• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 342
  • 97
  • 18
  • 2
  • 1
  • Tagged with
  • 458
  • 202
  • 126
  • 97
  • 63
  • 62
  • 62
  • 58
  • 54
  • 53
  • 47
  • 40
  • 40
  • 38
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

La protéine immédiate précoce 1 du virus de l'herpès humain 6B interagit avec NBS1 et inhibe la voie de réparation des cassures d'ADN double brin

Tremblay, Vincent 30 November 2022 (has links)
HHV-6B, l'agent étiologique de la roséole infantile, infecte près de 90% de la population mondiale avant l'âge de 2 ans. Comme d'autres herpèsvirus, HHV-6B établit une latence à long terme dans la cellule hôte. Cette latence est toutefois distinguée des autres herpèsvirus par l'intégration du génome viral dans les télomères des cellules infectées. HHV-6B peut être hérité lorsque son génome est intégré dans des cellules germinales et a été identifié comme un agent prédisposant à l'angine de poitrine et à la prééclampsie chez la femme enceinte. Des séquences homologues aux télomères situées dans le génome de HHV-6B sont essentielles à l'intégration, cependant les mécanismes moléculaires sous-jacents sont inconnus. Puisque l'intégration du génome viral requiert la présence de séquences homologues, nous avons étudié la relation entre HHV-6B et la machinerie de réparation de l'ADN. Nos travaux démontrent que le virus inhibe la signalisation de réparation des cassures double brin de l'ADN dans les cellules infectées. Plus précisément la protéine immédiate précoce 1 (IE1) de HHV-6B récapitule à elle seule les effets inhibiteurs observés en termes d'infection. Nous avons pu démontrer que les fonctions de la protéine cellulaire NBS1, un acteur initial de la signalisation des dommages à l'ADN, sont inhibées par IE1, ce qui empêche ainsi l'activation de la kinase ATM et la phosphorylation du marqueur de dommage d'ADN H2AX. Nous avons aussi constaté une interaction entre IE1 et NBS1 et caractérisé leur domaine d'interaction. Nos résultats démontrent donc que HHV-6B affecte la machinerie de réparation de l'ADN, mais la raison est toutefois encore inconnue et nécessite davantage d'étude.
52

PARP-1 activation regulates the DNA damage response to DNA double-strand breaks

Krietsch, Jana 20 April 2018 (has links)
Les cassures double-brin de l'ADN, lorsque incorrectement réparées, peuvent avoir des conséquences fatales telles que des délétions et des réarrangements chromosomiques, favorisant la carcinogenèse. La poly(ADP-ribosyl)ation réalisée par la protéine poly(ADP-ribose) polymérase-1 (PARP-1) est l'une des premières modifications post-traductionnelles qui se produisent en réponse aux dommages à l'ADN. La PARP-1 utilise la nicotinamide pour générer un polymère chargé négativement, nommé poly(ADP-ribose) polymère (PAR), lequel est attaché en majorité à la PARP-1 elle-même ainsi qu'à d'autres protéines cibles. Le PAR a récemment été reconnu comme un signal de recrutement pour certaines protéines de réparation aux sites de dommages à l'ADN, mais un débat est en cours quant au rôle précis de la PARP-1 et du PAR dans la réponse aux dommages de l'ADN. Au cours de mon projet de doctorat, nous avons pu confirmer que les protéines qui se retrouvent en complexe avec le PAR immédiatement après les dommages à l'ADN sont principalement des facteurs de réparation. Étonnamment, les complexes protéiques associés au PAR pendant la période de récupération suite aux dommages sont enrichis en facteurs de liaison à l'ARN. Toutefois, la protéine liant l'ARN la plus abondante que nous avons détectée dans l'interactome du PAR, soit NONO, ne suit pas cette dernière cinétique puisqu'elle est fortement enrichie immédiatement après les dommages à l'ADN. Notre étude subséquente de NONO dans la réponse aux cassures double-brin de l'ADN a étonnamment révélé une implication directe de celle-ci par le mécanismede réparation de jonction des extrémités non-homologues. En plus, nous avons constaté que NONO se lie fortement et spécifiquement au PAR via son motif 1 de la reconnaissance de l'ARN, soulignant la compétition entre les PAR et l'ARN pour le même site de liaison. Fait intéressant, le recrutement in vivo de NONO aux sites de dommages de l'ADN dépend entièrement du PAR et nécessite le motif 1 de la reconnaissance de l'ARN. En conclusion, nos résultats établissent NONO comme une nouvelle protéine impliquée dans la réponse aux cassures double-brin de l'ADN et plus généralement démontrent un autre niveau de complexité supplémentaire dans l'interdépendance de la biologie de l'ARN et la réparation de l'ADN. / DNA double-strand breaks are potentially lethal lesions, which if not repaired correctly, can have harmful consequences such as carcinogenesis promoted by chromosome deletions and rearrangements. Poly(ADP-ribosyl)ation carried out by poly(ADP-ribose) polymerase 1 (PARP-1) is one of the first posttranslational modifications occurring in response to DNA damage. In brief, PARP-1 uses nicotinamide to generate a negatively charged polymer called poly(ADP-ribose) polymer (PAR), that can be attached to acceptor proteins, which is to a large extent PARP-1 itself. PAR has recently been recognized as a recruitment signal for key DNA repair proteins to sites of DNA damage but the precise role of PARP-1 and its catalytic product PAR in the DNA damage response are still a matter of ongoing debate. Throughout my doctoral work, we confirmed that the proteins in complex with PAR promptly after DNA damage are mostly DNA repair proteins, whereas during the period of recovery from DNA damage, the PAR interactome is highly enriched with RNA processing factors. Interestingly, one of the most abundant RNA-binding proteins detected in the PAR interactome, namely NONO, did not follow these kinetics as it was highly enriched immediately after DNA damage in the DNA repair protein complexes centered on PAR. Our subsequent investigation of NONO in the DNA damage response to double-strand breaks strikingly revealed a direct implication for NONO in repair by nonhomologous end joining (NHEJ). Moreover, we found that NONO strongly and specifically binds to PAR through its RNA-recognition motif 1 (RRM1), highlighting competition between PAR and RNA for the same binding site. Remarkably, the in vivo recruitment of NONO to DNA damage sites completely depends on PAR and requires the RRM1 motif. In conclusion, our results establish NONO as a new protein implicated in the DNA damage response to double-strand break and in broader terms add another layer of complexity to the cross-talk between RNA-biology and DNA repair.
53

