• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 156
  • 26
  • 18
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 232
  • 232
  • 76
  • 57
  • 40
  • 34
  • 32
  • 29
  • 22
  • 22
  • 22
  • 21
  • 21
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Atratores para equações de reação-difusão em domínios arbitrários / Attractors for reaction-diffusion equations on arbitrary domains

Costa, Henrique Barbosa da 18 April 2012 (has links)
Neste trabalho estudamos a dinâmica assintótica de uma classe de equações diferenciais de reação-difusão definidas em abertos de \'R POT. 3\' arbitrários, limitados ou não, com condições de fronteira de Dirichlet. Utilizando a técnica de estimativas de truncamento, como nos artigos de Prizzi e Rybakowski, mostramos a existência de atratores globais / In this work we study the asymptotic behavior of a class of semilinear reaction-diffusion equations defined on an arbitrary open set of R3, bounded or not, with Dirichlet boundary conditions. Using the tail-estimates technic based on papers of Prizzi and Rybakowski, we prove existence of global attractors
122

Non-perturbative renormalisation group approach to some out of equilibrium systems : diffusive epidemic process and fully developped turbulence / Approche par le groupe de renormalisation non-perturbatif des systèmes hors-équilibres : processus de diffusion épidémique et turbulence pleinement développée

Tarpin, Malo 20 November 2018 (has links)
Cette thèse porte sur l'étude de deux systèmes critiques hors-équilibre par les outils du groupe de renormalisation non-perturbatif (NPRG).Le premier système est le processus de diffusion épidémique, qui modèle la propagation d'une épidémie avec guérison sans immunisation. Ce modèle exhibe une transition de phase continue lorsque l'épidémie subit une extinction. Nous avons utilisé une approximation du NPRG nommée l'approximation du potentiel local modifiée pour l'étude cette transition de phase. Nous avons été conduit à nous interroger sur les résultats antérieurs, obtenus dans le cadre du groupe de renormalisation perturbatif. En particulier, l'appartenance de cette transition de phase à la classe d'universalité de la percolation dirigée avec quantité conservée en basse dimension est remise en question.Le second système est la turbulence pleinement développée isotrope et homogène, décrite par l'équation de Navier-Stokes. L'état stationnaire de ce système dissipatif possède une cascade d'énergie dont la phénoménologie est typique des systèmes invariants d'échelle, tel qu'un spectre d'énergie en loi de puissance. Une examen plus approfondie révèle que l'invariance d'échelle est brisée de manière subtile, ce qui donne lieu à des phénomènes d'intermittence. Nous avons utilisé un développement à grand nombre d'onde du NPRG pour étudier la dépendance temporelle des fonctions de corrélations dans ce système et la possibilité d''intermittence dans la cascade directe en turbulence bidimensionnelle. / This thesis focus on the study of two critical systems out of equilibrium using the tools of the non-perturbative renormalization group (NPRG).The first system is the diffusive epidemic process. This stochastic process models the propagation of an epidemic within a population, where the infected individuals recover without immunization. This model exhibit a phase transition when the epidemic goes extinct. The study consisted in applied an approximate form of the NPRG named the modified local potential approximation to this transition. It led us to take a new look at the standard lore for this model, obtained through a perturbative renormalization group analysis. In particular, whether the phase transition belongs to the universality class of the directed percolation with a conserved quantity is called into question.The second system is fully developed homogeneous isotropic turbulence, as described by the Navier-Stokes equation. The stationary state of this driven-dissipative system shows a energy cascade whose phenomenology is typical of scale-invariant systems. A more in depth examination disclose that scale invariance is broken in a subtle way. This is the origin of intermittence phenomena in turbulence. We used a large wave-number expansion of the NPRG to study the temporal dependency of correlation functions in this system and whether the direct cascade in bidimensional turbulence could develop intermittency.
123

Processus de diffusion et réaction dans des milieux complexes et encombrés / Diffusion-reaction processes in complex and crowded environments

