/ou un matériau qui permette de stocker une quantité importante d'hydrogène à pression et température ambiante dans un volume et un poids acceptable pour des applications embarquées. Une possible solution consiste à synthétiser des matériaux hybrides (matériaux poreux/métaux ou alliages) où les processus d'adsorption et d'absorption pourraient coopérer pour obtenir une capacité de stockage d'hydrogène en adéquation avec les besoins des applications. Notre travail a consisté à identifier et caractériser différents matériaux poreux ayant une organisation de pores bien définie et une taille de l'ordre de quelques nanomètres. Parmi eux, ont été choisis : une réplique de carbone (CT) et un réseau organométallique (MOF-5). De plus, plusieurs métaux nobles (Ni, Pd et Pt) ont été choisis pour leur facilité à dissocier l'hydrogène et à former des alliages (Pd-Ni) avec différentes compositions en milieu aqueux (oxydant). Une méthode d'imprégnation par voie chimique ainsi que le broyage mécanique ont été utilisés pour la synthèse des hybrides. L'étude des propriétés structurales, texturales et thermodynamiques (hydrogénation) des composites CT/Pd a montré qu'un effet coopératif existe entre les pores du CT et les nanoparticules métalliques pendant le processus d'ad/absorption d'hydrogène. Cette interaction entraîne une amélioration de la capacité d'hydrogénation par rapport à chacun des constituants de l'hybride.
144

Périphérie triac à base de silicum poreux / Porous silicon based triac periphery

Menard, Samuel 04 December 2014 (has links)
Ces travaux de thèse portent sur le développement d’une périphérie innovante de TRIAC exploitant le caractère semiisolant du silicium poreux (PS). L’intégration de caissons PS type P à partir des profils de dopage du TRIAC est en effet accessible. Une revue des propriétés électriques du PS type P réalisée à partir de nos propres échantillons méso voire micro-poreux a donc été entreprise. Des mesures de capacités et des relevés I-V ont ainsi permis de déterminer l’évolution de la constante diélectrique relative du PS ainsi que sa résistivité en fonction de la porosité. Plus cette dernière est élevée et plus les propriétés diélectriques du PS se rapprochent de celles d’un isolant. L’analyse des résultats a également permis de clarifier les mécanismes de transport des porteurs au sein de la couche de PS. Des prototypes de TRIACs avec une terminaison de jonction à base de PS ont ensuite été conçus, fabriqués et étudiés. La localisation du PS et la gestion des contraintes mécaniques résultant de la formation du PS sont apparus comme les principaux verrous technologiques à surmonter. Des solutions ont été proposées, néanmoins les tenues en blocage atteintes se sont avérées insuffisantes. Des courants de fuite supérieurs à la dizaine de milliampères ont en effet été mesurés et ce pour des tensions de polarisation de l’ordre de 100 V. La géométrie des caissons PS et/ou la présence de charges fixes à l’interface PS / Silicium sont jugées responsables des résultats. Enfin, en s’appuyant sur un modèle macroscopique du PS, une nouvelle structure plus optimisée a été suggérée. / This PhD thesis deals with the development of a novel TRIAC periphery, exploiting the semi-insulating nature of porous silicon (PS). It is namely accessible to integrate P type PS wells through the doping profiles encountered in the TRIAC. Thus, a review of the P type PS electrical properties was achieved through dedicated samples. In this context, capacitance measurements and I-V plots were used to determine the evolution of the PS relative dielectric constant and its resistivity with the porosity. Higher the latter is, more insulating the PS is. By analyzing all the results, it was also possible to clarify the carrier transport mechanisms in the PS. Some TRIAC prototypes with a PS based junction termination were then designed, processed and studied. The stress coming from the PS formation and the PS masking were the main technological steps to solve. First solutions were proposed, nevertheless insufficient blocking performances were reached. Leakage currents higher than 10 mA were demonstrated while the bias voltage was only 100 V. The presence of fixed charges at the PS / Silicon interface and/or the geometry of the PS wells may explain these results. Finally, with the help of a macroscopic PS model, a more optimized structure was proposed.
145

Modélisation du rayonnement thermique dans un coeur de réacteur nucléaire dégradé en présence de vapeur et de gouttes d'eau. / Thermal radiation modelling in a degraded nuclear core in presence of water steam and water droplets.