Analyse fonctionnelle d'un variant d'épissage de FANCL contenant une exlusion de l'exon 4 sur la réparation de l' ADN dans la voie FANC-BRCA

St-Laurent Pedneault, Christopher 19 April 2018 (has links)
L’anémie de Fanconi (FA) est une maladie congénitale rare résultant d’une mutation sur chaque allèle parental d’un gène FANC. Nous avons récemment identifié un variant d'épissage de FANCL contenant une exclusion de l'exon 4. Une analyse par minigène nous a permis de démontrer que le polymorphisme de séquence (SNP) rs7958831 augmente substantiellement le saut de l'exon 4 de FANCL, et que les porteurs de ce SNP ont une quantité significativement plus élevée de transcrits FANCL∆4. L'étude de fractions ribosomales nous a permis de confirmer que le transcrit alternatif est bel et bien traduit en protéine. Toutefois, une protéine de fusion FANCL∆4-GFP ne migre pas au noyau comme le fait FANCLwt-GFP. L'isoforme FANCL∆4 n'est pas en mesure d'accomplir la fonction principale de FANCL, soit de monoubiquitiner FANCD2. De plus, des cellules EUFA868 déficientes en FANCL complémentées avec FANCL∆4 ne retrouvent pas leur phénotype normal en test de survie et ont une proportion plus importante bloquée en phase G2/M. Ces résultats nous permettent de penser que le SNP rs7958831 pourrait moduler le risque de cancer du sein puisque l'isoforme FANCL∆4 ne semble pas fonctionnelle.
54

Élaboration d'une méthode d'analyse de la capacité de réparation de l'ADN : application à une population exposée à l'arsenic via la consommation d'eau souterraine

Zinflou, Corinne 18 April 2018 (has links)
L'exposition via l'eau potable à des concentrations élevées d'arsenic (>10 ug/L), est mondialement répandue et s'associe à de sévères pathologies dont certains cancers. Un mécanisme sous-jacent implique l'altération de la capacité de réparation de l'ADN (CRA), un important modulateur de la susceptibilité au cancer. Notre but était d'élaborer une méthode d'évaluation de la CRA et d'estimer son applicabilité à l'étude de la CRA de 102 résidents de Chaudière-Appalaches (Québec, Canada) chroniquement exposés à différentes concentrations d'arsenic dans l'eau (0.01-140 ug/L). Deux tests in vitro ont été développés, pour évaluer la réparation par excision/resynthèse d'ADN, de lymphocytes congelés et non-stimulés. Les mesures dans notre échantillon indiquent 42% des individus montrant une activité de réparation in vitro ralentie; l'absorption d'As3+ était négativement corrélée avec la proportion d'individus à l'activité ralentie (p = 0.0155). Nos résultats suggèrent que ces tests permettraient d'évaluer la CRA dans le cadre d'études épidémiologiques de carcinogénèse environnementale.
55