Galanti, Marta 12 February 2016 (has links)
L'objectif général de cette thèse est d'analyser les processus de diffusion et les processus de réaction-diffusion dans plusieurs types de conditions non-idéales, et d'identifier dans quelle mesure ces conditions non idéales influencent la mobilité des particules et les réactions entre les molécules. Dans la première partie de la thèse, nous nous concentrons sur les effets de l'encombrement macromoléculaire sur la mobilité, ainsi élaborant une description des processus de diffusion dans des milieux densément peuplés. Tous les processus sont analysés à partir de la description microscopique du mouvement des agents individuels sous forme de marche aléatoire, tenant compte de l'espace occupé par les particules voisines. La deuxième partie de la thèse vise à caractériser le rôle de la géométrie de l'environnement et de la réactivité des corps qui y sont contenus sur la réaction entre des molécules sélectionnées. La théorie classique de Smoluchowski, formulée pour les réactions contrôlées par la diffusion dans un milieu dilué, est ainsi adaptée à des domaines arbitrairement décorés par des obstacles, dont certains réactifs, et l'équation stationnaire de diffusion est résolue avec des techniques d’analyse harmonique. Finalement, le calcul explicit de la constante de réaction et la dérivation des formules approximées sont utilisés pour étudier des applications biologiques et nano-technologiques. / The overall purpose of this thesis is to analyze diffusion processes and diffusion-reaction processes in different types of non-ideal conditions, and to identify to which extent these non-ideal conditions influence the mobility of particles and the rate of the reactions occurring between molecules. In the first part of the thesis we concentrate on the effects of macromolecular crowding on the mobility of the agents, providing therefore a description of various diffusion processes in densely populated media. All the processes are analyzed by modeling the dynamics of the single agents as microscopic stochastic processes that keep track of the macromolecular crowding. The second part of the thesis aims at characterizing the role of the environment’s geometry (obstacles, compartmentalization) and distributed reactivity (competitive reactants, traps) on the reaction between selected molecules. The Smoluchowski theory for diffusion influenced reactions is thus adapted to domains arbitrarily decorated with obstacles and reactive boundaries, and the stationary diffusion equation is explicitly solved through harmonic-based techniques. The explicit calculation of the reaction rate constant and the derivation of simple approximated formulas are used for investigating nano-technological applications and naturally occurring reactions.
124

Méthodes numériques adaptives pour la simulation de la dynamique de fronts de réaction multi-échelle en temps et en espace / Adaptive numerical methods in time and space for the simulation of multi-scale reaction fronts.

Duarte, Max Pedro 09 December 2011 (has links)
Nous abordons le développement d'une nouvelle génération de méthodes numériques pour la résolution des EDP évolutives qui modélisent des phénomènes multi-échelles en temps et en espace issus de divers domaines applicatifs. La raideur associée à ce type de problème, que ce soit via le terme source chimique qui présente un large spectre d'échelles de temps caractéristiques ou encore via la présence de fort gradients très localisés associés aux fronts de réaction, implique en général de sévères difficultés numériques. En conséquence, il s'agit de développer des méthodes qui garantissent la précision des résultats en présence de forte raideur en s'appuyant sur des outils théoriques solides, tout en permettant une implémentation aussi efficace. Même si nous étendons ces idées à des systèmes plus généraux par la suite, ce travail se focalise sur les systèmes de réaction-diffusion raides. La base de la stratégie numérique s'appuie sur une décomposition d'opérateur spécifique, dont le pas de temps est choisi de manière à respecter un niveau de précision donné par la physique du problème, et pour laquelle chaque sous-pas utilise un intégrateur temporel d'ordre élevé dédié. Ce schéma numérique est ensuite couplé à une approche de multirésolution spatiale adaptative permettant une représentation de la solution sur un maillage dynamique adapté. L'ensemble de cette stratégie a conduit au développement du code de simulation générique 1D/2D/3D académique MBARETE de manière à évaluer les développements théoriques et numériques dans le contexte de configurations pratiques raides issue de plusieurs domaines d'application. L'efficacité algorithmique de la méthode est démontrée par la simulation d'ondes de réaction raides dans le domaine de la dynamique chimique non-linéaire et dans celui de l'ingénierie biomédicale pour la simulation des accidents vasculaires cérébraux caractérisée par un terme source "chimique complexe''. Pour étendre l'approche à des applications plus complexes et plus fortement instationnaires, nous introduisons pour la première fois une technique de séparation d'opérateur avec pas de temps adaptatif qui permet d'atteindre une précision donnée garantie malgré la raideur des EDP. La méthode de résolution adaptative en temps et en espace qui en résulte, étendue au cas convectif, permet une description consistante de problèmes impliquant une très large palette d'échelles de temps et d'espace et des scénarios physiques très différents, que ce soit la propagation des décharges répétitives pulsées nanoseconde dans le domaine des plasmas ou bien l'allumage et la propagation de flammes dans celui de la combustion. L'objectif de la thèse est l'obtention d'un solveur numérique qui permet la résolution des EDP raides avec contrôle de la précision du calcul en se basant sur des outils d'analyse numérique rigoureux, et en utilisant des moyens de calculs standard. Quelques études complémentaires sont aussi présentées comme la parallélisation temporelle, des techniques de parallélisation à mémoire partagée et des outils de caractérisation mathématique des schémas de type séparation d'opérateur. / We tackle the development of a new generation of numerical methods for the solution of time dependent PDEs modeling general time/space multi-scale phenomena issued from various application fields. This type of problem induces well-known numerical restrictions and potentially large stiffness, which stem from the broad spectrum of time scales in the nonlinear chemical terms as well as from steep, spatially very localized, spatial gradients in the reaction fronts. Therefore, dedicated numerical strategies are needed to ensure the accuracy of the numerical approximations from a theoretical point of view, taking also into account adequate practical implementations to reduce computational costs. In order to cope with these problems, this study introduces a few mathematical and numerical elements for the solution of stiff reaction-diffusion systems, extensible in practice to more general configurations. The core of the numerical strategy is thus based on a specially conceived operator splitting method with dedicated high order time integration schemes for each subproblem. An appropriate choice of splitting time steps allows us the simulation of the solution within a prescribed accuracy, according to the overall physics of the problem. The resulting numerical scheme is properly coupled with an adaptive multiresolution technique for dynamic spatial mesh representations of the solution. Such an approach has led to the conception of the academic, generic 1D/2D/3D MBARETE code in order to evaluate the proposed theoretical and numerical developments in practical stiff configurations arising in several research fields. The algorithmic efficiency of the method is assessed by the simulation of propagating stiff reaction waves issued from nonlinear chemical dynamics and from biomedical engineering applications for a brain stroke model with "detailed chemical mechanisms''. Moreover, in order to extend the applicability of the method to more complex and unsteady problems, we consider for the first time a time adaptive splitting scheme for stiff PDEs, that yields dynamic time stepping within the prescribed accuracy. The fully time/space adaptive method allows us then a consistent description of reaction-diffusion-convection problems disclosing a broad spectrum of time/space scales as well as different physical scenarios, such as highly nanosecond repetitively pulsed discharges or self-ignition and propagation of flames for, respectively, plasma and combustion applications. The main goal of this work is hence to numerically solve stiff PDEs with reasonable, standard computational resources and based on a mathematical background that ensures robust, general and accurate numerical schemes. Further studies are also presented that include time parallelization strategies, parallel computing techniques for shared memory architectures and complementary mathematical characterization of splitting schemes.
125

