• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 249
  • 134
  • 32
  • Tagged with
  • 438
  • 438
  • 245
  • 210
  • 178
  • 153
  • 138
  • 108
  • 103
  • 94
  • 86
  • 84
  • 82
  • 79
  • 77
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

Statistical and intelligent methods for default diagnosis and loacalization in a continuous tubular reactor / Méthodes statistiques et intelligentes pour la détection et la localisation de dysfonctionnements dans un réacteur chimique tubulaire continu

Liu, Haoran 26 November 2009 (has links)
Ce travail concerne l’étude d’un réacteur chimique continu afin de construire un modèle pour la phase d’apprentissage de méthode et localisation et détection de pannes. Un dispositif expérimental a été conçu pour disposer de données expérimentales significatives. Pour le diagnostique et la localisation des méthodes orientées données ont été retenues, principalement les réseaux Bayésiens et les réseaux de neurones à Fonctions Radiales de Base (RBF) couplés à un algorithme génétique auto adaptatif à ajustement local (GAAPA). Les données collectées à partir du dispositif expérimental ont servi à l’apprentissage et à la validation du modèle. / The aim is to study a continuous chemical process, and then analyze the hold process of the reactor and build the models which could be trained to realize the fault diagnosis and localization in the process. An experimental system has been built to be the research base. That includes experiment part and record system. To the diagnosis and localization methods, the work presented the methods with the data-based approach, mainly the Bayesian network and RBF network based on GAAPA (Genetic Algorithm with Auto-adapted of Partial Adjustment). The data collected from the experimental system are used to train and test the models.
282

Des modèles de langage pour la reconnaissance de l'écriture manuscrite / Language Modelling for Handwriting Recognition

Swaileh, Wassim 04 October 2017 (has links)
Cette thèse porte sur le développement d'une chaîne de traitement complète pour réaliser des tâches de reconnaissance d'écriture manuscrite non contrainte. Trois difficultés majeures sont à résoudre: l'étape du prétraitement, l'étape de la modélisation optique et l'étape de la modélisation du langage. Au stade des prétraitements il faut extraire correctement les lignes de texte à partir de l'image du document. Une méthode de segmentation itérative en lignes utilisant des filtres orientables a été développée à cette fin. La difficulté dans l’étape de la modélisation optique vient de la diversité stylistique des scripts d'écriture manuscrite. Les modèles optiques statistiques développés sont des modèles de Markov cachés (HMM-GMM) et les modèles de réseaux de neurones récurrents (BLSTM-CTC). Les réseaux récurrents permettent d’atteindre les performances de l’état de l’art sur les deux bases de référence RIMES (pour le Français) et IAM (pour l’anglais). L'étape de modélisation du langage implique l'intégration d’un lexique et d’un modèle de langage statistique afin de rechercher parmi les hypothèses proposées par le modèle optique, la séquence de mots (phrase) la plus probable du point de vue linguistique. La difficulté à ce stade est liée à l’obtention d’un modèle de couverture lexicale optimale avec un minimum de mots hors vocabulaire (OOV). Pour cela nous introduisons une modélisation en sous-unités lexicales composée soit de syllabes soit de multigrammes. Ces modèles couvrent efficacement une partie importante des mots hors vocabulaire. Les performances du système de reconnaissance avec les unités sous-lexicales dépassent les performances des systèmes de reconnaissance traditionnelles de mots ou de caractères en présence d’un fort taux de mots hors lexique. Elles sont équivalentes aux modèles traditionnels en présence d’un faible taux de mots hors lexique. Grâce à la taille compacte du modèle de langage reposant sur des unités sous-lexicales, un système de reconnaissance multilingue unifié a été réalisé. Le système multilingue unifié améliore les performances de reconnaissance par rapport aux systèmes spécialisés dans chaque langue, notamment lorsque le modèle optique unifié est utilisé. / This thesis is about the design of a complete processing chain dedicated to unconstrained handwriting recognition. Three main difficulties are adressed: pre-processing, optical modeling and language modeling. The pre-processing stage is related to extracting properly the text lines to be recognized from the document image. An iterative text line segmentation method using oriented steerable filters was developed for this purpose. The difficulty in the optical modeling stage lies in style diversity of the handwriting scripts. Statistical optical models are traditionally used to tackle this problem such as Hidden Markov models (HMM-GMM) and more recently recurrent neural networks (BLSTM-CTC). Using BLSTM we achieve state of the art performance on the RIMES (for French) and IAM (for English) datasets. The language modeling stage implies the integration of a lexicon and a statistical language model to the recognition processing chain in order to constrain the recognition hypotheses to the most probable sequence of words (sentence) from the language point of view. The difficulty at this stage is related to the finding the optimal vocabulary with minimum Out-Of-Vocabulary words rate (OOV). Enhanced language modeling approaches has been introduced by using sub-lexical units made of syllables or multigrams. The sub-lexical units cover an important portion of the OOV words. Then the language coverage depends on the domain of the language model training corpus, thus the need to train the language model with in domain data. The recognition system performance with the sub-lexical units outperformes the traditional recognition systems that use words or characters language models, in case of high OOV rates. Otherwise equivalent performances are obtained with a compact sub-lexical language model. Thanks to the compact lexicon size of the sub-lexical units, a unified multilingual recognition system has been designed. The unified system performance have been evaluated on the RIMES and IAM datasets. The unified multilingual system shows enhanced recognition performance over the specialized systems, especially when a unified optical model is used.
283

