• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 8
  • 3
  • 1
  • 1
  • Tagged with
  • 26
  • 26
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Difusão anômala: transição entre os regimes localizado e estendido na caminhada do turista unidimensional / Anomalous Diffusion: Transition between the Localized and Extended Regimes in the One Dimensional Tourist Walk

Rodrigo Silva Gonzalez 05 September 2006 (has links)
Considere um meio desordenado formado por $N$ pontos cujas coordenadas são geradas aleatoriamente com probabilidade uniforme ao longo das arestas unitárias de um hipercubo de $d$ dimensões. Um caminhante, partindo de um ponto qualquer desse meio, se desloca seguindo a regra determinista de dirigir-se sempre ao ponto mais próximo que não tenha sido visitado nos últimos $\\mu$ passos. Esta dinâmica de movimentação, denominada caminhada determinista do turista, leva a trajetórias formadas por uma parte inicial transiente de $t$ pontos, e uma parte final cíclica de $p$ pontos. A exploração do meio se limita aos $t+p$ pontos percorridos na trajetória. O sucesso da exploração depende do valor da memória $\\mu$ do viajante. Para valores pequenos de $\\mu$ a exploração é altamente localizada e o sistema não é satisfatoriamente explorado. Já para $\\mu$ da ordem de $N$, aparecem ciclos longos, permitindo a exploração global do meio. O objetivo deste estudo é determinar o valor de memória $\\mu_1$ para o qual ocorre uma transição abrupta no comportamento exploratório do turista em meios unidimensionais. Procuramos também entender a distribuição da posição final do turista após atingir um estado estacionário que é atingido quando o turista fica aprisionado nos ciclos. Os resultados obtidos por simulações numéricas e por um tratamento analítico mostram que $\\mu_1 = \\log_2 N$. O estudo também mostrou a existência de uma região de transição com largura $\\varepsilon = e/ \\ln 2$ constante, caracterizando uma transição aguda de fase no comportamento exploratório do turista em uma dimensão. A análise do estado estacionário da caminhada em função da memória mostrou que, para $\\mu$ distante de $\\mu_1$, a dinâmica de exploração ocorre como um processo difusivo tradicional (distribuição gaussiana). Já para $\\mu$ próximo de $\\mu_1$ (região de transição), essa dinâmica segue um processo superdifusivo não-linear, caracterizado por distribuições $q$-gaussianas e distribuições $\\alpha$-estáveis de Lévy. Neste processo, o parâmetro $q$ funciona como parâmetro de ordem da transição. / Consider a disordered medium formed by $N$ point whose coordinates are randomly generated with uniform probability along the unitary edges of a $d$-dimensional hypercube. A walker, starting to walk from any point of that medium, moves following the deterministic rule of always going to the nearest point that has not been visited in the last $\\mu$ steps. This dynamic of moving, called deterministic tourist walk, leads to trajectories formed by a initial transient part of $t$ points and a final cycle of $p$ points. The exploration of the medium is limited to the $t+p$ points covered. The success of the exploration depends on the traveler\'s memory value $\\mu$. For small values of $\\mu$, the exploration is highly localized and the whole system remains unexplored. For values of $\\mu$ of the order of $N$, however, long cycles appear, allowing global exploration of the medium. The objective of this study is to determine the memory value $\\mu_1$ for which a sharp transition in the exploratory behavior of the tourist in one-dimensional media occurs. We also want to understand the distribution of the final position of the tourist after reaches a steady state in exploring the medium. That steady state is reached when the tourist is trapped in cycles. The results achieved by numerical simulations and analytical treatment has shown that $\\mu_1 = \\log_2 N$. The study has also shown the existence of a transition region, with a constant width of $\\varepsilon = e/ \\ln 2$, characterizing a phase transition in the exploratory behavior of the tourist in one dimension. The analysis of the walk steady state as a function of the memory has shown that for $\\mu$ far from $\\mu_1$, the exploratory dynamic follows a traditional diffusion process (with gaussian distribution). In the other hand, for $\\mu$ near $\\mu_1$ (transition region), the dynamic follows a non-linear superdiffusion process, characterized by $q$-gaussian distributions and Lèvy $\\alpha$-stable distributions. In this process, the parameter $q$ plays the role of a transition order parameter.
12