Chahlafi, Miloud 19 January 2011 (has links)
L'objectif de cette thèse est de proposer une modélisation du rayonnement thermique dans un réacteur nucléaire au cours d'un accident grave conduisant à la dégradation des crayons combustibles. Un réacteur étant refroidi par de l'eau, le rayonnement se fait en présence de vapeur et de gouttes d'eau. Le modèle de rayonnement est construit à partir d'expériences de dégradation de crayons fossiles, réalisées sur le réacteur expérimental PHEBUS.Les configurations géométriques accidentelles de grappes de 21 crayons dégradés ont pu être caractérisées en trois dimensions à partir d'images issues de tomographies. Les propriétés radiatives homogénéisées de ces configurations ont été complètement caractérisées à partir de la fonction de distribution cumulée d'extinction Gext et de la fonction de phase de diffusion p. Ces fonctions ont été précisément calculées par une méthode de Monte Carlo. Gext, qui n'est pas de type exponentiel, ne suit pas la loi de Beer. p dépend fortement des angles d'incidence et de diffusion. A partir de l'équation de transfert radiatif généralisée à des milieux non Beeriens, introduite par Taine et al., un tenseur des conductivités radiatives a été déterminé par une méthode de perturbations, en supposant dans une première étape la phase fluide transparente. Les conductivités radiatives axiales et radiales ont été exprimées avec précision en fonction de la porosité, de la surface spécifique et de l'absorptivité locale du milieu poreux. Dans une deuxième étape, une équation de transfert radiatif à trois températures a été établie. Dans ce modèle, les effets de la phase fluide sur le rayonnement ont été couplés aux effets des parois. Les propriétés radiatives de la vapeur et des gouttes d'eau sont calculées en utilisant respectivement le modèle CK et la théorie de Mie, dans les conditions thermohydrauliques typiques des accidents de réacteur. Les flux radiatifs s'expriment en fonction de flux conductifs couplés caractérisés par des conductivités radiatives associées aux champs de températures de chaque phase. Les puissances volumiques échangées par rayonnement entre les phases sont aussi calculées à partir de ce modèle. / This work aims at modelling thermal radiation in a nuclear reactor, in the course of a severe accident leading to its degradation. Because the reactor coolant is water, radiative heat transfer occurs in presence of steam and water droplets. The 3D geometry of a fuel bundle with 21 damaged rods has been characterized from tomography images. The degradation of the rods has been simulated in the experimental small-scale facility PHEBUS.The homogenized radiative properties of the considered configurations with a transparent fluid phase have been completely characterized by both the extinction cumulated distribution function Gext and the scattering phase functions p. Gext strongly differs from the exponential function associated with the Beer law and p strongly depends on both the incidence and the scattering directions. By using the radiative transfer equation generalized for non Beerian porous media by Taine et al. the radiative conductivity tensor has been first determined with a transparent fluid phase, by a numerical perturbation method. Only the diagonal radial and axial components of this tensor are not equal to zero. They have been fitted by a simple law only depending on the porosity, the specific area and the wall absorptivity. In a second step, a radiative transfer equation based on three temperatures is established. This model takes into account a semi transparent fluid phase by coupling the radiative properties of fluid and solid phases. The radiative properties of water steam and droplets are calculated respectively with the CK approach and Mie theory, in typical thermal hydraulics conditions of reactor accidents. The radiative fluxes verify the Fourier law and are characterized by radiative coupled conductivity tensors associated with the temperatures of each phase. The radiative powers exchanged between phases per unit volume are also calculated from this model.
146

Optimisation d'un matériau poreux stratifié pour un refroidissement maximal en convection forcée à l'aide d'un algorithme génétique