La réparation de l'ADN par la recombinaison homologue et le développement de molécules anticancéreuses

Pauty, Joris 23 April 2018 (has links)
Le cancer est une cause majeure de décès dans le monde. Il est à présent établi que les mutations de l'information génétique des cellules initient et participent à son développement, et que certaines mutations transmises au sein des familles prédisposent à son apparition. C'est le cas notamment des mutations des gènes BRCA1 et BRCA2 qui prédisposent aux cancers du sein et de l'ovaire. Les protéines produites par ces gènes sont directement impliquées dans la protection de l'information génétique puisqu'elles participent à la réparation des cassures se produisant dans le support de cette information : l'ADN. L'ADN peut être endommagé par diverses lésions mais les plus déstabilisatrices de l'information génétique sont les cassures double-brin. Afin de protéger son génome, la cellule possède de nombreux mécanismes de réparation dont la recombinaison homologue qui permet une réparation fidèle, c'est-à-dire sans perte ou modification de l'information génétique, permettant ainsi de prévenir l'apparition du cancer. La recombinaison homologue repose principalement sur l'activité de la protéine RAD51 qui nécessite l'utilisation des médiateurs BRCA2 et PALB2. Tout comme les gènes BRCA1 et BRCA2, PALB2 est un gène suppresseur de tumeur et ses mutations ont été associées avec une susceptibilité aux cancers du sein, de l'ovaire et du pancréas. En plus de la chirurgie, le traitement de ces cancers implique la radiothérapie et la chimiothérapie. Celles-ci font l'objet d'intenses recherches afin de proposer de nouveaux traitements plus efficaces avec moins d'effets secondaires. De nouvelles stratégies chimiothérapeutiques ont notamment émergé et on s'oriente à présent vers le développement de traitements personnalisés qui sont basés sur une meilleure connaissance des spécificités moléculaires des tumeurs. Les travaux présentés dans cette thèse apportent de nouvelles informations concernant le rôle de PALB2 dans la protection du génome lors du stress réplicatif et sur la régulation de ses fonctions par le contrôle de sa localisation cellulaire. Plus précisément, nous montrons que PALB2 et BRCA2 permettent de maintenir la Polymérase η au niveau des fourches de réplication bloquées et stimulent son activité de synthèse de l'ADN pour réinitier la réplication. Grâce à l'analyse de mutations germinales identifiées dans des cancers du sein et de l'ovaire, nous révélons la présence d'une séquence d'export nucléaire qui provoque l'exclusion de PALB2 du noyau vers le cytoplasme. Enfin, nous rapportons le développement d'une nouvelle molécule chimiothérapeutique, SFOM-0046, qui provoque des cassures double-brin de l'ADN en induisant un stress réplicatif et qui potentialise les effets de l'UCN-01, une molécule qui a été étudiée en clinique. Nous proposons l'utilisation de cette nouvelle molécule comme agent d'amélioration de thérapies ciblées existantes ou pour le développement de nouvelles thérapies anticancéreuses personnalisées.
56

Rôles des paralogues de RAD51 humains dans la recombinaison homologue et le maintien de la stabilité du génome en mitose

Rodrigue, Amélie 17 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2010-2011 / De toutes les lésions qui menacent l'intégrité du génome, les cassures double-brin (CDBs) de l'ADN sont l'une des plus délétères, puisque toute cassure mal réparée suffit à induire des mutations et des translocations chromosomiques pouvant mener au cancer. La recombinaison homologue (RH) est un processus permettant aux cellules de réparer les CDBs de façon fidèle sans créer de mutations. Chez les eucaryotes supérieurs, ce mode de réparation repose en grande partie sur les fonctions catalytiques de la recombinase RAD51 et des évidences génétiques démontrent que ses paralogues, RAD51B, RAD51C, RAD51D, XRCC2 et XRCC3, sont également des acteurs clés dans ce processus. Jusqu'à présent, les paralogues de RAD51 n'ont été que très peu caractérisés sur le plan cellulaire et moléculaire si bien que leurs fonctions précises demeurent mal définies. Dans cette étude, nous apportons des évidences implicant les paralogues de RAD51 humains dans les étapes précoces de la RH. Plus précisément, nous démontrons que le paralogue RAD51C interagit avec la recombinase RAD51 et qu'il est requis pour l'assemblage de cette dernière en foyers de réparation. De plus, nous établissons par des immunoprécipitations de chromatine que les paralogues sont recrutés à proximité d'une CDB unique en phase S-G2 du cycle cellulaire et nous montrons par immunofluorescence que RAD51C s'y accumule en foyers, une signature des enzymes de réparation. Par ailleurs, nous avons découvert que les paralogues de RAD51 jouent un rôle crucial dans la progression du cycle cellulaire. Tandis que l'inhibition par ARN interférence de RAD51B ou RAD51C provoque un arrêt prolongé en G2-M, celle de XRCC3 favorise l'entrée en mitose par le phénomène d'adaptation. La microscopie en temps réel a démontré que la perte de XRCC3 engendre un délai mitotique qui s'accompagne d'une fréquence élevée d'anomalies de centrosomes et de défauts de ségrégation chromosomique (micronoyaux et ponts anaphases). Des phénotypes mitotiques comparables sont obtenus suivant la depletion de la résolvase GEN1. Conséquemment, nous proposons qu'une fonction tardive de XRCC3 et de GEN1 dans la RH, soit au niveau de la résolution des jonctions de Holliday, puisse être à l'origine de ces aberrations mitotiques. L'ensemble de ces données permet d'éclaircir les fonctions distinctes et communes des paralogues de RAD51 lors de la RH ainsi que leur rôle dans le maintien de la stabilité du génome en mitose.
57