Analyse morphologique et modélisation pour l'optimisation structurelle d'électrodes / Morphological analysis and modelling for structural optimization of electrodes

Abdallah, Bassam 27 November 2015 (has links)
Ce travail, qui associe analyse d'image, modélisation morphologique et calculs par transformées de Fourier, s'inscrit dans la thématique classique de l'homogénéisation de milieux hétérogènes, et dans le cadre notoirement problématique de l'optimisation multifonctionnelle de matériaux multiphasiques. Les matériaux qui font l'objet de cette thèse, collecteur de courant et anode, sont des éléments critiques des piles à combustibles (PAC). Ce dispositif convertit une énergie chimique en électricité grâce à l'oxydation d'un combustible, et ne rejette que de l'eau. Les PAC développées dans le cadre du projet européen Evolve sont d'un type nouveau, combinant des architectures préexistantes. Leur performance est déterminée par la conductivité ionique et électronique d'une part, par la perméabilité et les surfaces d'échange entre phases solides et pores d'autre part. Dans le cas d'un contraste de propriétés infini entre les phases (pores et solide, milieux isolant et conducteur), les propriétés effectives dépendent fortement de la répartition spatiale (morphologie) des phases en présence. On s'intéresse, dans un premier temps, à la segmentation, à la description et à la modélisation 3D de couches de piles à combustible, à partir d'images 2D acquises en microscopie électronique à balayage. Les microstructures sont segmentées puis caractérisées par des descripteurs morphologiques. On développe des modèles de milieux aléatoires 3D multiphasiques représentatifs des milieux réels. Ceux-ci reposent sur des modèles Booléens et de Gaussiennes seuillées et sont paramétrés par des caractéristiques géométriques simples du matériau (fractions volumiques, covariances, échelles caractéristiques). Ils sont validés visuellement et quantitativement, à l'aide de données morphologiques. Dans un second temps, on s'intéresse à la prédiction des propriétés de transport, à l'aide d'outils numériques par transformées de Fourier. Un algorithme amélioré, qui s'affranchit de l'effet de Gibbs est proposé en conductivité et la méthode de Wiegman (2007) est utilisée en perméabilité. La perméabilité de milieux booléens idéaux est calculée puis comparée à divers estimateurs analytiques. La borne de Berryman-Milton, connue précédemment dans le cadre du milieu Booléen de sphères, est calculée analytiquement pour un milieu Booléen de cylindres à l'aide d'une formule exacte pour le covariogramme de cylindres. Les propriétés de conductivité ionique et électronique de l'anode, et sa perméabilité, sont ensuite prédites à l'aide des modèles de milieux aléatoires précédemment développés et validés. La perméabilité, particulièrement sensible à la morphologie, est calculée pour divers paramètres du modèle, dont les surfaces spécifiques entre phases solides et pores. Plusieurs matériaux virtuels aux propriétés améliorées sont proposés. / This work, which combines image analysis, Fourier methods and morphological models, focuses on the prediction and optimization of the transport properties of fuel cell materials in the classical framework of the homogenization of random media. The materials under study are critical layers found in fuel cells.These devices produce clean electrical energy (and water) from chemical fuel oxidation.The materials studied here are novel types of fuel cells that combine several preexisting architectures. Their performance is determined by the ionic and electronic conductivity, on the one hand, and by permeability and specific surfaces exchange between the solid and porous phases. For materials with highly-contrasted properties (pores and solid, isolating and conducting media), the effective properties strongly depend on the spatial arrangement (morphology) of the various phases.Fuel cell layers are first described and modeled using 2D scanning electron microscopy images and image analysis.Microstructures are characterized by morphological descriptors and realistic random 3D media, based on Boolean and Gaussian fields, are developed to represent the materials. The latter are parametrized by simple geometrical characteristics including volume fractions and covariances.They are visually and quantitatively validated using morphological data.Second, the transport properties are predicted numerically using Fourier methods. In conductivity, a modified algorithm is proposed to suppress the Gibbs artifacts. For permeability, the scheme of Wiegman (2007) is used.The permeability of ideal Boolean models is computed and compared with various analytical estimates.The Berryman-Milton bound, previously known for the Boolean model of spheres, is computed for a Boolean model of flat cylinders, using an analytical expression for cylinder covariogramm. The ionic and electronic conductivity of anode layers, and their permeability are predicted using previously developed models. The permeability, which strongly depends on the morphology, is computed for various values of the models' parameters, including the specific surface area between solid and phases.Several virtual materials with improved properties are proposed.
13

