Spelling suggestions: "subject:"raman scattering"" "subject:"saman scattering""
181 |
Optical and Dielectric Properties of Sr(x)Ba(1-x)Nb(2)O(6)David, Calin Adrian 15 December 2004 (has links)
Several SBN-x crystals of different composition have been investigated using the following methods: Optical absorption in the band gap spectral region, optical absorption of the OH-stretch-mode in the near infrared, Raman scattering, pyroelectric and dielectric measurements.The band edge position depends on the crystal composition in a non-linear manner, thus showing band bowing, typical for mixed systems. A new method has been developed to increase the hydrogen content in the bulk. This doping depends on the composition in an almost linear manner. The observed OH stretch mode spectra have been deconvoluted into three sub bands which can be attributed to different sites in the lattice. The composition dependent spectra have been modelled with a few parameters, using different line shapes and both linear and quadratic dependences of the band position.Raman spectra of several crystals of different composition were recorded for four different scattering configurations. Changes for wave numbers below 500 have been found, but could not attributed to particular modes. A prominent feature at about 600 wave numbers was not disturbed by other modes allowing a decomposition and an assigned of this mode to a certain vibration. It was found that the behaviour of this mode is governed by the [Sr]/[Ba] ratio in the pentagonal channel of SBN-x.The ferroelectric relaxor phase-transition of SBN-x has been studied with pyroelectric measurements. From the nonlinear susceptibility as a function of temperature the phase-transition temperature was deduced using the inflection point. The non fully-linear dependence of the phase-transition temperature as a function of the [Sr]/[Ba] ratio can be explained by a system of three different sublattices for the Strontium and Barium atoms.First results obtained with a setup for measuring the dielectric constant confirmed already reported data of other groups.
|
182 |
Boson Mode, Dimensional Crossover, Medium Range Structure and Intermediate Phase in Lithium- and Sodium-Borate GlassesVignarooban, Kandasamy January 2012 (has links)
No description available.
|
183 |
Electrical and optical characterization of beta-Ga2O3Fiedler, Andreas 03 January 2020 (has links)
Diese Arbeit beschäftigt sich mit der Bewertung des Breitband-Halbleiters ß-Ga2O3 für die Hochleistungselektronik. Daher sind Schichten, die mit metallorganischer Gasphasenepitaxie (MOVPE) gewachsen sind, und Volumenkristalle, die mit der Czochralski-Methode gewachsen sind, elektrisch und optisch charakterisiert. Dabei werden die grundlegenden Eigenschaften des Materials untersucht und mit den theoretischen Vorhersagen verglichen. Der Einfluss und die Bildung von Defekten werden untersucht.
Zu Beginn zeigten die MOVPE-gewachsenen Schichten ungünstige elektrische Eigenschaften, da sie bei niedrigeren Dotierungskonzentrationen vollständig kompensiert wurden und bei höheren Ladungsträgerkonzentrationen eine geringere Ladungsträgerbeweglichkeit aufwiesen. Ein quantitatives Modell des schädlichen Einflusses inkohärenter Zwillingsgrenzen auf elektrische Eigenschaften wird entwickelt, das zeigt, dass die Verhinderung der Bildung von diesen der Schlüssel zur Verbesserung des Materials ist. Die Dichte der inkohärenten Zwillingsgrenzen wurde um 4 Größenordnungen reduziert, was zu einer verbesserten Ladungsträgerbeweglichkeit führte. Dies bietet eine vielversprechende Perspektive für den Einsatz von ß-Ga2O3 in zukünftiger Leistungselektronik.
Ramanspektroskopische Untersuchungen an hoch n-dotierten Kristallen zeigen die Bildung eines Störstellenbandes, geben Einblicke in die effektivmasseartige Donatornatur von Si und Sn und zeigen zusätzliche Raman-verbotene, longitudinale Phononen-Plasmonmoden durch Streuung durch Fluktuationen der freien Ladungsträgerdichte.
Die relative statische Dielektrizitätskonstante von ß-Ga2O3 senkrecht zu den Ebenen (100), (010) und (001) wird auf 10,2, 10,87 bzw. 12,4 bestimmt, die eine zuverlässige Grundlage für die Simulation und Konstruktion von Bauelementen bilden.