Aplicações de semigrupos em sistemas de reação-difusão e a existência de ondas viajantes / Semigroup applications to reaction-diffusion equations and travelling wave solutions existence

Silva, Juliana Fernandes da 16 August 2010 (has links)
Sistemas de reação-difusão têm sido largamente estudados em diferentes contextos e através de diferentes métodos, motivados pela sua constante aparição em modelos de interação em contextos químicos, biológicos e ainda em fenômenos ecológicos. Neste trabalho nos propomos a estudar existência e unicidade - tanto do ponto de vista local como global - de soluções para uma classe de sistemas de reação-difusão acoplados, denidos em R^2, utilizando como ferramenta a teoria de semigrupos de operadores lineares. Apresentamos dois importantes exemplos: o modelo de Rosenzweig-MacArthur e um particular caso da classe de equações lambda-omega. Para o primeiro obtemos um resultado de existência e unicidade global utilizando um método de comparação envolvendo sub e super-soluções. Investigamos ainda a existência de soluções de ondas viajantes periódicas através do teorema de Bifurcação de Hopf. Já para o caso da equação lambda-omega obtemos a existência e unicidade de solucões, entretanto, a partir da aplicação da teoria de semigrupos de operadores lineares. / Reaction-diffusion systems have been widely studied in a broad variety of contexts in a large amount of disctinct approaches. It is due firstly by their constant appearance in interaction models in disciplines such as chemistry, biology and, more specific, ecology. The aim of this thesis is to provide an existence-uniqueness result - both from the local as well as from the global point of view - for solutions of a particular class of coupled reaction-diffusion systems defined over R^2. It is done applying the well established theory of semigroups of linear operators. Two remarkable examples of such systems are discussed: the Rosenzweig-MacArthur predator-prey model and a special case of lambda-omega class of equations. For the former one, an existence and uniqueness result is obtained through a comparison method - based on the notions of lower and upper solutions. Moreover, we investigate the existence of periodic travelling wave solutions via a Hopf bifurcation theorem. For the lambda-omega model another existence and uniqueness for solutions is obtained, on its turn, through the machinery obtained previously from the theory of semigroups for linear operators.
126

Numerical Methods and Analysis for Degenerate Parabolic Equations and Reaction-Diffusion Systems