Prévision de la turbidité par apprentissage statistique : application au captage AEP d'Yport (Normandie) / Turbidity forecasting using neural network : case study of Yport drinking water pumping well (Normandy)

Savary, Michael 12 July 2018 (has links)
Près de 25% de la population mondiale est alimentée par de l’eau en provenance d’aquifères karstiques. La compréhension et la protection de ces derniers apparait donc comme essentielle dans le cadre d’une augmentation des besoins en eau potable. De plus, une contamination des forages d'alimentation en eau potable par une eau turbide peut s'avérer fortement dommageable car entrainant une possible contamination des populations desservies. Dans le cas de la Normandie, des coupures régulières son nécessaires afin de préserver la santé des habitants. La modélisation et la prédiction des augmentations de turbidité apparaissent comme un travail difficile du fait des nombreux phénomènes et paramètres régissant la turbidité ainsi que la non-linéarité de la réponse entre les précipitations et la turbidité. Peu de modèles à l'heure actuelle ont été proposés pour représenter la relation liant la turbidité avec les précipitations. C'est ainsi, en s'intéressant au forage AEP d'Yport responsable de l'alimentation en eau potable de la ville du Havre, que nous proposons une application des réseaux de neurones pour la prévision de la turbidité. Durant les travaux de thèse, nous avons mis en avant la nécessité d'effectuer des campagnes d'échantillonnages des produits phytosanitaires afin de permettre l'identification des éventuels proxies des produits phytosanitaires tel que la turbidité, les précipitations ou bien la conductivité. Par la suite, les travaux effectués dans cette thèse nous ont permis (i) de monter que les modèles par réseaux de neurones permettent de prévoir à 12h et 24h les variations de turbidité, (ii) de tester plusieurs voies d'amélioration de ces modèles, (iii) d'intégrer l'analyse multirésolution aux modèles par réseaux de neurones et pour finir (iiii) d'identifier un semi proxy des contaminations en produits phytosanitaires. / Approximately 25% of the world's population is supplied by water from karstic aquifers. The understanding and protection of these appears to be essential in the context of drinking water needs increasing. In addition, contamination of drinking water by turbid water can be highly damaging by resulting in possible contamination of the served populations. In the case of Normandy, regular drinking water cut-off are necessary to preserve the health of the inhabitants. The modeling and prediction of turbidity event appears as a challenging work because of the number of phenomenon and parameters involves in turbidity variation as well as the non-linearity of the link between rainfall and turbidity. Actually, few models have been proposed to represent the relationship between turbidity and rainfall. In this context, by focusing on Yport's pumping well which is responsible for Half of Le Havre city drinking water supply, we propose an application of neural networks for turbidity prediction. During this thesis work, we emphasized the need to carry out sampling campaigns for phytosanitary products to enable the identification of possible phytosanitary product proxies such as turbidity, rainfall or conductivity. Subsequently, the work carried out in this thesis enabled us to (i) designed neural network models allow to predict at 12h and 24h the turbidity variations, (ii) test several ways to improve these models, (iii) integrate multiresolution analysis into neural networks models and finally (iiii) identify a semi proxy for phytosanitary product contamination.
284