Die Erzeugung von heller, roter Elektrolumineszenz (EL) in Sperrrichtung betriebenen Schottky-Barrieredioden auf der Basis von mit Cr und Si co-dotierten Kristallen wird gezeigt. Die EL von Cr ist repräsentativ für die Fähigkeit, die lumineszierenden Zustände anderer Übergangsmetalle anzuregen. Solche lichtemittierenden Schottky-Barrieredioden können ein neues Anwendungsgebiet von ß-Ga2O3 eröffnen. / This thesis deals with the evaluation of the wide band gap semiconductor ß-Ga2O3 for high power electronics. Therefore, layers grown with metal-organic vapor phase epitaxy (MOVPE) and bulk crystals grown by Czochralski method are electrically and optically characterized. Hereby, the fundamental properties of the material are investigated and compared with the theoretical predictions. The influence and formation of defects are investigated.
At the beginning the MOVPE grown layers showed unfavorable electrical properties as they were fully compensated at lower doping concentrations and showed lowered mobility at higher charge carrier concentrations. A quantitative model of the detrimental influence of incoherent twin boundaries on electrical properties is developed showing that the prevention of the formation of these is the key to improve the material. The density of incoherent twin boundaries was reduced by 4 orders of magnitude resulting in improved charge carrier mobility. This provides a promising outlook for the use of ß-Ga2O3 in future power electronics.
Raman spectroscopic investigations of highly n-type doped crystals reveal the formation of an impurity band, give insight in the effective-mass like donor nature of Si and Sn, and show additional Raman forbidden, longitudinal phonon plasmon modes due to free-electronic-charge density fluctuations scattering.
The relative static dielectric constant of ß-Ga2O3 perpendicular to the planes (100), (010), and (001) is determined to 10.2, 10.87, and 12.4, respectively, which give a reliable basis for the simulation and design of devices.
The generation of bright, red electroluminescence (EL) in reverse biased Schottky barrier diodes based on crystals co-doped with Cr and Si is shown. The EL of Cr is representative of the ability to excite the luminescent states of other transition metals. Such light emitting Schottky barrier diodes may open up a new application field of ß-Ga2O3.
|
184 |
Investigation of device related material properties of β-Ga2O3 bulk crystals and homoepitaxial layersSeyidov, Palvan 14 February 2024 (has links)
Die zentrale wissenschaftliche Fragestellung dieser Arbeit ist die Bewertung von anwendungsorientierten (100) β-Ga2O3 Czochralski (Cz) gewachsenen Bulk-Kristallen und mit metallorganischer Gasphasenepitaxie (MOVPE) gewachsenen homoepitaktischen Schichten. Zur Charakterisierung der Kristalle wurden elektrische und optische Charakterisierungsmethoden angewandt. Die Ergebnisse der Untersuchungen lassen sich wie folgt zusammenfassen: Das Wachstum der Bulk-Kristalle erfolgt bevorzugt nach der Cz-Methode bei Temperaturen um 1800°C. Bei einer so hohen Temperatur ist der unbeabsichtigte Einbau von Verunreinigungen in den Kristall unvermeidlich, insbesondere von dem Übergangsmetall Iridium (Ir) aus den Ir-Tiegeln. In diesem Zusammenhang wurde resonante elektronischer Raman-Streuung (ERS) untersucht, die von Ir4+-Ionen in β-Ga2O3 aus der Cz-Züchtung stammt. Der beobachtete ERS-Peak bei 5150 cm-1 wird einem internen Übergang innerhalb des gespaltenen 2T2g-Grundzustands der Ir4+-Ionen zugeschrieben. Die optischen und elektrischen Eigenschaften von 3d-TM Co und Ni in β-Ga2O3 wurden experimentell und theoretisch untersucht. Optische Absorptionsspektroskopie, Messungen der Photoleitfähigkeit und Berechnungen der Ladungszustandsübergangsniveaus auf der Grundlage der Dichtefunktionaltheorie wurden kombiniert. Ein (+/0)-Donor-Niveau ~ 0,7 eV, ~ 1,3 eV oberhalb des Valenzband-Maximums und ein (0/-)-Akzeptor-Niveau ~ 2 eV, ~ 2,8 eV unterhalb des Leitungsband-Minimums wurden konsistent für Co- bzw. Ni-dotierte Kristalle abgeleitet. Aufgrund der mittleren Bandlückenposition des Akzeptorniveaus und des daraus resultierenden höheren extrapolierten Widerstandes bei Raumtemperatur schlagen wir vor, dass Co und Ni geeignete Kandidaten für die Kompensationsdotierung von halbisolierenden β-Ga2O3-Bulkkristallen sind. / The core scientific question of this thesis is the evaluation of device-related (100) β-Ga2O3 Czochralski (Cz) grown bulk crystals and metal-organic vapor phase epitaxy (MOVPE)-grown homoepitaxial layers. Electrical and optical characterization methods were applied to characterize the crystals. The findings of the investigations can be summarized as follows: The growth of the bulk crystals is preferentially performed by the Cz method at temperatures around 1800°C. At such a high temperature, the unintentional incorporation of impurities into the crystal is inevitable, especially transition metal iridium (Ir) from the Ir crucibles. In this respect, the observation of resonant electronic Raman scattering (ERS) originating from Ir4+ ions in bulk β-Ga2O3 grown by the Cz method was studied. The observed ERS peak at 5150 cm-1 is attributed to an internal transition within the split 2T2g ground state of Ir4+ ions. The optical and electrical properties of the 3d-TM Co and Ni in bulk β-Ga2O3 were experimentally and theoretically investigated. Optical absorption spectroscopy, photoconductivity measurements, and charge-state transition-level calculations based on density functional theory were combined. A (+/0) donor level ~ 0.7 eV, ~ 1.3 eV above the valence band maximum, and a (0/–) acceptor level ~ 2 eV, ~ 2.8 eV below the conduction band minimum are consistently derived for Co- and Ni- doped crystals, respectively. Based on the mid-band gap position of the acceptor level and the resulting higher extrapolated resistivity at room temperature, we propose Co and Ni are suitable candidates for compensation doping of semi-insulating β-Ga2O3 bulk crystal.
|
185 |
Implementation of second-order correlation spectroscopy (SOCOS) via all- Gaussian coherent Stokes and anti-Stokes Raman scatteringNagpal, Supriya 30 April 2021 (has links)
Powerful spectroscopic techniques increasingly involve nonlinear processes that arise due to the convolution of more than one electric field - input laser pulse. Analyzing the output of optical processes like these demands the utilization of deterministic improvement tools. Three-color coherent Raman scattering represents a complex non-degenerate four wave mixing process that includes contributions from both resonant and non-resonant interaction of the three input fields to generate a signal. In order to quantify these contributions, effective differentiation of the non- resonant (background) from the resonant (coherent signal) is required. These contributions can be differentiated based on how the molecular vibrational modes are being excited by the input pulses. The work described here demonstrates the ability of second-order correlation spectroscopy, applied along with an all-Gaussian theoretical model to analyze three color coherent Raman scattering processes. It is shown to discriminate between resonant versus non-resonant four wave mixing processes successfully. A robust, femtosecond/picosecond coherent Raman spectroscope is used to observe how the resonant signal builds up in a finite amount of time for different specimens and how it is can be controlled by input laser pulse shaping. A closed-form solution obtained via an all-Gaussian approach provides confirmatory theoretical proof of the experimental results obtained. This technique is used to study hydrogen bonding, which is a vital molecular interaction for bio-molecular systems and yet lacks a profound understanding of its ways of forming complexes. Furthermore, a novel second-order one-dimensional correlation function is introduced that replicates the results of the diagonal sum of the traditional synchronous two- dimensional correlation function, thus reducing a two-dimensional analysis to one-dimension. Along with the first demonstration of these analyses for coherent Raman scattering, a generalized approach is described, which opens up research opportunities to investigate these optical processes' dependence on multiple controlling parameters.
|
186 |
Development and Application of High-Speed Raman/Rayleigh Scattering in Turbulent Nonpremixed FlamesHoffmeister, Kathryn Nicole Gabet 15 May 2015 (has links)
No description available.
|
187 |
Broadband Coherent Anti-Stokes Raman Spectroscopy: A Comprehensive Approach to Analyzing Crystalline MaterialsHempel, Franz 03 January 2024 (has links)
Broadband Coherent Anti-Stokes Raman scattering (B-CARS) is an advanced Raman spectroscopy technique used to investigate the vibrational properties of materials. B-CARS combines the spectral sensitivity of spontaneous Raman scattering with the enhanced signal intensity of coherent Raman techniques. While B-CARS has been successfully applied in biomedicine for ultra-fast imaging of biological tissue, its potential in solid-state physics remains largely unexplored. This work delves into the challenges and adaptations necessary to apply B-CARS to crystalline materials and shows its potential as a powerful tool for high-speed, hyperspectral investigations.
The theoretical part of this work covers inelastic light-matter scattering fundamentals and the signal generation process of B-CARS, with special attention given to the so-called Non-Resonant Background (NRB). This sample-unspecific signal amplifies the B-CARS intensity but also distorts the shape and position of the measured spectral peaks.
A reliable NRB correction becomes crucial to retrieve precise spectral parameters containing information on the investigated material's crystallographic structure, defect density, and stress distribution.
