Spelling suggestions: "subject:"fandom number generator"" "subject:"mandom number generator""
41 |
Analyse d'accumulateurs d'entropie pour les générateurs aléatoires cryptographiques / Analysis of cryptographic random number generator and postprocessingJulis, Guenaëlle de 18 December 2014 (has links)
En cryptographie, l'utilisation de nombres aléatoires est fréquente (graine, token, ...) et une mauvaise génération d'aléa peut compromettre toute la sécurité d'un protocole, comme en témoigne régulièrement l'actualité. Les générateurs de nombres aléatoires à usage cryptographique sont des composants formés de trois modules : la source brute qui produit de l'aléa (un algorithme ou un phénomène physique), un retraitement pour corriger les défauts de la source, et un retraitement cryptographique pour obtenir l'aléa final. Cette thèse se focalise sur l'analyse des générateurs issus d'une source physique, en vue de dégager des retraitements adaptés à leurs propriétés et résistants à des perturbations de leur environnement d'utilisation. La complexité des dispositifs entravant souvent la formulation explicite d'un modèle stochastique prouvé, leur évaluation repose principalement sur une analyse statistique. Or, les tests statistiques, principale méthode recommandée par les institutions gouvernementales (ANSSI, BSI, NIST) pour certifier ces composants, peuvent détecter des anomalies mais ne permettent pas de les identifier, et de les caractériser. Les travaux de cette thèse structurent la modélisation d'une source d'aléa, vue comme une suite de variables aléatoires, affinent les tests statistiques, et ajoutent une analyse temporelle pour détecter et expliciter ses anomalies au niveau global ou local. Les résultats ont été implantés dans une librairie composée d'un simulateur de perturbations, des outils statistiques et temporels obtenus, des batteries de tests recommandées (FIPS, AIS31, Test U01, SP800), et de retraitements appropriés à certaines anomalies. La structure mise en place a permis d'extraire des familles d'anomalies de motifs dont les propriétés rendent certains tests incapables de distinguer la source anormale d'une source idéalement aléatoire. L'analyse des faiblesses inhérentes aux méthodes statistiques a montré que l'interprétation d'un test par intervalle de rejet ou taux de réussite n'est pas adapté à la détection de certaines fautes de transition. Elle a aussi permis d'étudier les méthodes d'estimations d'entropie, notamment les estimateurs proposés dans la norme SP800-90. Par ailleurs, les paramètres de spécifications de certains générateurs, dont un déduit du standard de chiffrement AES, se sont avérés distinguables grâce aux statistiques de test. Les outils temporels développés évaluent la structure des anomalies, leur évolution au cours du temps et analysent les motifs déviants au voisinage d'un motif donné. Cela a permis d'une part d'appliquer les tests statistiques avec des paramètres pertinents, et d'autre part de présenter des retaitements dont la validité repose sur la structure des anomalies et non sur leur amplitude. / While random numbers are frequently used in cryptography (seed, token, ...), news regurlarly prove how bad randomness generation can compromise the wole security of a protocol. Random number generators for crypthography are components with three steps : a source (an algorithm or physical phenomenon) produces raw numbers which are two times postprocessed to fix anomalies. This thesis focuses on the analysis of physical random bit generators in order to extract postprocessing which will be adapted to the anomalies of the source. As the design of a physical random bit generator is complex, its evaluation is mainly a statistical analysis with hypothesis testing. However, the current standards (AIS31, FIPS140-2, Test U01, SP800) can not provide informations to characterize anomalies. Thus, this thesis adjust several tests and add a time analysis to identify and to make global and local anomalies explicit. A C library was developped, providing anomalies simulator and tools to apply statistical and time analysis results on random bit generators.