Ruiz Baier, Ricardo 26 November 2008 (has links) (PDF)
.
127

Modélisation et simulation de l'activité électrique du coeur dans le thorax, analyse numérique et méthodes de volumes finis

PIERRE, Charles 20 September 2005 (has links) (PDF)
Cette thèse s'inscrit dans le cadre de la modélisation en bio-mathématiques et dans celui de l'analyse numérique et du calcul scientifique. Le modèle bidomaine décrit l'activité électrique du coeur. Cette activité est complexe : elle relève à l'échelle cellulaire de processus biochimiques et à l'échelle macroscopique de la structure anisotrope des tissus cardiaques, des caractéristiques du thorax. Une application fondamentale du modèle est la simulation d'électrocardiogrammes. Des méthodes de calcul type volumes finis sont développées pour la résolution du modèle. Dans un premier temps, la stabilité et la convergence de schémas volumes finis classiques est établie, en théorie et numériquement, pour une version simplifiée du modèle bidomaine. Pour faire face à des difficultés conceptuelles et pratiques du modèle complet (anisotropie des tissus, conditions limites, maillages non structurés distordus), une seconde classe de schémas 2D-3D, cell-vertex centered, est mise au point et testée.
128

Dynamique et instabilités des filaments de spirales tridimensionnels dans les milieux excitables isotropes

Henry, Hervé 17 December 2001 (has links) (PDF)
On caractérise les milieux excitables par le fait qu'ils présentent un point d'équilibre linéairement stable et qu'une perturbation finie peut entraîner une longue excursion dans l'espace des phases. Les comportements de tels milieux sont en général bien approchés par des modèles simplifiés de réaction-diffusion a deux variables. Des exemples de milieux excitables sont le coeur, les axones neuronaux et la réaction de Belousov-Zhabotinsky dans les gels. On peut y observer des ondes d'excitation planes et spirales. Ce mémoire est consacré à l'étude numérique de la dynamique des filaments (ondes spirales empilées le long du filament) d'ondes spirales, éventuellement twistés, dans les milieux excitables. Dans un premier temps on calcule les états stationnaires par une méthode de Newton, puis on étudie la stabilité linéaire de ces états vis à vis de perturbations modulées suivant l'axe du filament par une méthode itérative, enfin on détermine les états restabilisés, quand ils existent, à l'aide de simulations numériques directes. L'étude des filaments non twistés met en évidence deux instabilités distinctes. L'une due à la déstabilisation de la branche de méandre (modulation périodique du rayon de rotation de la spirale) aboutit à un état restabilisé que nous caractérisons précisément. Cette instabilité correspond à une bifurcation de Hopf. L'autre correspond à une déstabilisation des modes de translation et aboutit à un état désordonné. L'étude de l'influence du twist sur la dynamique des filaments de spirales montre que le twist induit une déstabilisation des modes de translation à nombre d'onde fini. Cette bifurcation de Hopf correspond à la transformation du twist imposé au filament en Writhe (déformation géométrique). Le filament prend, dans les cas simples, une forme hélicoïdale. Dans des cas plus compliqués il prend une forme invariante dans le temps qui est la somme de plusieurs hélices. Une analogie avec une tige élastique soumise à la torsion est présentée.
129