The first results chapter presents a practical guideline for an optimized workflow of sample preparation, measurement procedure, and data analysis. The influences of sample surfaces, focus positioning, and polarization sensitivity are discussed. The successful NRB removal is achieved by adapting an algorithm initially designed for biomedical purposes.
The second chapter involves a transnational Round Robin investigating the same set of materials using different experimental setups. The influences of laser source, detection range, and transmission vs. epi detection are explored to optimize the experimental parameters.
This work showcases applications such as high-speed, hyperspectral imaging of ferroelectric domain walls in LiNbO3, demonstrating the potential of B-CARS in the cutting-edge field of domain wall engineering.
Additionally, imaging and polarization-sensitive measurements are shown for MoO3 flakes, paving the way for B-CARS investigations of 2D materials.
The final chapter presents advanced techniques, such as Three-Color CARS and Time-Delay CARS, applied to crystalline materials. Three-Color CARS is especially promising, as it enhances the signal intensity for low-frequency Raman modes, which are particularly interesting for solid-state physics compared to the usual large-shift modes investigated in biomedical research. Meanwhile, Time-Delay CARS is sensitive to relaxation processes of vibrational and NRB states, enabling experimental NRB removal and lifetime measurements. Additionally, a neural network-based NRB removal method is presented, eliminating the need for a prior NRB spectrum and offering rapid computation.
In summary, this work demonstrates the successful implementation of B-CARS for crystalline materials and provides a comprehensive guideline for the optimal experimental setup, workflow, and data processing. The application of B-CARS for imaging bulk crystalline materials, ferroelectric domain walls, and 2D structures shows promising possibilities for future research.
|
188 |
Phenotypic and Metabolic Profiling of Biological Samples in Near Real-Time Using Raman SpectroscopyZu, Theresah Nom Korbieh 22 October 2014 (has links)
Raman spectroscopy, together with multivariate statistical analyses, has proven to be a near real-time analytical technique capable of phenotyping cells, tissues and organs. This dissertation will show exclusively the application of the Raman spectroscopy phenotypic profiling method to; (i) microbial toxicity, (ii) ex-vivo organ perfusion, and (iii) subcellular location targeting.
Real-time analytical methods for monitoring living biological systems will enable study of the physiological changes associated with growth, genetic manipulations, and adverse environmental conditions. Most existing analytical methods (NMR exempt), though highly accurate, must be performed off-line and most require destruction of the studied sample. These attributes make these methodologies less desirable to the study of physiological changes of cells, tissues, and organs. In this work, Raman spectroscopy has been identified and shown to be a good candidate for real-time analysis mainly because it can be performed: (i) in near real-time, (ii) non-destructively and with minimal sample preparation, (iii) through a glass barrier (i.e., can be performed in situ), and (iv) with minimal spectral interference from water. Here, Raman spectroscopy was used in combination with multivariate statistics to analyze the differing toxic effects of 4-C chain alcohols on E. coli. Good correlations were established between Raman spectra and off-line analytical techniques used to measure: (i) saturated, unsaturated, and cyclopropane fatty acids; (ii) amino acid composition of total protein; and (iii) cell membrane fluidity. Also, Raman 'fingerprint' analysis was used to discriminate among different phenotypic responses of cells. In addition, this methodology was applied to analyze perfusates of organs maintained by the VasoWave® organ perfusion system. Raman fingerprints can be used to assess organ health, and it is believed this data can be used to inform decisions such as whether or not to transplant an organ.
Finally, molecular biology techniques were used to design and produce specific protein targets harboring a silver binding domain fusion, which upon release migrate to specific subcellular locations. By employing the related technique of surface-enhanced Raman scattering (SERS), which produces a highly amplified Raman signal in the presence of metallic nanoparticle substrates (e.g., silver nanoparticles), different regions of the E. coli cell structure were studied. The target regions studied by the technique included: (i) outer cell membrane, (ii) periplasm, and the (iii) cytoplasm. / Ph. D.
|
189 |
In situ Raman-Spektroskopie an Metallphthalocyaninen: Von ultradünnen Schichten zum organischen FeldeffekttransistorLudemann, Michael 06 July 2016 (has links) (PDF)
Im ersten Teil der Arbeit werden Signalverstärkungsmechanismen für Raman-Spektroskopie erschlossen und evaluiert. Die als geeignet bewerteten Methoden finden im zweiten Teil ihre Anwendung zur Untersuchung der vibronischen Eigenschaften von dünnen Manganphthalocyaninschichten, die anschließend mit Kalium interkaliert werden. Hierbei sind verschiedene Phasen identifizierbar, die ein ganzzahliges Verhältnis von Kaliumatomen zu Manganphthalocyaninmolekülen besitzen. Im dritten Teil werden die elektrischen Eigenschaften durch die Verwendung dieses Materialsystems als aktives Medium eines Feldeffekttransistors untersucht.