diffusion collective de lumière résonantes par des un nano-nuage d'atomes froids / collective scattering of near-resonant light by dense nano-clouds of cold atoms

Pellegrino, Joseph 28 October 2014 (has links)
Cette thèse présente une étude expérimentale des modifications des propriétés de diffusion résonante de la lumière par des nuages mésoscopiques de rubidium 87 froids dont la densité peut être variée. pour des densités de l’ordre de 1014 atomes/cm3, les distances entre certains atomes deviennent bien plus petites que la longueur d’onde du rayonnement à résonance avec la transition d2 (780 nm) du rubidium 87. l’ampleur des interactions dipôle-dipôle entre ces diffuseurs empêche alors de les considérer comme étant indépendants les uns des autres: on parle de diffusion collective. les méthodes employées pour produire les échantillons étudiés s’appuient sur des techniques de refroidissement (ralentisseur zeeman et piège magnéto-optique) et de piégeage (pinces optiques) d’atomes neutres permettant d’obtenir des ensembles d’atomes froids (environ 100 µK) allant d’exactement un à plusieurs centaines d’entre eux. les observations réalisées portent sur la lumière diffusée par ces atomes, collectée grâce à un système optique de grande ouverture numérique. l’étude consiste dans un premier temps en la caractérisation la diffusion résonante de lumière par un unique atome. elle aboutit notamment à la mesure du retard dans la diffusion par un atome d’un paquet d’ondes lumineuses, appelé délai de wigner, dans des conditions proches d’une expérience de pensée. dans un second temps, cette étude porte sur les propriétés de diffusion collective de lumière par des ensembles denses d’atomes. elle rapporte en particuliers une mesure de la suppression de l’excitation des nano-nuages en fonction de leur densité. / This thesis reports an experimental study of the modifications of the near-resonant light scattering properties of mesoscopic cold clouds of rubidium 87 which densities are tunable. for densities of the order of 1014 atoms/cm3, inter-atomic distances can be smaller than the wavelength of the radiation at resonance with the d2 line (780 nm) of rubidium 87. the magnitude of the dipole-dipole interactions between the scatters is such that they can no longer be considered as independent of each other: a phenomenon called collective scattering. the methods used to produce the studied samples are based on cooling (zeeman slower and magneto-optical trap) and trapping (optical tweezers) techniques for neutral atoms. they allow obtaining cold (100 µK) atomic ensembles containing from exactly one to several hundreds of atoms. the observations performed are based on the light scattered by these atoms which is collected thanks to a high numerical aperture optical system. in a first step, this study consists in characterizing the near-resonant light scattering by a single atom. it leads to the measurement of the delay in the scattering by an atom of a wave packet of light, called wigner delay, in conditions close to those of a gedanken experiment. in a second step, this study deals with the collective scattering of light by dense atomic ensembles. it especially reports a measurement of the suppression of the excitation of the nano-clouds versus their densities.
14

Assymptotische Eigenschaften im Wechselspiel von Diffusion und Wellenausbreitung in zufälligen Medien

Metzger, Bernd 24 May 2005 (has links) (PDF)
Thema der Dissertation ist die Untersuchung von asymptotischen Eigenschaften im Wechselspiel von Diffusion und Wellenausbreitung. Es geht um diskrete, zufällige Schrödingeroperatoren, die in die diskrete Wärmeleitungsgleichung eingefügt werden. Das Ensemble der Lösungen kann mit der vom diskreten Laplace erzeugten Irrfahrt in kontinuierlicher Zeit und der Feynman-Kac-Formel stochastisch interpretiert werden. So werden Methoden aus der Theorie der großen Abweichungen anwendbar. Neben dem stochastischen Zugang können die Schrödingeroperatoren auch spektraltheoretisch untersucht werden. In der Dissertation wird das Wechselspiel dieser beiden Herangehensweisen im Hinblick auf die asymptotischen Eigenschaften der Momente, der integrierten Zustandsdichte und der Korrelationsfunktion betrachtet.
15