Appariements collaboratifs des offres et demandes d’emploi / Collaborative Matching of Job Openings and Job Seekers

Schmitt, Thomas 29 June 2018 (has links)
Notre recherche porte sur la recommandation de nouvelles offres d'emploi venant d'être postées et n'ayant pas d'historique d'interactions (démarrage à froid). Nous adaptons les systèmes de recommandations bien connus dans le domaine du commerce électronique à cet objectif, en exploitant les traces d'usage de l'ensemble des demandeurs d'emploi sur les offres antérieures. Une des spécificités du travail présenté est d'avoir considéré des données réelles, et de s'être attaqué aux défis de l'hétérogénéité et du bruit des documents textuels. La contribution présentée intègre l'information des données collaboratives pour apprendre une nouvelle représentation des documents textes, requise pour effectuer la recommandation dite à froid d'une offre nouvelle. Cette représentation dite latente vise essentiellement à construire une bonne métrique. L'espace de recherche considéré est celui des réseaux neuronaux. Les réseaux neuronaux sont entraînés en définissant deux fonctions de perte. La première cherche à préserver la structure locale des informations collaboratives, en s'inspirant des approches de réduction de dimension non linéaires. La seconde s'inspire des réseaux siamois pour reproduire les similarités issues de la matrice collaborative. Le passage à l'échelle de l'approche et ses performances reposent sur l'échantillonnage des paires d'offres considérées comme similaires. L'intérêt de l'approche proposée est démontrée empiriquement sur les données réelles et propriétaires ainsi que sur le benchmark publique CiteULike. Enfin, l'intérêt de la démarche suivie est attesté par notre participation dans un bon rang au challenge international RecSys 2017 (15/100; un million d'utilisateurs pour un million d'offres). / Our research focuses on the recommendation of new job offers that have just been posted and have no interaction history (cold start). To this objective, we adapt well-knowns recommendations systems in the field of e-commerce by exploiting the record of use of all job seekers on previous offers. One of the specificities of the work presented is to have considered real data, and to have tackled the challenges of heterogeneity and noise of textual documents. The presented contribution integrates the information of the collaborative data to learn a new representation of text documents, which is required to make the so-called cold start recommendation of a new offer. The new representation essentially aims to build a good metric. The search space considered is that of neural networks. Neural networks are trained by defining two loss functions. The first seeks to preserve the local structure of collaborative information, drawing on non-linear dimension reduction approaches. The second is inspired by Siamese networks to reproduce the similarities from the collaborative matrix. The scaling up of the approach and its performance are based on the sampling of pairs of offers considered similar. The interest of the proposed approach is demonstrated empirically on the real and proprietary data as well as on the CiteULike public benchmark. Finally, the interest of the approach followed is attested by our participation in a good rank in the international challenge RecSys 2017 (15/100, with millions of users and millions of offers).
285