Wildi-Tremblay, Philippe 11 April 2018 (has links)
Dans le présent mémoire, on s'intéresse à l'effet de l'architecture d'un matériau sur sa résistance thermique. Une plaque chaude est refroidie par un empilement de couches poreuses au travers desquelles circule un fluide caloporteur. L'écoulement est généré par une différence de pression prédéterminée. Le problème consiste à déterminer une porosité optimale ainsi qu'un matériau pour chacune des couches du système de refroidissement afin de minimiser la température critique de la plaque (résistance thermique), sous des contraintes de masse et de coût. Un modèle numérique basé sur les volumes finis est combiné à un algorithme génétique (AG) afin d'optimiser l'architecture du système. L'architecture, ou la structure interne, est le fruit d'une optimisation, sous des contraintes globales. Le matériau optimal assigné à chacune des couches poreuses est déterminé par l'AG -pas prédéterminé- et est choisi dans une banque de quatre matériaux. L'AG élimine les couches poreuses qui ne contribuent pas au refroidissement de la plaque chaude et optimise par le fait même la dimension du système. Les résultats indiquent que plus de matière solide devrait être utilisée à proximité de la plaque chaude (distribution de porosité non uniforme). Plusieurs configurations quasi-optimales sont trouvées dans le domaine d'exploration de l'algorithme. / In this work, we address the fundamental problem of how to arrange fluid flow and solid material for minimal thermal resistance. A heat-generating board is cooled by a stack of porous layers through which a coolant flows. The stream is generated by a fixed pressure drop. The problem consists in determining the optimal porosity and material of each layer for minimizing the hot spot temperature (thermal resistance), under global mass and cost constraints. We combine a genetic algorithm (GA) toolbox with a finite volume program to optimize the design. The shape and structure of the System emerge from the global optimization, under global constraints. The optimal material to use in each layer is determined by the GA -not assumed- and is chosen from a database of four materials. The GA eliminates layers that do not contribute to the overall performance and therefore optimizes the size of the stacking. The results indicate that more solid material should be used closer to the hot plate (non-uniform distribution). Several nearly optimal configurations are found in the design space.
147

Contribution à l'étude de la dispersion hydrodynamique et de son couplage à la convection naturelle en milieux poreux modèles fracturés

Istasse, Eric 04 May 2004 (has links)
Le présent manuscrit contribue à l’étude des écoulements liquides dans des milieux poreux artificiels, plus spécifiquement dans les cas où la matrice poreuse présente des gradients de perméabilité importants, par exemple dans un milieu stratifié ou fracturé. Nous étudions l’influence de tels milieux poreux hétérogènes sur différents types d’écoulements. Ce travail est principalement expérimental, mettant en oeuvre une technique optique non-intrusive appelée effet Christiansen. Cette méthode permet de déterminer quantitativement des distributions soit de température, soit de concentration au sein d’un milieu poreux. <p><p>Trois problèmes physiques sont étudiés: tout d’abord le problème de Horton-Rodgers-Lapwood qui est l’équivalent du très connu problème de Rayleigh-Bénard mais pour un milieu poreux, ensuite les phénomènes de dispersion hydrodynamique que l’on rencontre dans des écoulements multiphasiques. Cette dispersion hydrodynamique est essentiellement envisagée comme un processus macroscopique de diffusion, renforcé par rapport à la diffusion moléculaire que l’on rencontre en milieu fluide libre. Enfin, le troisième problème englobe les écoulements capillaires en milieux poreux en environnement de pesanteur réduite. Dans le cas d’écoulements immiscibles multiphasiques, il faut prendre en considération l’effet de la tension superficielle aux interfaces. Comme les effets capillaires sont partiellement masqués par les effets de pesanteur durant des expériences au sol, une étude précise des effets de mouillage dans ces écoulements en milieu poreux nécessite de les découpler au maximum des autres effets physiques. Un programme de recherche en microgravité a été réalisé, et un nouveau modèle mathématique qui prend en compte l’influence des forces capillaires a été élaboré dans le cadre d’une collaboration entre le Service de Chimie-Physique et le Prof. N.N. Smirnov du Département de Mécanique et de Mathématique de l’Université d’Etat de Moscou.<p><p><p>La structure de ce travail part du Chapitre 1, qui présente essentiellement les milieux poreux et leurs spécificités. Ce dernier introduit le formalisme et les concepts nécessaires au traitement des trois problèmes de recherche envisagés. Le Chapitre 2 présente ensuite une étude bibliographique du problème de Horton-Rodgers-Lapwood et des phénomènes de dispersion hydrodynamique en milieux poreux. Le Chapitre 3 est consacré à l’effet Christiansen. Le Chapitre 4 présente les dispositifs de laboratoire mis au point, ainsi qu’une compilation des résultats expérimentaux obtenus. Les problèmes d’écoulements capillaires sont exposés au Chapitre 5, étant donné que la technique expérimentale est différente de celle basée sur l’effet Christiansen. Ce Chapitre compare le nouveau modèle mathématique aux résultats des expériences menées en microgravité durant de nombreuses campagnes de vols paraboliques. Le Chapitre 6 referme ce travail par ses conclusions et perspectives. / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished
148