|
42 |
Characterization and Stabilization of Transverse Spatial Modes of Light in Few-Mode Optical FibersPihl, Oscar January 2023 (has links)
With the growing need for secure and high-capacity communications, innovative solutions are needed to meet the demands of tomorrow. One such innovation is to make use of the still unutilized spatial dimension of light in communications, which has promising applications in both enabling higher data traffic as well as the security protocols of the future in quantum communications. The perhaps most promising way of realizing this technology is through spatial division multiplexing (SDM) in optical fibers. There are many challenges and open questions in implementing this, such as how perturbations to the signal should be kept under control and which type of optical fiber to use. Consequently, this thesis focuses on the implementation of SDM in few-mode fibers where the perturbation effects on the spatial distribution have been investigated. Following this investigation, an implementation of adaptive spatial mode control using a motorized polarization controller has been implemented. The mode control has been done with the focus on having relevance for quantum technology applications such as Quantum Key Distribution (QKD) and quantum random number generation (QRNG) but also for spatial division multiplexing (SDM) for general communications. For this reason, two evaluation metrics have been optimized for: extinction ratio and equal amplitude. The control algorithm used is an adaptation of the optimization algorithm Stochastic Parallel Gradient Descent (SPGD). Control has been achieved in stabilizing the extinction ratio of LP11a and LP11b over 12 hours with an average extinction ratio of 98 %. Additionally, equal amplitude between LP11a and LP11b has been achieved over 1 hour with an average relative difference of 0.42 % and 0.45 %. Out of the perturbation effects investigated; temperature caused large disturbances to the signal which later is corrected for with the implemented algorithm.
|
43 |
<b>Probabilistic Computing Through Integrated Spintronic Nanodevices</b>John Arnesh Divakaruni Daniel (20360574) 10 January 2025 (has links)
<p dir="ltr">Probabilistic computing is a novel computing scheme that offers a more efficient approach than conventional complimentary metal-oxide-semiconductor (CMOS)-based logic in a variety of applications ranging from Bayesian inference to combinatorial optimization, and invertible Boolean logic. These applications, which have found use in the rapidly growing fields of machine learning and artificial intelligence, are traditionally computationally-intensive and so make the push for novel computing schemes that are intrinsically low-power and scalable all the more urgent.</p><p dir="ltr">The probabilistic bit (or p-bit, the base unit of probabilistic computing) is a naturally fluctuating entity that requires <i>tunable </i>stochasticity; low-barrier nanomagnets, in which the magnetic moment fluctuates randomly and continuously due to the presence of thermal energy, are a natural vehicle for providing the core functionality required. This dissertation describes the work done in mining the rich field of spintronics to produce devices that can act as natural hardware accelerators for probabilistic computing algorithms.</p><p dir="ltr">First, experiments exploring Fe<sub>3</sub>O<sub>4</sub> nanoparticles as naturally stochastic systems are presented. Using NV center measurements on an array of such nanoparticles, it is shown that they fluctuate intrinsically at GHz frequencies at room temperature; these fluctuations could be harnessed to act as a stochastic noise source, and would, in principle, enable fast computation.</p><p dir="ltr">The focus then shifts to the development of a platform that allows for easier <i>electrical</i> readout: the low-barrier magnetic tunnel junction (MTJ). We show the work done in the development and characterization of these devices, how they respond to non-ideal environments, such as elevated temperatures and exposure to high-energy electromagnetic radiation, how their intrinsic stochasticity might be tuned with electrical currents and external magnetic fields, and then how these might be integrated with a simple transistor circuit to produce a compact low-energy implementation of a p-bit.</p><p dir="ltr">Next, by integrating our stochastic MTJs with 2D-MoS<sub>2</sub><sup> </sup>field-effect transistors (FETs), the first <i>on-chip </i>realization of a key p-bit building block, displaying voltage-controllable stochasticity, is demonstrated. This is followed by another key demonstration through the fabrication of stochastic MTJs directly on top of an integrated circuit platform, where the transistor circuitry is provided by 180nm-node CMOS technology.</p><p dir="ltr">In addition, supported by circuit simulations, this work provides a careful device-level analysis of the three transistor-one magnetic tunnel junction (3T-1MTJ) p-bit design, evaluating how the characteristics of each component can influence the overall p-bit’s output. In particular, we show that – against common wisdom – a large tunnel magnetoresistance (TMR) is not the best choice for p-bits; bimodal telegraphic fluctuations are highly undesirable and are a sign of a slow device; and an ideal inverter with a large gain is unsuitable for p-bit applications due to the higher likelihood of unwanted plateaus in the resulting p-bit’s output.