Rôle de la poly(ADP-ribose) polymérase 1 dans la reconnaissance et la réparation des dommages directs induits à l'ADN par les radiations ultraviolettes

Robu, Mihaela 24 May 2018 (has links)
Tableau d'honneur de la Faculté des études supérieures et postdoctorales, 2017-2018 / La poly(ADP-ribose) polymérase 1 (PARP1) est une enzyme nucléaire très abondante chez les eucaryotes supérieurs, humains compris, mais néanmoins absente chez les bactéries et les levures. En réponse aux dommages à l’ADN, elle utilise le substrat nicotinamide adénine dinucléotide (NAD+) pour former des polymères d’ADP-ribose (PAR) sur elle-même et sur d’autres protéines cibles. L’enzyme PARP1 et son activité catalytique sont impliquées dans la réparation des dommages à l’ADN contenant des cassures simple et double brin. Cependant, l’hypothèse que l’enzyme PARP1 joue un rôle dans la réparation de dommages sans cassures de brin a toujours rencontré des réticences. Par exemple, la PARP1 est activée rapidement par ces dommages, comme ceux induits par les radiations ultraviolettes (UV), mais son rôle dans leur réparation par excision de nucléotides (NER) n’était pas accepté généralement. Ainsi, ce projet de doctorat consiste à déterminer le mécanisme exact par lequel la PARP1 et son activité catalytique contribuent à la NER. Cette voie de réparation utilise plus de 30 protéines pour réparer une très grande variété de dommages. Bien que nous ayons une bonne connaissance des étapes de la NER grâce aux études in vitro chez les bactéries et les levures, les facteurs qui influencent le fonctionnement de la NER chez les eucaryotes supérieurs ne sont pas tous connus. Cependant, de récentes études ont montré que des complexes de remodelage de la chromatine et des modifications post-traductionnelles facilitent la NER dans la chromatine. Dans ce contexte, l’implication de la modification posttraductionnelle effectuée par la PARP1, dite PARylation, est encore inconnue dans la NER. Dans la NER, l’étape cruciale de la réparation globale du génome est la reconnaissance des quelques bases endommagées qui sont entourées de nombreuses bases non modifiées par la protéine «Xeroderma pigmentosum C» (XPC). Un autre facteur clé de cette phase est le facteur «UV-damaged DNA binding protein 2» (DDB2) qui fait partie du complexe ubiquitine-ligase UV-DDB. Ici, nous avons démontré que, après irradiation aux UVC, la PARP1 se lie asymétriquement à la photolésion et elle interagit avec le facteur DDB2. Ce dernier stimule l’activité catalytique de la PARP1 et est à son tour PARylé par la PARP1. Les polymères formés autour de la photolésion agissent comme signal de recrutement pour le complexe PARP1-XPC déjà présent dans le nucléoplasme. La confluence de ces facteurs de réparation au site de dommage assure la séparation de la protéine XPC de ce complexe suivi de son transfert et de sa stabilisation autour du dommage. Ainsi, la PARP1 n'est pas seulement l'une des premières protéines recrutées aux lésions induites par les UV, mais son activation rapide par ces dommages joue un rôle clé dans les étapes situées en aval de la phase de reconnaissance des dommages de la NER. En effet, nous avons montré que l’inhibition ou la déplétion de la PARP1 ralentit radicalement la réparation par la NER des dommages directs induits à l’ADN par les UV. Cette étude montre que la PARP1, en coopération avec les protéines DDB2 et XPC augmente l’efficacité de la voie NER dans les cellules des mammifères. / Poly(ADP-ribose) polymerase 1 (PARP1) is a highly abundant nuclear enzyme which is present in higher eukaryotes but absent in bacteria and yeasts. In response to DNA damage, it uses the nicotinamide adenine dinucleotide (NAD+) to form polymers of ADPribose (PAR) on itself and other target proteins. PARP1 and its catalytic activity are involved in the repair of DNA damages comprising of single and double strand breaks. However, the role of PARP1 in repairing DNA damage without strand breaks has not been readily accepted. For example, although PARP1 is rapidly activated in response to such damages caused by ultraviolet radiation (UV), its role in their repair by nucleotide excision repair pathway (NER) was not generally recognized. Thus, the project of my doctoral work is to determine the exact mechanism by which PARP1 and its catalytic activity influence NER. This pathway uses more than 30 proteins to repair a wide variety of DNA damages. Although we have a good understanding of NER steps through studies in vitro, bacteria and yeasts, we still do not know all the factors that influence the functioning of the NER in higher eukaryotes including humans. Recent studies have shown that chromatin remodelling complexes and post-translational modifications facilitate NER in the context of chromatin. However, the contribution of PARylation, the post-translational modification carried out by PARP1, in NER remains largely unknown. Xeroderma pigmentosum C protein (XPC) plays a crucial role in NER by recognizing the few UV induced lesions in the vast undamaged chromatin. Another key factor in damage recognition is the UV- damaged DNA binding protein (DDB2), which is part of the UV-DDB ubiquitin-ligase complex. Here, we have demonstrated that after UVC irradiation, PARP1 binds asymmetrically to the photolesions and interacts with DDB2. DDB2 stimulates the catalytic activity of PARP1 and in turn it is PARylated. The polymers formed around the photolesion act as recruitment signal for the PARP1-XPC complex already present in the nucleoplasm. The confluence of these repair factors at the damage site ensures the separation of the XPC protein from its complex with PARP1 followed by its transfer and stabilization at the site of damage. Thus, PARP1 is not only one of the first proteins to respond to UV induced DNA damage, but also its early rapid activation plays a key role in the downstream events of NER. Indeed, we have shown that both inhibition and depletion of PARP1 significantly delays the repair of these lesions. This study demonstrates that PARP1 increases the efficiency of NER in cooperation with the DDB2 and XPC proteins in mammalian cells.
58