Fabrication de semiconducteurs poreux pour améliorer l'isolation thermique des MEMS

Newby, Pascal January 2014 (has links)
Résumé : L’isolation thermique est essentielle dans de nombreux types de MEMS (micro-systèmes électro-mécaniques). Elle permet de réduire la consommation d’énergie, améliorer leurs performances, ou encore isoler la zone chaude du reste du dispositif, ce qui est essentiel dans les systèmes sur puce. Il existe quelques matériaux et techniques d’isolation pour les MEMS, mais ils sont limités. En effet, soit ils ne proposent pas un niveau d’isolation suffisant, sont trop fragiles, ou imposent des contraintes trop importantes sur la conception du dispositif et sont difficiles à intégrer. Une approche intéressante pour l’isolation, démontrée dans la littérature, est de fabriquer des pores de taille nanométrique dans le silicium par gravure électrochimique. En nanostructurant le silicium ainsi, on peut diviser sa conductivité thermique par un facteur de 100 à 1000, le transformant en isolant thermique. Cette solution est idéale pour l’intégration dans les procédés de fabrication existants des MEMS, car on garde le silicium qui est déjà utilisé pour leur fabrication, mais en le nanostructurant localement, on le rend isolant là où on en a besoin. Par contre sa porosité cause des problèmes : mauvaise résistance chimique, structure instable au-delà de 400°C, et tenue mécanique réduite. La facilité d’intégration des semiconducteurs poreux est un atout majeur, nous visons donc de réduire les désavantages de ces matériaux afin de favoriser leur intégration dans des dispositifs en silicium. Nous avons identifié deux approches pour atteindre cet objectif : i) améliorer le Si poreux ou ii) développer un nouveau matériau. La première approche consiste à amorphiser le Si poreux en l’irradiant avec des ions à haute énergie (uranium, 110 MeV). Nous avons montré que l’amorphisation, même partielle, du Si poreux entraîne une diminution de sa conductivité thermique, sans endommager sa structure poreuse. Cette technique réduit sa conductivité thermique jusqu’à un facteur de trois, et peut être combinée avec une pré-oxydation afin d’atteindre une réduction d’un facteur cinq. Donc cette méthode permet de réduire la porosité du Si poreux, et d’atténuer ainsi les problèmes de fragilité mécanique causés par la porosité élevée, tout en gardant un niveau d’isolation égal. La seconde approche est de développer un nouveau matériau. Nous avons choisi le SiC poreux : le SiC massif a des propriétés physiques supérieures à celles du Si, et donc à priori le SiC poreux devrait conserver cette supériorité. La fabrication du SiC poreux a déjà été démontrée dans la littérature, mais avec peu d’études détaillées du procédé. Sa conductivité thermique et tenue mécanique n’ont pas été caractérisées, et sa tenue en température que de façon incomplète. Nous avons mené une étude systématique de la porosification du SiC en fonction de la concentration en HF et le courant. Nous avons implémenté un banc de mesure de la conductivité thermique par la méthode « 3 oméga » et l’avons utilisé pour mesurer la conductivité thermique du SiC poreux. Nous avons montré qu’elle est environ deux ordres de grandeur plus faible que celle du SiC massif. Nous avons aussi montré que le SiC poreux est résistant à tous les produits chimiques typiquement utilisés en microfabrication sur silicium. D’après nos résultats il est stable jusqu’à au moins 1000°C et nous avons obtenu des résultats qualitatifs encourageants quant à sa tenue mécanique. Nos résultats signifient donc que le SiC poreux est compatible avec la microfabrication, et peut être intégré dans les MEMS comme isolant thermique. // Abstract : Thermal insulation is essential in several types of MEMS (micro electro-mechanical systems). It can help reduce power consumption, improve performance, and can also isolate the hot area from the rest of the device, which is essential in a system-on-chip. A few materials and techniques currently exist for thermal insulation in MEMS, but these are limited. Indeed, either they don’t have provide a sufficient level of insulation, are too fragile, or restrict design of the device and are difficult to integrate. A potentially interesting technique for thermal insulation, which has been demonstrated in the literature, is to make nanometer-scale pores in silicon by electrochemical etching. By nanostructuring silicon in this way, its thermal conductivity is reduced by a factor of 100 to 1000, transforming it into a thermal insulator. This solution is ideal for integration in existing MEMS fabrication processes, as it is based on the silicon substrates which are already used for their fabrication. By locally nanostructuring these substrates, silicon is made insulating wherever necessary. However the porosity also causes problems : poor chemical resistance, an unstable structure above 400◦C, and reduced mechanical properties. The ease of integration of porous semiconductors is a major advantage, so we aim to reduce the disadvantages of these materials in order to encourage their integration in silicon-based devices. We have pursued two approaches in order to reach this goal : i) improve porous Si, or ii) develop a new material. The first approach uses irradiation with high energy ions (100 MeV uranium) to amorphise porous Si. We have shown that amorphisation, even partial, of porous Si leads to a reduction of its thermal conductivity, without damaging its porous structure. This technique can reduce the thermal conductivity of porous Si by up to a factor of three, and can be combined with a pre-oxidation to achieve a five-fold reduction of thermal conductivity. Therefore, by using this method we can use porous Si layers with lower porosity, thus reducing the problems caused by the fragility of high-porosity layers, whilst keeping an equal level of thermal insulation. The second approach is to develop a new material. We have chosen porous SiC: bulk SiC has exceptional physical properties and is superior to bulk Si, so porous SiC should be superior to porous Si. Fabrication of porous SiC has been demonstrated in the literature, but detailed studies of the process are lacking. Its thermal conductivity and mechanical properties have never been measured and its high-temperature behaviour has only been partially characterised. We have carried out a systematic study of the effects of HF concentration and current on the porosification process. We have implemented a thermal conductivity measurement setup using the “3 omega” method and used it to measure the thermal conductivity of porous SiC. We have shown that it is about two orders of magnitude lower than that of bulk SiC. We have also shown that porous SiC is chemically inert in the most commonly used solutions for microfabrication. Our results show that porous SiC is stable up to at least 1000◦C and we have obtained encouraging qualitative results regarding its mechanical properties. This means that porous SiC is compatible with microfabrication processes, and can be integrated in MEMS as a thermal insulation material.
149