</p><p dir="ltr">This analysis is extended to consider the impact of such non-ideal p-bits when used to construct probabilistic circuits, with the focus on the emulation of the Boolean logic AND gate through a three p-bit correlated system. It is found that a probabilistic circuit made with ideal p-bits can accurately emulate the function of an AND gate, while the non-ideal p-circuits suffer from an increased error rate in emulating the AND gate’s truth table.</p><p dir="ltr">The understanding gained at the individual device level, in what makes a good or bad MTJ, to how the different components of the 3T-1MTJ p-bit can affect its output, and subsequently how non-ideal p-bits can impact circuit performance, can be important for the future realization of scaled on-chip p-bit networks.</p>
|
44 |
Protocols and components for quantum key distributionLeifgen, Matthias 24 March 2016 (has links)
In dieser Doktorarbeit werden zwei Konzepte der Quanteninformationsverarbeitung realisiert. Der Quantenschlüsselaustausch ist revolutionär, weil er perfekte Sicherheit gewährleistet. Zahlreiche Quantenkryptografieprotokolle wurden schon untersucht. Zwei Probleme bestehen. Zum einen ist es sehr schwer, die Bedingungen herzustellen, die in den Annahmen für perfekte Sicherheit impliziert sind. Zum anderen sind die Reichweiten auf momentan etwa 200 km begrenzt, aufgrund des abnehmenden Signals gegenüber des konstanten Rauschens. Ein Experiment dieser Doktorarbeit beschäftigt sich mit dem ersten Problem. Insbesondere der übertragene Quantenzustands ist kritisch für die Sicherheit des Verfahrens. Es werden Einzelphotonen von Stickstoff- Fehlstellen-Zentren und zum ersten Mal von Silizium-Fehlstellen-Zentren für einen Quantenschlüsselaustausch mit Hilfe des BB84-Protokolls benutzt. Die Abweichung von idealen Einzelphotonenzuständen sowie deren Bedeutung für die Sicherheit werden analysiert. Die Übertragung von Quantenzuständen via Satellit könnte das Problem der begrenzten Reichweite lösen. Das neue Frequenz-Zeit- Protokoll eignet sich dafür besonders gut. Es wird während dieser Arbeit zum ersten Mal überhaupt implementiert. Umfangreiche Untersuchungen inklusive der Variation wesentlicher experimenteller Parameter geben Aufschluss über die Leistungsfähigkeit und Sicherheit des Protokolls. Außerdem werden elementare Bestandteile eines vollautomatischen Experiments zum Quantenschlüsselaustausch über Glasfasern in der sogenannten Time-bin-Implementierung mit autonomem Sender und Empfänger realisiert. Ein anderes Konzept der Quanteninformationsverarbeitung ist die Herstellung zufälliger Bitfolgen durch den Quantenzufall. Zufällige Bitfolgen haben zahlreiche Anwendungsgebiete in der Kryptografie und der Informatik. Die Realisierung eines Quantenzufallszahlengenerators mit mathematisch beschreibbarer und getesteter Zufälligkeit und hoher Bitrate wird ebenfalls beschrieben. / In this thesis, photonic quantum states are used for experimental realisations of two different concepts of quantum information processing. Quantum key distribution (QKD) is revolutionary because it is the only cryptographic scheme offering unconditional security. Two major problems prevail: Firstly, matching the conditions for unconditional security is challenging, secondly, long distance communication beyond 200 km is very demanding because an increasingly attenuated quantum state starts to fail the competition with constant noise. One experiment accomplished in this thesis is concerned with the first problem. The realisation of the actual quantum state is critical. Single photon states from nitrogen and for the first time also silicon vacancy defect centres are used for a QKD transmission under the BB84 (Bennett and Brassard 1984). The deviation of the used single photon states from the ideal state is thoroughly investigated and the information an eavesdropper obtains due to this deviation is analysed. Transmitting quantum states via satellites is a potential solution to the limited achievable distances in QKD. A novel protocol particularly suited for this is implemented for the first time in this thesis, the frequency-time (FT) protocol. The protocol is thoroughly investigated by varying the experimental parameters over a wide range and by evaluating the impact on the performance and the security. Finally, big steps towards a fully automated fibre-based BB84 QKD experiment in the time-bin implementation with autonomous sender and receiver units are accomplished. Another important concept using quantum mechanical properties as a resource is a quantum random number generator (QRNG). Random numbers are used for various applications in computing and cryptography. A QRNG supplying bits with high and quantifiable randomness at a record-breaking rate is reported and the statistical properties of the random output is thoroughly tested.
|
Page generated in 0.2751 seconds