Proteomics of Poly(ADP-ribose) Polymerases during DNA Replication and Repair

Tedim Ferreira, Maria 06 February 2020 (has links)
En 2017, Statistique Canada a rapporté qu'un Canadien sur quatre mourra d’un cancer. Chaque jour, nous sommes confrontés à des facteurs environnementaux qui imposent à notre ADN un stress génotoxique. Ce stress peut avoir de graves conséquences au point de menacer notre intégrité génomique, comme les cassures d'ADN double-brin (DSBs). Heureusement, nos cellules ont deux voies principales pour combattre ce type de lésions : la recombinaison homologue (HR) et la Classical Non-Homologous End-Joining (CNHEJ). La voie HR, un type de réparation sans erreur utilisé dans la phase-S du cycle cellulaire, assure une réparation fidèle de la zone endommagée et conserve l'intégrité de l'information génétique. Les individus porteurs de mutations dans les protéines de cette voie, telles que BRCA1 et BCRA2, sont plus susceptibles de développer des cancers du sein et de l'ovaire. Récemment, la clinique a connu une percée majeure dans le traitement du cancer de l'ovaire. Une nouvelle classe de médicaments a été autorisée par la US Food and Drug Administration (FDA) pour traiter les cancers de l'ovaire récurrents qui présentent une HR défective. Ces médicaments inhibent un des acteurs les plus précoces dans la réponse aux dommages à l'ADN (DDR): la PARP-1 (Poly(ADP-ribose) polymerase-1). Lors de l'induction de dommages à l'ADN, la PARP-1 devient fortement activée, conduisant à la production massive de polymères de poly(ADP-ribose) (PAR) générés à partir de l'hydrolyse du nicotinamide adénine dinucléotide. Ce polymère agira comme une plateforme pour recruter des facteurs de réparation de l'ADN au site de réparation. L'application clinique réussie des inhibiteurs de la PARP (PARPi) vient des observations où les mutations ou l'extinction de BRCA1/2 entraînent une diminution de l'activité HR. L'inhibition de la PARP-1 combinée à cette déficience en HR favorise la mort cellulaire, un phénomène appelé létalité synthétique. Trois PARPi sont actuellement autorisés par la FDA et sont utilisés pour le traitement du cancer gynécologique. Malgré l'efficacité thérapeutique de ces inhibiteurs, les mécanismes induisant une régression tumorale ne sont pas complètement compris. Ainsi, il devient extrêmement important de déchiffrer davantage ces mécanismes pour atteindre le plein potentiel des PARPi. Pour ce faire, une recherche fondamentale sur les fonctions des PARPs, et de leurs partenaires dans la DDR, est essentielle et constitue l'objectif général de cette thèse. Durant mon doctorat, nous avons étudié l'influence de la PARP-1 dans la voie HR au moment de l'étape initiale de la résection, qui est essentielle pour l'élimination de l'ADN endommagé. Certaines études ont montré l'implication de la PARP-1 dans le recrutement de la protéine de résection MRE11. Ici, nous démontrons que la PARP-1 a une nouvelle fonction dans la résection des DSBs et nous proposons un nouveau modèle pour expliquer la létalité synthétique observée dans les tumeurs avec une HR défective. Pour compléter l'objectif de ce doctorat, nous avons étudié les rôles régulateurs de la PARP-1 au cours du processus HR, mais plus tard dans la résolution des lésions, c'est-à-dire au maximum de la formation des foyers RAD51, une étape cruciale pour la réparation efficace des DSBs via la HR. Nous avons observé que le PAR-interactome (PARylome) est, à ce moment, fortement enrichi en protéines impliquées dans le métabolisme de l'ARN. Plusieurs des protéines les plus abondantes étaient constituées d’hélicases d’ADN et d’ARN, et de facteurs de transcription. Puisque certains de ces gènes sont mutés dans les tumeurs, ils pourraient théoriquement être des cibles prioritaires pour une utilisation conjointe avec des PARPi. Nous avons également étendu notre étude de la PARylation à la chromatine, au niveau des histones. Nous avons constaté que les queues d'histones ne sont pas les seules cibles de la PARP-1 et que les domaines globulaires centraux sont également PARylés. Finalement, le grand intérêt clinique de la PARP-1 méritait une analyse approfondie de son expression systémique. Ainsi, j'ai terminé mes études en décrivant la distribution et l'abondance tissulaire de la PARP-1 dans les organes simiens, avec l'objectif principal de fournir des informations précieuses quant à l'efficacité potentielle des PARPi ou sa résistance, dans un tissu donné et maladies apparentées. En résumé, cette thèse fournit de nouvelles informations importantes sur les mécanismes orchestrés par la PARP-1 lors de la réponse aux DSBs, y compris les réseaux protéiques