|
190 |
Oberflächenverstärkte Hyper-Raman-Streuung (SEHRS) und oberflächenverstärkte Raman-Streuung (SERS) für analytische AnwendungenGühlke, Marina 02 August 2016 (has links)
Hyper-Raman-Streuung folgt anderen Symmetrieauswahlregeln als Raman-Streuung und profitiert als nicht-linearer Zweiphotonenprozess noch mehr von verstärkten elektromagnetischen Feldern an der Oberfläche plasmonischer Nanostrukturen. Damit könnte die oberflächenverstärkte Hyper-Raman-Streuung (SEHRS) praktische Bedeutung in der Spektroskopie erlangen. Durch die Kombination von SEHRS und oberflächenverstärkter Raman-Streuung (SERS) können komplementäre Strukturinformationen erhalten werden. Diese eignen sich aufgrund der Lokalisierung der Verstärkung auf die unmittelbare Umgebung der Nanostrukturen besonders für die Charakterisierung der Wechselwirkung zwischen Molekülen und Metalloberflächen. Ziel dieser Arbeit war es, ein tieferes Verständnis des SEHRS-Effekts zu erlangen und dessen Anwendbarkeit für analytische Fragestellungen einzuschätzen. Dazu wurden SEHRS-Experimente mit Anregung bei 1064 nm und SERS-Experimente mit Anregung bei derselben Wellenlänge sowie mit Anregung bei 532 nm - für eine Detektion von SEHRS und SERS im gleichen Spektralbereich - durchgeführt. Als Beispiel für nicht-resonante Anregung wurden die vom pH-Wert abhängigen SEHRS- und SERS-Spektren von para-Mercaptobenzoesäure untersucht. Mit diesen Spektren wurde die Wechselwirkung verschiedener Silbernanostrukturen mit den Molekülen charakterisiert. Anhand von beta-Carotin wurden Einflüsse von Resonanzverstärkung im SEHRS-Experiment durch die gleichzeitige Anregung eines molekularen elektronischen Übergangs untersucht. Dabei wurde durch eine Thiolfunktionalisierung des Carotins eine intensivere Wechselwirkung mit der Silberoberfläche erzielt, sodass nicht nur resonante SEHRS- und SERS-Spektren, sondern auch nicht-resonante SERS-Spektren von Carotin erhalten werden konnten. Die Anwendbarkeit von SEHRS für hyperspektrale Kartierung in Verbindung mit Mikrospektroskopie wurde durch die Untersuchung von Verteilungen verschiedener Farbstoffe auf strukturierten plasmonischen Oberflächen demonstriert. / Hyper-Raman scattering follows different symmetry selection rules than Raman scattering and, as a non-linear two-photon process, profits even more than Raman scattering from enhanced electromagnetic fields at the surface of plasmonic nanostructures. Surface-enhanced hyper-Raman scattering (SEHRS) could thus gain practical importance for spectroscopy. The combination of SEHRS and surface-enhanced Raman scattering (SERS) offers complementary structural information. Specifically, due to the localization of the enhancement to the close proximity of the nanostructures, this information can be utilized for the characterization of the interaction between molecules and metal surfaces. The aim of this work was to increase the understanding of the SEHRS effect and to assess its applicability to answer analytical questions. For that purpose, SEHRS experiments with excitation at 1064 nm and SERS experiments with excitation at the same wavelength, as well as with excitation at 532 nm - to detect SEHRS and SERS in the same spectral region - were conducted. As an example for non-resonant excitation, pH-dependent SEHRS and SERS spectra of para-mercaptobenzoic acid were examined. Based on these spectra, the interaction of different silver nanostructures with the molecules was characterized. beta-Carotene was used to study the influence of resonance enhancement by the excitation of a molecular electronic transition during SEHRS experiments. By the thiol-functionalization of carotene, a more intense interaction with the silver surface was achieved, which enables to obtain not only resonant SEHRS and SERS but also non-resonant SERS spectra of carotene. Hyperspectral SEHRS imaging in combination with microspectroscopy was demonstrated by analyzing the distribution of different dyes on structured plasmonic surfaces.
|
Page generated in 0.1086 seconds