Branched Flow and Caustics in Two-Dimensional Random Potentials and Magnetic Fields / Branched Flow und Kaustiken in zweidimensionalen Zufallspotentialen und Magnetfeldern

Metzger, Jakob Johannes 16 April 2010 (has links)
No description available.
16

Random Walks in Dirichlet Environments with Bounded Jumps

Daniel J Slonim (12431562) 19 April 2022 (has links)
<p>This thesis studies non-nearest-neighbor random walks in random environments (RWRE) on the integers and on the d-dimensional integer lattic that are drawn in an i.i.d. way according to a Dirichlet distribution. We complete a characterization of recurrence and transience in a given direction for random walks in Dirichlet environments (RWDE) by proving directional recurrence in the case where the Dirichlet parameters are balanced and the annealed drift is zero. As a step toward this, we prove a 0-1 law for directional transience of i.i.d. RWRE on the 2-dimensional integer lattice with bounded jumps. Such a 0-1 law was proven by Zerner and Merkl for nearest-neighbor RWRE in 2001, and Zerner gave a simpler proof in 2007. We modify the latter argument to allow for bounded jumps. We then characterize ballisticity, or nonzero liiting velocity, of transienct RWDE on the integers. It turns out that ballisticity is controlled by two parameters, kappa0 and kappa1. The parameter kappa0, which controls finite traps, is known to characterize ballisticity for nearest-neighbor RWDE on the d-dimensional integer lattice for dimension d at least 3, where transient walks are ballistic if and only if kappa0 is greater than 1. The parameter kappa1, which controls large-scale backtracking, is known to characterize ballisticity for nearest-neighbor RWDE on the one-dimensional integer lattice, where transient walks are ballistic if and only if the absolute value of kappa1 is greater than 1. We show that in our model, transient walks are ballistic if and only if both parameters are greater than 1. Our characterization is thus a mixture of known characterizations of ballisticity for nearest-neighbor one-dimensional and higher-dimensional cases. We also prove more detailed theorems that help us better understand the phenomena affecting ballisticity.</p>
17

Funções generalizadas, modelos de crescimento contínuos e discretos e caminhadas estocásticas em meios desordenados / Generalized functions, discrete and continuous growth models and stochastic walks on disordered media