On the bias-variance tradeoff : textbooks need an update

Neal, Brayden 12 1900 (has links)
L’objectif principal de cette thèse est de souligner que le compromis biais-variance n’est pas toujours vrai (p. ex. dans les réseaux neuronaux). Nous plaidons pour que ce manque d’universalité soit reconnu dans les manuels scolaires et enseigné dans les cours d’introduction qui couvrent le compromis. Nous passons d’abord en revue l’historique du compromis entre les biais et les variances, sa prévalence dans les manuels scolaires et certaines des principales affirmations faites au sujet du compromis entre les biais et les variances. Au moyen d’expériences et d’analyses approfondies, nous montrons qu’il n’y a pas de compromis entre la variance et le biais dans les réseaux de neurones lorsque la largeur du réseau augmente. Nos conclusions semblent contredire les affirmations de l’oeuvre historique de Geman et al. (1992). Motivés par cette contradiction, nous revisitons les mesures expérimentales dans Geman et al. (1992). Nous discutons du fait qu’il n’y a jamais eu de preuves solides d’un compromis dans les réseaux neuronaux lorsque le nombre de paramètres variait. Nous observons un phénomène similaire au-delà de l’apprentissage supervisé, avec un ensemble d’expériences d’apprentissage de renforcement profond. Nous soutenons que les révisions des manuels et des cours magistraux ont pour but de transmettre cette compréhension moderne nuancée de l’arbitrage entre les biais et les variances. / The main goal of this thesis is to point out that the bias-variance tradeoff is not always true (e.g. in neural networks). We advocate for this lack of universality to be acknowledged in textbooks and taught in introductory courses that cover the tradeoff. We first review the history of the bias-variance tradeoff, its prevalence in textbooks, and some of the main claims made about the bias-variance tradeoff. Through extensive experiments and analysis, we show a lack of a bias-variance tradeoff in neural networks when increasing network width. Our findings seem to contradict the claims of the landmark work by Geman et al. (1992). Motivated by this contradiction, we revisit the experimental measurements in Geman et al. (1992). We discuss that there was never strong evidence for a tradeoff in neural networks when varying the number of parameters. We observe a similar phenomenon beyond supervised learning, with a set of deep reinforcement learning experiments. We argue that textbook and lecture revisions are in order to convey this nuanced modern understanding of the bias-variance tradeoff.
286

Identifying electrons with deep learning methods

Kahya, Emre Onur 12 1900 (has links)
Cette thèse porte sur les techniques de l’apprentissage machine et leur application à un problème important de la physique des particules expérimentale: l’identification des électrons de signal résultant des collisions proton-proton au Grand collisionneur de hadrons. Au chapitre 1, nous fournissons des informations sur le Grand collisionneur de hadrons et expliquons pourquoi il a été construit. Nous présentons ensuite plus de détails sur ATLAS, l’un des plus importants détecteurs du Grand collisionneur de hadrons. Ensuite, nous expliquons en quoi consiste la tâche d’identification des électrons ainsi que l’importance de bien la mener à terme. Enfin, nous présentons des informations détaillées sur l’ensemble de données que nous utilisons pour résoudre cette tâche d’identification des électrons. Au chapitre 2, nous donnons une brève introduction des principes fondamentaux de l’apprentissage machine. Après avoir défini et introduit les différents types de tâche d’apprentissage, nous discutons des diverses façons de représenter les données d’entrée. Ensuite, nous présentons ce qu’il faut apprendre de ces données et comment y parvenir. Enfin, nous examinons les problèmes qui pourraient se présenter en régime de “sur-apprentissage”. Au chapitres 3, nous motivons le choix de l’architecture choisie pour résoudre notre tâche, en particulier pour les sections où des images séquentielles sont utilisées comme entrées. Nous présentons ensuite les résultats de nos expériences et montrons que notre modèle fonctionne beaucoup mieux que les algorithmes présentement utilisés par la collaboration ATLAS. Enfin, nous discutons des futures orientations afin d’améliorer davantage nos résultats. Au chapitre 4, nous abordons les deux concepts que sont la généralisation hors distribution et la planéité de la surface associée à la fonction de coût. Nous prétendons que les algorithmes qui font converger la fonction coût vers minimum couvrant une région large et plate sont également ceux qui offrent le plus grand potentiel de généralisation pour les tâches hors distribution. Nous présentons les résultats de l’application de ces deux algorithmes à notre ensemble de données et montrons que cela soutient cette affirmation. Nous terminons avec nos conclusions. / This thesis is about applying the tools of Machine Learning to an important problem of experimental particle physics: identifying signal electrons after proton-proton collisions at the Large Hadron Collider. In Chapters 1, we provide some information about the Large Hadron Collider and explain why it was built. We give further details about one of the biggest detectors in the Large Hadron Collider, the ATLAS. Then we define what electron identification task is, as well as the importance of solving it. Finally, we give detailed information about our dataset that we use to solve the electron identification task. In Chapters 2, we give a brief introduction to fundamental principles of machine learning. Starting with the definition and types of different learning tasks, we discuss various ways to represent inputs. Then we present what to learn from the inputs as well as how to do it. And finally, we look at the problems that would arise if we “overdo” learning. In Chapters 3, we motivate the choice of the architecture to solve our task, especially for the parts that have sequential images as inputs. We then present the results of our experiments and show that our model performs much better than the existing algorithms that the ATLAS collaboration currently uses. Finally, we discuss future directions to further improve our results. In Chapter 4, we discuss two concepts: out of distribution generalization and flatness of loss surface. We claim that the algorithms, that brings a model into a wide flat minimum of its training loss surface, would generalize better for out of distribution tasks. We give the results of implementing two such algorithms to our dataset and show that it supports our claim. Finally, we end with our conclusions.
287