complexes engagés dans le remodelage des fonctions cellulaires nécessaire au maintien de l'intégrité génomique. / In 2017, Statistics Canada reported that one out of four Canadians will die of cancer. Every day, we face environmental factors that burden our DNA with genotoxic stress. This stress can lead to severe types of DNA damage that can threaten our genomic integrity, namely double-strand breaks (DSBs). Fortunately, our cells have evolved with different repair mechanisms to deal with such lesions. There are two primary types of repair against DSBs: Homologous Recombination (HR) and Classical Non-Homologous End-Joining (CNHEJ). The HR pathway is an error-free repair mechanism used in the S-phase of the cell cycle to ensure faithful repair of the damaged area and thus preserve our genetic information. Individuals that bear mutations in proteins involved in this pathway, such as BRCA1 and BCRA2, have been associated with the development of breast and ovarian cancers. Almost 4 years ago, the field went through a major breakthrough in ovarian cancer care. A new class of drugs was accepted by the US Food and Drug Administration (FDA) to manage recurrent ovarian cancers that display HR-deficiencies. These drugs consist of inhibitor molecules against one of the earliest sensors of DNA damage in the cell: PARP-1 (poly(ADP-ribose) polymerase-1). Upon DNA damage induction, PARP-1 becomes highly activated, leading to the massive production of poly(ADP-ribose) (PAR) polymers, from the hydrolysis of nicotinamide adenine dinucleotide, which in turn modify several proteins posttranslationally and act as a scaffold to recruit DNA repair factors to the repair site. The successful application of PARP inhibitors (PARPi) arose from the observations that mutations or silencing of BRCA1/2, resulted in diminished HR activity. In the context of HR deficiency, the concomitant inhibition of PARP resulted in cell-death, an effect called synthetic lethality. Three PARPi are currently accepted by the FDA and are being clinically used for the treatment of gynaecological cancers. Notwithstanding the great promise of these inhibitors for other types of cancers, the mechanism by which these are inducing cancer lethality is not fully understood. Thus, it becomes of extreme importance to further decipher its mechanistic ways, to achieve full potential of PARPi in the clinic. To achieve this, fundamental research on the functions of PARPs and their protein partners in the DNA damage response is indispensable and constitutes the general aim of this thesis. During my doctoral work, we investigated the influence of PARP-1 during the HR pathway, primarily during the initial step of resection, which is essential for the removal of damaged DNA. Early reports of PARP-1 involvement in resection described the recruitment of the resection protein MRE11 to sites of damage in a PARP-1 dependent manner. Here, we demonstrate that PARP-1 has a novel function in DSB resection and we propose a new model for the synthetic lethality observed in HR-deficient tumors. To further complement the general aim of this doctorate, we investigated the regulatory roles of PARP-1 during the HR pathway, however in a later stage of HR resolution, at the peak formation of RAD51 foci, which is a crucial step for the efficient repair of DSBs through HR. We observed that the PAR-interactome (PARylome) at this stage was abundantly enriched with RNA-processing factors. Several of the most abundant proteins consisted of DNA and RNA helicases, as well as transcription factors, some of which were found to be mutated in tumors, and thus can be seen as potentially druggable targets to be used in combination with PARPi. We also extended our PARylome study to the chromatin proteome and investigated the histone PARylome upon DNA damage. Interestingly, we found that histone tails are not the only targets of PARP-1 and that globular domains are also targets of PARylation. Lastly, the high clinical interest of PARP-1 warrants studies addressing PARP-1 organ distribution. Thus, I finalized my studies by extensively describing and reporting PARP-1 tissular and cellular distribution and abundance in monkey organs, with the main objective of providing valuable information to any study assessing PARP inhibition efficacy and resistance in any given tissue and related diseases. In summary, this thesis provides important new information on the mechanisms PARP-1 is regulating during the response to DSBs, including the networks PARP-1 is orchestrating to potentially help reshape the cell environment, to efficiently repair the most lethal lesion our genome faces.
59