ECOULEMENT DES FLUIDES MAGNETIQUES DANS DES CAPILLAIRES ET MILIEUX POREUX SOUS L'EFFET D'UN CHAMP MAGNETIQUE

Kuzhir, Pavel 02 December 2003 (has links) (PDF)
Le but de ce travail est d'établir les lois de comportement régissant l'écoulement de fluides magnétiques dans des capillaires et des milieux poreux et d'étudier les mécanismes de contrôle de ces écoulements par l'application d'un champ magnétique. Deux types de fluides magnétiques sont utilisés à cet effet: les ferrofluides et les fluides magnétorhéologiques (MR).<br />Le contrôle de l'écoulement est réalisé par l'effet du champ sur la surface libre ou sur la rhéologie de ces fluides et également par l'intermédiaire des forces magnétiques qui attirent le fluide dans les régions où le champ est le plus fort. On a établi les lois de comportement statique et dynamique de la surface d'un ferrofluide dans un capillaire en présence d'un champ magnétique homogène. Une diminution par un facteur deux du saut de pression sur le ménisque a lieu dans un fort champ longitudinal appliqué suivant l'axe du capillaire. La diminution du saut de pression dans un champ transversal induit un ralentissement de la pénétration capillaire du ferrofluide, ce qui permet de contrôler le temps de remplissage dans une plage de 60%.<br />On a généralisé le modèle de cisaillement simple d'un fluide MR, avec des agrégats en forme de chaînes, au cas d'un champ magnétique d'orientation quelconque par rapport à l'écoulement. Sur la base de ce modèle on a obtenu la dépendance théorique de la contrainte seuil dynamique en fonction de l'orientation du champ. Cette dépendance est utilisée pour calculer les profils de vitesse et les caractéristiques débit-pression dans des écoulements de Poiseuille d'un fluide MR dans des capillaires et des milieux poreux en présence d'un champ homogène d'orientation quelconque. Les courbes expérimentales débit-pression confirment bien la théorie et indiquent une possibilité d'augmenter la pression de trois ordres de grandeur.<br />On a appliqué un modèle d' écoulement biphasique pour simuler un blocage de l'écoulement d'un fluide MR dans un capillaire en présence d'une forte inhomogénéité de champ magnétique. Expérimentalement et théoriquement on a montré que la pression de blocage est à peu près 2 fois moins grande que la pression nécessaire pour relancer un écoulement bloqué.<br />Les résultats de ce travail forment une base théorique pour le développement de systèmes hydrauliques adaptatifs, et plus particulièrement de systèmes de vibroprotection.
150

Fabrication de semiconducteurs poreux pour am??liorer l'isolation thermique des MEMS