Emergence of internal representations in evolutionary robotics : influence of multiple selective pressures / Émergence de représentations internes en robotique évolutioniste en présence de pressions de sélection multiples

Ollion, Charles 18 October 2013 (has links)
Pas de résumé en français / Pas de résumé en anglais
288

Résolution variable et information privilégiée pour la reconnaissance d'images / Varying resolution and privileged information for image recognition

Chevalier, Marion 02 December 2016 (has links)
La classification des images revêt un intérêt majeur dans de nombreuses tâches de reconnaissance visuelle, en particulier pour la reconnaissance de véhicules au sol via les systèmes aéroportés, où les images traitées sont de faible résolution du fait de la large distance entre le porteur et la scène observée. Durant l'apprentissage, des données complémentaires peuvent être disponibles, qu'il s'agisse de connaissances sur les conditions de prise de vue ou de la version haute-résolution des images. Dans nos travaux, on s'intéresse au problème de la reconnaissance d'images faiblement résolues en prenant en compte des informations complémentaires pendant l'apprentissage. On montre d'abord l'intérêt des réseaux convolutionnels profonds pour la reconnaissance d'images faiblement résolues, en proposant notamment une architecture apprise sur les données. D'autre part, on s'appuie sur le cadre de l'apprentissage avec information privilégiée pour bénéficier des données d'entraînement complémentaires, ici les versions haute-résolution des images. Nous proposons deux méthodes d'intégration de l'information privilégiée dans l'apprentissage des réseaux de neurones. Notre premier modèle s'appuie sur ces données complémentaires pour calculer un niveau de difficulté absolue, attribuant un poids important aux images les plus facilement reconnaissables. Notre deuxième modèle introduit une contrainte de similitude entre les modèles appris sur chaque type de données. On valide expérimentalement nos deux modèles dans plusieurs cas d'application, notamment dans un contexte orienté grain-fin et sur une base de données contenant du bruit d'annotation. / Image classification has a prominent interest in numerous visual recognition tasks, particularly for vehicle recognition in airborne systems, where the images have a low resolution because of the large distance between the system and the observed scene. During the training phase, complementary data such as knowledge on the position of the system or high-resolution images may be available. In our work, we focus on the task of low-resolution image classification while taking into account supplementary information during the training phase. We first show the interest of deep convolutional networks for the low-resolution image recognition, especially by proposing an architecture learned on the targeted data. On the other hand, we rely on the framework of learning using privileged information to benefit from the complementary training data, here the high-resolution versions of the images. We propose two novel methods for integrating privileged information in the learning phase of neural networks. Our first model relies on these complementary data to compute an absolute difficulty level, assigning a large weight to the most easily recognized images. Our second model introduces a similarity constraint between the networks learned on each type of data. We experimentally validate our models on several application cases, especially in a fine-grained oriented context and on a dataset containing annotation noise.
289