Implication de PIM1 dans la réparation de l'ADN par la jonction d'extrémités non-homologues en hypertension artérielle pulmonaire

Lampron, Marie-Claude 06 June 2018 (has links)
Introduction : L’hypertension artérielle pulmonaire (HTAP) est une maladie caractérisée par une augmentation des pressions pulmonaires menant à une défaillance cardiaque droite. Les cellules musculaires lisses des artères pulmonaires (CMLAP) sont exposées à un niveau de stress accru notamment dû à l’inflammation des tissus et du milieu pseudo-hypoxique. Malgré cet environnement hostile, elles arrivent à proliférer et à survivre. Toutefois, cela entraine une augmentation anormale du dommage à l’ADN. Il existe, cependant, un équilibre entre les dommages à l’ADN et les mécanismes de réparation. PIM1, une onco-protéine à l’activité kinase, est surexprimée en HTAP. Elle est impliquée dans plusieurs voies de signalisation cellulaire, telles la survie et la prolifération, mais la voie de réparation du dommage à l’ADN n’a jamais été explorée en HTAP. De plus, l’inhibiteur de PIM1, le SGI-1776, a été testé en essai clinique en cancer, ainsi l’évaluation de son efficacité pour les patients HTAP pourrait rapidement être mise en place. Objectifs : Évaluer le potentiel thérapeutique du SGI-1776 et élucider l’implication de PIM1 dans la réparation du dommage à l’ADN en HTAP. Méthodes/Résultats : Nous démontrons premièrement que les poumons de patients HTAP (n=10) ainsi que les CMLAP-HTAP (n=5) présentent une surexpression de PIM1. Sur ces mêmes tissus et lignées cellulaires, le précurseur de la reconnaissance des dommages à l’ADN (γH2AX) est également augmenté comparativement aux sujets sains. Ce précurseur est essentiel à l’initiation de la réparation à l’ADN et l’inhibition de PIM1 par SGI-1776 (1,3 et 5μM) diminue la capacité de la réponse au dommage à l’ADN via la voie de la jonction des extrémités non-homologues (NHEJ) : le traitement cause une diminution des facteurs du NHEJ comme Ku70, DNA-PKcs et γH2AX (n=4). Par essai comet, nous démontrons que les dommages sont toujours présents et que ceci diminue la prolifération (Ki67 n=3; p<0.05) et augmente l’apoptose (AnnexinV n=3; p<0.05). In vivo, le SGI-1776 diminue les pressions pulmonaires (n=30, 30±2mmHg vs 49±5mmHg) et diminue le remodelage des artères pulmonaires distales (H&E, 45% vs 65%), ce qui est principalement dû à la restauration de la balance entre la prolifération (Ki67 n=25; p<0.05) et l’apoptose (TUNEL n=25; p<0.05) des artères pulmonaires distales. Conclusion : Nous avons démontré pour la première fois l’implication de PIM1 dans la réparation du dommage à l’ADN en HTAP et que l’inhibition de son activité améliore in vitro et in vivo l’HTAP. / RATIONALE: Pulmonary Arterial Hypertension (PAH) is a fatal disease characterized by the narrowing of pulmonary arteries (PA) due to vascular remodeling. It is now established that this phenotype is associated with enhanced pulmonary artery smooth muscle cells (PASMC) proliferation and suppressed apoptosis. This phenotype is sustained in part by the activation of several DNA repair pathways allowing PASMC to survive despite the environmental stresses seen in PAH. PIM1 is an oncoprotein upregulated in PAH and that has been implicated in many pro-survival pathways in cancer, including DNA repair. PIM1 inhibitors, like SGI-1776, are already in clinical trials in cancer and could thus be beneficial to PAH patients. OBJECTIVES: The aim of this study is to demonstrate the implication of PIM1 in the DNA damage response and the beneficial effect of its inhibition by SGI-1776 in human PAH-PASMC and in rat preclinical model of PAH. METHODS/RESULTS: Using western blot we showed in both human PAH lungs (n=10) and PAH-PASMC (n=5) a significant upregulation of PIM1 compared to control donor (n=5). PIM1 upregulation in PAH was associated with a significant activation of DNA damage sensor (γH2AX), which is critical for DNA repair initiation. We showed that PIM1 inhibition using SGI-1776 (1,3, and 5μM) significantly impaired DNA repair capacity in PASMC (n=4) with a significant repression of Ku70, DNA-PKcs, and γH2AX and decreased ATM expression. We showed no diminution of DNA damage with SGI-1776 treatment (Comet Assay, n=3). As expected, the lack of DNA repair in SGI-1776 treated PAH-PASMC lead to a significant reduction in proliferation (Ki67 n=3; p<0.05) and resistance to apoptosis (AnnexinV assay n=3; p<0.05). In vivo, SGI-1776 10mg*kg-1 given 3 times a week, improves significantly (n=30; p<0.05) monocrotaline-induced PH (decreased RVSP, mean PA pressures and vascular remodeling). CONCLUSION: We demonstrated for the first time that PIM1 is implicated in DNA repair signaling in PAH-PASMC and that repressing its activity everses PAH both in vitro and in vivo.
60