Newby, Pascal January 2014 (has links)
R??sum?? : L???isolation thermique est essentielle dans de nombreux types de MEMS (micro-syst??mes ??lectro-m??caniques). Elle permet de r??duire la consommation d?????nergie, am??liorer leurs performances, ou encore isoler la zone chaude du reste du dispositif, ce qui est essentiel dans les syst??mes sur puce. Il existe quelques mat??riaux et techniques d???isolation pour les MEMS, mais ils sont limit??s. En effet, soit ils ne proposent pas un niveau d???isolation suffisant, sont trop fragiles, ou imposent des contraintes trop importantes sur la conception du dispositif et sont difficiles ?? int??grer. Une approche int??ressante pour l???isolation, d??montr??e dans la litt??rature, est de fabriquer des pores de taille nanom??trique dans le silicium par gravure ??lectrochimique. En nanostructurant le silicium ainsi, on peut diviser sa conductivit?? thermique par un facteur de 100 ?? 1000, le transformant en isolant thermique. Cette solution est id??ale pour l???int??gration dans les proc??d??s de fabrication existants des MEMS, car on garde le silicium qui est d??j?? utilis?? pour leur fabrication, mais en le nanostructurant localement, on le rend isolant l?? o?? on en a besoin. Par contre sa porosit?? cause des probl??mes : mauvaise r??sistance chimique, structure instable au-del?? de 400??C, et tenue m??canique r??duite. La facilit?? d???int??gration des semiconducteurs poreux est un atout majeur, nous visons donc de r??duire les d??savantages de ces mat??riaux afin de favoriser leur int??gration dans des dispositifs en silicium. Nous avons identifi?? deux approches pour atteindre cet objectif : i) am??liorer le Si poreux ou ii) d??velopper un nouveau mat??riau. La premi??re approche consiste ?? amorphiser le Si poreux en l???irradiant avec des ions ?? haute ??nergie (uranium, 110 MeV). Nous avons montr?? que l???amorphisation, m??me partielle, du Si poreux entra??ne une diminution de sa conductivit?? thermique, sans endommager sa structure poreuse. Cette technique r??duit sa conductivit?? thermique jusqu????? un facteur de trois, et peut ??tre combin??e avec une pr??-oxydation afin d???atteindre une r??duction d???un facteur cinq. Donc cette m??thode permet de r??duire la porosit?? du Si poreux, et d???att??nuer ainsi les probl??mes de fragilit?? m??canique caus??s par la porosit?? ??lev??e, tout en gardant un niveau d???isolation ??gal. La seconde approche est de d??velopper un nouveau mat??riau. Nous avons choisi le SiC poreux : le SiC massif a des propri??t??s physiques sup??rieures ?? celles du Si, et donc ?? priori le SiC poreux devrait conserver cette sup??riorit??. La fabrication du SiC poreux a d??j?? ??t?? d??montr??e dans la litt??rature, mais avec peu d?????tudes d??taill??es du proc??d??. Sa conductivit?? thermique et tenue m??canique n???ont pas ??t?? caract??ris??es, et sa tenue en temp??rature que de fa??on incompl??te. Nous avons men?? une ??tude syst??matique de la porosification du SiC en fonction de la concentration en HF et le courant. Nous avons impl??ment?? un banc de mesure de la conductivit?? thermique par la m??thode ?? 