Gonzalez, Rodrigo Silva 06 July 2011 (has links)
Este trabalho está divido em duas partes. Na primeira apresentamos as funções logaritmo e exponencial generalizadas. A partir delas uma grande variedade de outras funções generalizadas pode ser obtida, permitindo uma formulação única dos comportamentos oscilatório, exponencial e lei de potência, característicos dos principais fenômenos físicos. Também mostramos que é possível generalizar a função densidade de probabilidade (pdf) exponencial estendida (stretched exponential) e, a partir dela, uma vasta gama de outras pdfs, que caracterizam os sistemas complexos em Física. As funções logaritmo e exponencial generalizadas também são úteis na generalização de vários modelos contínuos de crescimento em uma formulação única: o modelo de crescimento generalizado de Tsoullaris e Wallace. O mesmo pode ser feito para modelos discretos de crescimento, obtendo, como modelo mais geral, o -Ricker generalizado. Encerrando a primeira parte, mostramos que a pdf gaussiana generalizada (um caso particular da exponencial estendida generalizada) é a solução da equação de difusão não-linear, que caracteriza a caminhada determinista do turista. Na segunda parte deste trabalho é apresentada a caminhada do turista e suas duas versões originais: a determinista (CDT) e a estocástica (CET). A primeira delas é uma caminhada parcialmente autorrepulsiva, caracterizada por uma memória , em um meio desordenado multidimensional formado por N pontos. Em um ambiente unidimensional, ela apresenta uma transição entre uma exploração local e outra global, em um valor bem definido de memória 1 = log2N. Em sua versão estocástica (da qual a CDT é um caso particular), a dinâmica de movimentação é regida pela memória e pela temperatura T, responsável, em última instância, pelas probabilidades de deslocamento. Da mesma forma que a CDT, a CET também apresenta uma transição entre os regimes de exploração, caracterizada por uma memória e uma temperatura críticas e pela idade Np da caminhada (efeito de envelhecimento). Dada a dificuldade em tratar analiticamente a CET, introduzimos a caminhada estocástica modificada do turista (CEMT). Nesta versão, o parâmetro T passa a representar o alcance máximo de um passo da caminhada. Esta modificação permitiu tratar analiticamente a caminhada, sendo possível obter uma expressão analítica geral para a transição, em função dos parâmetros , T e Np. Estes resultados foram validados por experimentos numéricos. / The present work is splitted into two parts. In the first one we present the generalized logarithm and exponential functions. From them, a wide variety of other generalized functions can be obtained, that allow a unique formulation of oscillatory, exponential an power-law behaviors, that characterize physical phenomena. We also show that it is possible to generalize the stretched exponential probability density function (pdf) and, from there, a wide range of other pdfs that characterize complex systems in Physics. The generalized logarithm and exponential functions are also useful to generalize several continuous growth models into a single formulation: the generalized Tsoullaris and Wallace growth model. The same can be done for discrete growth models, getting, as more general model, the generalized -Ricker growth model. Concluding the first part, we show that the generalized Gaussian pdf (a special case of the generalized stretched exponential) is a solution of the nonlinear diffusion equation, which is a characteristic of deterministic tourist walk. In the second part we present the tourist walk and its two original versions: the deterministic one (DTW) and stochastic one (STW). The first one is a partially self-avoiding walk over a disordered multidimensional medium formed by N points and characterized by a memory . In a one-dimensional environment, it presents a transition from a local exploration to a global one at a well-defined memory value 1 = log2N. In its stochastic version (from which DTW is a particular case), the movement dynamics is ruled by the memory and a temperature T which is responsible by the displacement probabilities. Similar to DTW, STW also has a transition between exploration schemes, characterized by a critical memory and temperature and the walking age (Np) (aging effect). Due the difficulty on analytical treatment of the CET, we introduced the modified stochastic tourist walk (MSTW). In this version, the parameter T plays the role of a maximum distance of one walking step. This modification allowed us to treat analytically the walk, being possible to obtain a general analytical expression for the transition, as function to the parameters , T and Np. These results were validated by numerical experiments.
18

Funções generalizadas, modelos de crescimento contínuos e discretos e caminhadas estocásticas em meios desordenados / Generalized functions, discrete and continuous growth models and stochastic walks on disordered media