Analyse de l'influence de la chromatine et de l'hétérochromatine dans la réparation des dommages créés par les rayons UV dans l'ADN chez la levure Saccharomyces cerevisiae

Toussaint, Martin January 2010 (has links)
Les rayons UV du soleil causent une variété de dommages dans l'ADN, parmi lesquels les dimères cyclobutilyques de pyrimidines (CPD) sont considérés comme hautement toxiques et dommageables pour un organisme. Par conséquent, il est important de comprendre comment la machinerie de réparation par excision des nucléotides (la NER), assure la réparation in vivo des CPD présents dans l'ADN empaqueté sous forme de chromatine. Il est connu que la présence du nucléosome inhiberait la NER, mais les détails fonctionnels demeurent mal compris, de même que les mécanismes cellulaires nécessaires pour contourner cette inhibition offerte par la chromatine. Chez la levure Saccharomyces cerevisiae, les gènes SIR (SIR1, SIR2, SIR3 et SIR4 ) permettent la formation d'une structure hétérochromatique sur le locus du type sexuel et les télomères. Cependant, l'impact de cette hétérochromatine sur la réparation des CPD est très peu étudié.Les travaux présentés dans cette thèse de doctorat ont permis de caractériser l'impact des gènes SIR dans la survie des cellules après irradiation aux rayons UV, de même que dans la réparation de l'ADN des régions hétérochromatiques. Premièrement, à l'aide d'une méthode basée sur le suivi de la croissance en milieu de culture liquide, nous avons démontré que les mutants sir[delta] sont plus résistants aux rayons UV par rapport aux cellules de types sauvages. Ce phénotype serait relié à l'effet de pseudo-diploïdie présent dans ces mutants, et plus précisément à la recombinaison homologue en phase G2/M du cycle cellulaire.Les protéines Sir ne joueraient donc pas un rôle directement dans la réparation des CPD. Par la suite, nous avons procédé à l'analyse de la cinétique de réparation de l'ADN du locus du type sexuel et des télomères dans des cellules de type sauvage et des mutants si2r[delta], sir3[delta], et rad26[delta] . À partir des résultats obtenus, nous avons pu tirer différentes conclusions préliminaires laissant croire que la présence de l'hétérochromatine faite par les protéines Sir n'inhiberait pas davantage la réparation par rapport à la présence des nucléosomes, du moins dans les régions sous-télomériques. De plus, nos résultats démontreraient que la réparation couplée à la transcription pourrait jouer un rôle important dans la réparation de ces régions. Ces hypothèses devront évidemment être testées.

Page generated in 0.1344 seconds