3 om??ga ?? et l???avons utilis?? pour mesurer la conductivit?? thermique du SiC poreux. Nous avons montr?? qu???elle est environ deux ordres de grandeur plus faible que celle du SiC massif. Nous avons aussi montr?? que le SiC poreux est r??sistant ?? tous les produits chimiques typiquement utilis??s en microfabrication sur silicium. D???apr??s nos r??sultats il est stable jusqu????? au moins 1000??C et nous avons obtenu des r??sultats qualitatifs encourageants quant ?? sa tenue m??canique. Nos r??sultats signifient donc que le SiC poreux est compatible avec la microfabrication, et peut ??tre int??gr?? dans les MEMS comme isolant thermique. // Abstract : Thermal insulation is essential in several types of MEMS (micro electro-mechanical systems). It can help reduce power consumption, improve performance, and can also isolate the hot area from the rest of the device, which is essential in a system-on-chip. A few materials and techniques currently exist for thermal insulation in MEMS, but these are limited. Indeed, either they don???t have provide a sufficient level of insulation, are too fragile, or restrict design of the device and are difficult to integrate. A potentially interesting technique for thermal insulation, which has been demonstrated in the literature, is to make nanometer-scale pores in silicon by electrochemical etching. By nanostructuring silicon in this way, its thermal conductivity is reduced by a factor of 100 to 1000, transforming it into a thermal insulator. This solution is ideal for integration in existing MEMS fabrication processes, as it is based on the silicon substrates which are already used for their fabrication. By locally nanostructuring these substrates, silicon is made insulating wherever necessary. However the porosity also causes problems : poor chemical resistance, an unstable structure above 400???C, and reduced mechanical properties. The ease of integration of porous semiconductors is a major advantage, so we aim to reduce the disadvantages of these materials in order to encourage their integration in silicon-based devices. We have pursued two approaches in order to reach this goal : i) improve porous Si, or ii) develop a new material. The first approach uses irradiation with high energy ions (100 MeV uranium) to amorphise porous Si. We have shown that amorphisation, even partial, of porous Si leads to a reduction of its thermal conductivity, without damaging its porous structure. This technique can reduce the thermal conductivity of porous Si by up to a factor of three, and can be combined with a pre-oxidation to achieve a five-fold reduction of thermal conductivity. Therefore, by using this method we can use porous Si layers with lower porosity, thus reducing the problems caused by the fragility of high-porosity layers, whilst keeping an equal level of thermal insulation. The second approach is to develop a new material. We have chosen porous SiC: bulk SiC has exceptional physical properties and is superior to bulk Si, so porous SiC should be superior to porous Si. Fabrication of porous SiC has been demonstrated in the literature, but detailed studies of the process are lacking. Its thermal conductivity and mechanical properties have never been measured and its high-temperature behaviour has only been partially characterised. We have carried out a systematic study of the effects of HF concentration and current on the porosification process. We have implemented a thermal conductivity measurement setup using the ???3 omega??? method and used it to measure the thermal conductivity of porous SiC. We have shown that it is about two orders of magnitude lower than that of bulk SiC. We have also shown that porous SiC is chemically inert in the most commonly used solutions for microfabrication. Our results show that porous SiC is stable up to at least 1000???C and we have obtained encouraging qualitative results regarding its mechanical properties. This means that porous SiC is compatible with microfabrication processes, and can be integrated in MEMS as a thermal insulation material.

Page generated in 0.0303 seconds