Deep learning in event-based neuromorphic systems / L'apprentissage profond dans les systèmes évènementiels, bio-inspirés

Thiele, Johannes C. 22 November 2019 (has links)
Inférence et apprentissage dans les réseaux de neurones profonds nécessitent une grande quantité de calculs qui, dans beaucoup de cas, limite leur intégration dans les environnements limités en ressources. Les réseaux de neurones évènementiels de type « spike » présentent une alternative aux réseaux de neurones artificiels classiques, et promettent une meilleure efficacité énergétique. Cependant, entraîner les réseaux spike demeure un défi important, particulièrement dans le cas où l’apprentissage doit être exécuté sur du matériel de calcul bio-inspiré, dit matériel neuromorphique. Cette thèse constitue une étude sur les algorithmes d’apprentissage et le codage de l’information dans les réseaux de neurones spike.A partir d’une règle d’apprentissage bio-inspirée, nous analysons quelles propriétés sont nécessaires dans les réseaux spike pour rendre possible un apprentissage embarqué dans un scénario d’apprentissage continu. Nous montrons qu’une règle basée sur le temps de déclenchement des neurones (type « spike-timing dependent plasticity ») est capable d’extraire des caractéristiques pertinentes pour permettre une classification d’objets simples comme ceux des bases de données MNIST et N-MNIST.Pour dépasser certaines limites de cette approche, nous élaborons un nouvel outil pour l’apprentissage dans les réseaux spike, SpikeGrad, qui représente une implémentation entièrement évènementielle de la rétro-propagation du gradient. Nous montrons comment cette approche peut être utilisée pour l’entrainement d’un réseau spike qui est capable d’inférer des relations entre valeurs numériques et des images MNIST. Nous démontrons que cet outil est capable d’entrainer un réseau convolutif profond, qui donne des taux de reconnaissance d’image compétitifs avec l’état de l’art sur les bases de données MNIST et CIFAR10. De plus, SpikeGrad permet de formaliser la réponse d’un réseau spike comme celle d’un réseau de neurones artificiels classique, permettant un entraînement plus rapide.Nos travaux introduisent ainsi plusieurs mécanismes d’apprentissage puissants pour les réseaux évènementiels, contribuant à rendre l’apprentissage des réseaux spike plus adaptés à des problèmes réels. / Inference and training in deep neural networks require large amounts of computation, which in many cases prevents the integration of deep networks in resource constrained environments. Event-based spiking neural networks represent an alternative to standard artificial neural networks that holds the promise of being capable of more energy efficient processing. However, training spiking neural networks to achieve high inference performance is still challenging, in particular when learning is also required to be compatible with neuromorphic constraints. This thesis studies training algorithms and information encoding in such deep networks of spiking neurons. Starting from a biologically inspired learning rule, we analyze which properties of learning rules are necessary in deep spiking neural networks to enable embedded learning in a continuous learning scenario. We show that a time scale invariant learning rule based on spike-timing dependent plasticity is able to perform hierarchical feature extraction and classification of simple objects of the MNIST and N-MNIST dataset. To overcome certain limitations of this approach we design a novel framework for spike-based learning, SpikeGrad, which represents a fully event-based implementation of the gradient backpropagation algorithm. We show how this algorithm can be used to train a spiking network that performs inference of relations between numbers and MNIST images. Additionally, we demonstrate that the framework is able to train large-scale convolutional spiking networks to competitive recognition rates on the MNIST and CIFAR10 datasets. In addition to being an effective and precise learning mechanism, SpikeGrad allows the description of the response of the spiking neural network in terms of a standard artificial neural network, which allows a faster simulation of spiking neural network training. Our work therefore introduces several powerful training concepts for on-chip learning in neuromorphic devices, that could help to scale spiking neural networks to real-world problems.
290