Rodrigo Silva Gonzalez 06 July 2011 (has links)
Este trabalho está divido em duas partes. Na primeira apresentamos as funções logaritmo e exponencial generalizadas. A partir delas uma grande variedade de outras funções generalizadas pode ser obtida, permitindo uma formulação única dos comportamentos oscilatório, exponencial e lei de potência, característicos dos principais fenômenos físicos. Também mostramos que é possível generalizar a função densidade de probabilidade (pdf) exponencial estendida (stretched exponential) e, a partir dela, uma vasta gama de outras pdfs, que caracterizam os sistemas complexos em Física. As funções logaritmo e exponencial generalizadas também são úteis na generalização de vários modelos contínuos de crescimento em uma formulação única: o modelo de crescimento generalizado de Tsoullaris e Wallace. O mesmo pode ser feito para modelos discretos de crescimento, obtendo, como modelo mais geral, o -Ricker generalizado. Encerrando a primeira parte, mostramos que a pdf gaussiana generalizada (um caso particular da exponencial estendida generalizada) é a solução da equação de difusão não-linear, que caracteriza a caminhada determinista do turista. Na segunda parte deste trabalho é apresentada a caminhada do turista e suas duas versões originais: a determinista (CDT) e a estocástica (CET). A primeira delas é uma caminhada parcialmente autorrepulsiva, caracterizada por uma memória , em um meio desordenado multidimensional formado por N pontos. Em um ambiente unidimensional, ela apresenta uma transição entre uma exploração local e outra global, em um valor bem definido de memória 1 = log2N. Em sua versão estocástica (da qual a CDT é um caso particular), a dinâmica de movimentação é regida pela memória e pela temperatura T, responsável, em última instância, pelas probabilidades de deslocamento. Da mesma forma que a CDT, a CET também apresenta uma transição entre os regimes de exploração, caracterizada por uma memória e uma temperatura críticas e pela idade Np da caminhada (efeito de envelhecimento). Dada a dificuldade em tratar analiticamente a CET, introduzimos a caminhada estocástica modificada do turista (CEMT). Nesta versão, o parâmetro T passa a representar o alcance máximo de um passo da caminhada. Esta modificação permitiu tratar analiticamente a caminhada, sendo possível obter uma expressão analítica geral para a transição, em função dos parâmetros , T e Np. Estes resultados foram validados por experimentos numéricos. / The present work is splitted into two parts. In the first one we present the generalized logarithm and exponential functions. From them, a wide variety of other generalized functions can be obtained, that allow a unique formulation of oscillatory, exponential an power-law behaviors, that characterize physical phenomena. We also show that it is possible to generalize the stretched exponential probability density function (pdf) and, from there, a wide range of other pdfs that characterize complex systems in Physics. The generalized logarithm and exponential functions are also useful to generalize several continuous growth models into a single formulation: the generalized Tsoullaris and Wallace growth model. The same can be done for discrete growth models, getting, as more general model, the generalized -Ricker growth model. Concluding the first part, we show that the generalized Gaussian pdf (a special case of the generalized stretched exponential) is a solution of the nonlinear diffusion equation, which is a characteristic of deterministic tourist walk. In the second part we present the tourist walk and its two original versions: the deterministic one (DTW) and stochastic one (STW). The first one is a partially self-avoiding walk over a disordered multidimensional medium formed by N points and characterized by a memory . In a one-dimensional environment, it presents a transition from a local exploration to a global one at a well-defined memory value 1 = log2N. In its stochastic version (from which DTW is a particular case), the movement dynamics is ruled by the memory and a temperature T which is responsible by the displacement probabilities. Similar to DTW, STW also has a transition between exploration schemes, characterized by a critical memory and temperature and the walking age (Np) (aging effect). Due the difficulty on analytical treatment of the CET, we introduced the modified stochastic tourist walk (MSTW). In this version, the parameter T plays the role of a maximum distance of one walking step. This modification allowed us to treat analytically the walk, being possible to obtain a general analytical expression for the transition, as function to the parameters , T and Np. These results were validated by numerical experiments.
19

Modélisation morphologique et micromécanique 3D de matériaux cimentaires / 3D morphological and micromechanical modeling of cementitious materials