Pattern Recognition in the Usage Sequences of Medical Apps / Analyse des Séquences d'Usage d'Applications Médicales

Adam, Chloé 01 April 2019 (has links)
Les radiologues utilisent au quotidien des solutions d'imagerie médicale pour le diagnostic. L'amélioration de l'expérience utilisateur est toujours un axe majeur de l'effort continu visant à améliorer la qualité globale et l'ergonomie des produits logiciels. Les applications de monitoring permettent en particulier d'enregistrer les actions successives effectuées par les utilisateurs dans l'interface du logiciel. Ces interactions peuvent être représentées sous forme de séquences d'actions. Sur la base de ces données, ce travail traite de deux sujets industriels : les pannes logicielles et l'ergonomie des logiciels. Ces deux thèmes impliquent d'une part la compréhension des modes d'utilisation, et d'autre part le développement d'outils de prédiction permettant soit d'anticiper les pannes, soit d'adapter dynamiquement l'interface logicielle en fonction des besoins des utilisateurs. Tout d'abord, nous visons à identifier les origines des crashes du logiciel qui sont essentielles afin de pouvoir les corriger. Pour ce faire, nous proposons d'utiliser un test binomial afin de déterminer quel type de pattern est le plus approprié pour représenter les signatures de crash. L'amélioration de l'expérience utilisateur par la personnalisation et l'adaptation des systèmes aux besoins spécifiques de l'utilisateur exige une très bonne connaissance de la façon dont les utilisateurs utilisent le logiciel. Afin de mettre en évidence les tendances d'utilisation, nous proposons de regrouper les sessions similaires. Nous comparons trois types de représentation de session dans différents algorithmes de clustering. La deuxième contribution de cette thèse concerne le suivi dynamique de l'utilisation du logiciel. Nous proposons deux méthodes -- basées sur des représentations différentes des actions d'entrée -- pour répondre à deux problématiques industrielles distinctes : la prédiction de la prochaine action et la détection du risque de crash logiciel. Les deux méthodologies tirent parti de la structure récurrente des réseaux LSTM pour capturer les dépendances entre nos données séquentielles ainsi que leur capacité à traiter potentiellement différents types de représentations d'entrée pour les mêmes données. / Radiologists use medical imaging solutions on a daily basis for diagnosis. Improving user experience is a major line of the continuous effort to enhance the global quality and usability of software products. Monitoring applications enable to record the evolution of various software and system parameters during their use and in particular the successive actions performed by the users in the software interface. These interactions may be represented as sequences of actions. Based on this data, this work deals with two industrial topics: software crashes and software usability. Both topics imply on one hand understanding the patterns of use, and on the other developing prediction tools either to anticipate crashes or to dynamically adapt software interface according to users' needs. First, we aim at identifying crash root causes. It is essential in order to fix the original defects. For this purpose, we propose to use a binomial test to determine which type of patterns is the most appropriate to represent crash signatures. The improvement of software usability through customization and adaptation of systems to each user's specific needs requires a very good knowledge of how users use the software. In order to highlight the trends of use, we propose to group similar sessions into clusters. We compare 3 session representations as inputs of different clustering algorithms. The second contribution of our thesis concerns the dynamical monitoring of software use. We propose two methods -- based on different representations of input actions -- to address two distinct industrial issues: next action prediction and software crash risk detection. Both methodologies take advantage of the recurrent structure of LSTM neural networks to capture dependencies among our sequential data as well as their capacity to potentially handle different types of input representations for the same data.

Page generated in 0.0938 seconds