Escoda, Julie 30 April 2012 (has links)
Cette thèse porte sur la modélisation morphologique de matériaux cimentaires, et sur l'analyse de leurs propriétés linéaires élastiques. Dans cet objectif, des images 3D, obtenues par micro-tomographie, de matériaux cimentaires (mortier et béton) sont étudiées. Dans un premier temps, l'image de mortier est segmentée afin d'obtenir une image de microstructure réelle pour des calculs en élasticité linéaire. L'image de béton est utilisée, après traitement, pour la détermination des caractéristiques morphologiques du matériau. Un modèle aléatoire de béton est ensuite développé et validé par des données morphologiques. Ce modèle comporte trois phases qui correspondent à la matrice, les granulats et les pores. La phase des granulats est modélisée par implantation sans recouvrement de polyèdres de Poisson. Pour cela, un algorithme de génération vectorielle de polyèdres de Poisson est mis en place et validé par des mesures morphologiques. Enfin, les propriétés linéaires élastiques effectives de la microstructure de mortier et de microstructures simulées sont déterminées par méthode FFT (Fast-Fourier Transform), pour différents contrastes entre le module de Young des granulats et de la matrice. Cette étude des propriétés effectives est complétée par une analyse locale des champs dans la matrice, afin de déterminer l'arrangement spatial entre les zones de concentration de contraintes dans la matrice, et les différentes phases de la microstructure (granulats et pores). Une caractérisation statistique des champs est de plus réalisée, avec notamment le calcul du Volume Élémentaire Représentatif (VER). Une comparaison des propriétés élastiques effectives et locales obtenues d'une part sur une microstructure simulée contenant des polyèdres et d'autre part sur une microstructure contenant des sphères est de plus effectuée. / The goal of this thesis is to develop morphological models of cementitious materials and use these models to study their local and effective response. To this aim, 3D images of cementitious materials (mortar and concrete), obtained by micro-tomography, are studied. First, the mortar image is segmented in order to obtain an image of a real microstructure, to be used for linear elasticity computations. The image of concrete is used, after being processed, to determine various morphological characteristics of the material. A random model of concrete is then developed and validated by means of morphological data. This model is made up of three phases, corresponding to the matrix, aggregates and voids. The aggregates phase is modelled by implantation of Poisson polyhedra without overlap. For this purpose, an algorithm suited to the vector generation of Poisson polyhedra is introduced and validated with morphological measurements. Finally, the effective linear elastic properties of the mortar and other simulated microstructures are estimated with the FFT (Fast-Fourier Transform) method, for various contrasts between the aggregates and matrix' Young moduli. To complete this work, focused on effective properties, an analysis of the local elastic response in the matrix phase is undertaken, in order to determine the spatial arrangement between stress concentration zones in the matrix and the phases of the microstructure (aggregates and voids). Moreover, a statistical fields characterization, in the matrix, is achieved, including the determination of the Representative Volume Element (RVE) size. Furthermore, a comparison between effective and local elastic properties obtained from microstructures containing polyhedra and spheres is carried out.
20

Analýza limitů zobrazování multimodovými optickými vlákny / The analysis of limits for multimode fibre imaging

Štolzová, Hana January 2018 (has links)
Multimódová vlákna jsou zobrazovacím prostředkem s významným potenciálem v in-vivo mikroendoskopii. V poslední době tato metoda zaznamenala velký rozvoj, a to díky zdokonalování výpočetní a jiné techniky, například prostorové modulace světla. Cílem této práce bylo nalézt specifické limity zobrazování multimódovými vlákny a představit jejich počítačovou simulaci. Byl zkoumán vliv způsobu osvětlení optického systému obsahujícího multimódové vlákno na jeho schopnost fokusace a zobrazování. Analýzou dat získaných ze simulací a experimentu bylo zjištěno, že různá míra omezení Gaussovského svazku a plnění apertury multimódového vlákna má za následek významnou změnu zobrazovacích schopností systému. Při pozorování kvality fokusace bylo zjištěno, že nejlépe se projevují svazky málo omezené aperturou vlákna. Tento fakt byl potvrzen i experimentálním měřením. Zobrazování za použití svazků s podobnými hodnotami omezení (50%) projevovalo i nejlepší schopnost přenosu kontrastu. Avšak při analýze rozlišení dvou bodových objektů se jako nejvhodnější projevily svazky významně přeplňující numerickou aperturu vlákna, 100% a více. Přítomnost tohoto rozdílu poukazuje na skutečnost, že multimódové vlákno není zcela náhodné médium, ale propagace světla skrz multimódové vlákno projevuje znaky závislosti na vnějších zobrazovacích podmínkách, jako je například změna omezení osvětlovacího svazku. V této práci bylo představeno několik způsobů vyhodnocení kvality zobrazování pomocí multimódového vlákna. Každé z těchto kritérií podalo dílčí charakteristiku chování optického systému obsahujícího multimódové optické vlákno. Jednotlivé výsledky se neshodují na jednom konkrétním řešení a nutí osobu využívající zobrazovací systém obsahující multimódové vlákno ke zvážení několika aspektů, a to v jakém prostředí bude daný optický systém využívat a který parametr kvality zobrazení bude považovat za nejdůležitější.

Page generated in 0.0538 seconds