Conception de dynamiques spatio-temporelles avec des circuits d'ADN

Padirac, Adrien 28 November 2012 (has links) (PDF)
L'ADN est reconnu depuis longtemps comme une des molécules fondamentales des organismes vivants. Support de l'information génétique, la molécule d'ADN possède aussi des propriétés qui en font un matériel de choix pour construire à l'échelle nanométrique. Deux simples brins d'ADN complémentaires et antiparallèles (c.à.d. de directivité opposée) peuvent, par exemple, s'hybrider s'ils se rencontrent en solution, c'est à dire s'associer l'un à l'autre. La cohésion de la molécule " double-brin " ainsi formée est maintenue par une série de liaisons faibles entre les bases complémentaires de chaque brin. Cette réaction d'hybridation de l'ADN est réversible : un double-brin stable à basse température retrouvera l'état simple-brin à plus haute température. Notre capacité à lire (séquencer) et écrire (synthétiser) l'ADN est à l'origine de l'émergence du domaine des nanotechnologies ADN. Cette capacité à prévoir quantitativement les interactions (cinétiques et thermodynamiques) entre deux partenaires moléculaires quels qu'ils soient est propre à l'ADN : on peut facilement synthétiser deux molécules de même taille et nature, de manière à ce qu'elles interagissent - ou non - selon la séquence qui leur est propre. Il existe aussi toute une batterie d'enzymes capables de catalyser différentes réactions au sein d'un brin d'ADN ou entre deux brins d'ADN, par exemple : une polymérase catalyse la synthèse d'un brin d'ADN à partir de son complémentaire ; une nickase coupe un seul des deux brins d'une molécule double-brin à un emplacement spécifique ; une exonucléase hydrolyse un brin d'ADN en fragments plus courts, tandis qu'une ligase lie deux brins courts en un brin unique, plus long. En utilisant ces simples réactions (hybridation, polymérisation, coupe spécifique et hydrolyse), il est possible de construire des réactions qui associent des brins d'ADN " input " à des brins d'ADN " output " selon le modèle " input -> input + output ". Si l'output est de la même nature que l'input, il peut servir d'input à une autre réaction. On définit alors qu'à chaque réaction est associé un " module " : par exemple, le module AtoB encode la réaction A -> A + B. Lorsque A s'hybride à AtoB, il est allongé par une polymérase suivant la séquence du module AtoB, formant ainsi un brin constitué de la séquence de A suivie de la séquence de B. Ce produit est alors coupé entre A et B par une nickase : A et B peuvent alors se détacher du module AtoB. Montagne et al. (MSB, 2011) ont démontré qu'en associant trois modules encodant les trois types de réaction " activation " (A -> A+ B), " autocatalyse " (A -> 2A) et " inhibition " (B -> inhibiteur de A), complétées d'une exonucléase hydrolysant inputs et outputs (mais pas les modules), il est possible d'obtenir un oscillateur qui fonctionne dans un tube à essai, mais qui est entièrement constitué de matériel biologique : l'oligator. Dans cette thèse, nous commençons par vérifier que les trois modules de l'oligator (activation, autocatalyse et inhibition) peuvent être réarrangés de manière arbitraire, afin de créer différents circuits de réactions dynamiques. Nous appellerons cette collection de réactions catalysées par trois enzymes (polymérase, nickase et exonucléase) la boite à outils ADN. La construction et le contrôle de circuits complexes nécessitent de pouvoir observer les modules désirés de manière spécifique et en temps réel. A cette fin, nous mettons au point une nouvelle technique de fluorescence utilisant une interaction - souvent négligée - entre les bases d'ADN et un fluorophore qui y est attaché : celui-ci émet une fluorescence dont l'intensité dépend de l'état (simple ou double brin) et de la séquence à proximité du fluorophore. Cette méthode, nommée N-quenching (pour nucleobase-quenching), a fait l'objet d'une publication dans Nucleic Acids Research. A l'origine, les oscillations de l'oligator étaient observées au moyen d'un agent intercalant de l'ADN dont la fluorescence dépend de la quantité totale d'ADN présente en solution. En utilisant N-quenching, il est possible d'observer de manière spécifique les différents composants de l'oligator, et d'en apprécier les oscillations déphasées : il suffit d'attacher un fluorophore à un module afin d'observer la présence ou l'absence de l'input associé. Ces outils en main, nous abordons l'assemblage de circuits de réactions plus complexes, en nous intéressant plus particulièrement à la bistabilité. Le phénomène de bistabilité est extrêmement courant au sein des systèmes de régulation de l'expression génétique, ainsi que dans divers systèmes chimiques. Une fois déterminées les caractéristiques requises pour obtenir un système bistable avec notre boîte à outils, nous construisons un circuit dont les deux états de stabilité correspondent à deux modules autocatalytiques qui s'inhibent mutuellement par le biais de deux modules d'inhibition. N-quenching s'avère être un outil indispensable pour discerner sans ambiguïté les deux états stables du bistable. Nous avons ensuite montré qu'il est possible de donner de nouvelles fonctions au bistable en le connec- tant à d'autres modules ou sous-circuits : c'est ainsi que nous avons assemblé un circuit " mémoire " pouvant être mis à jour au moyen de deux " inputs " externes, puis une mémoire flip-flop capable de switcher entre ses deux états stables au moyen d'un unique input externe. Les résultats de ce travail ont été publiés dans Proceedings of the National Academy of Sciences. Les connections entre différents modules de nos circuits de réactions sont basées sur un système d'adressage chimique: c'est la reconnaissance entre deux brins d'ADN qui structure le réseau et nous travaillons donc dans l'espace des séquences. Il est aussi envisageable d'utiliser l'espace réel, c'est à dire de passer d'un système en zéro dimension à un système - par exemple - en deux dimensions ou chaque molécule possède désormais des coordonnées spatiales (en plus d'une adresse chimique). On s'intéresse alors à l'évolution spatiale de nos réactions. Nous avons mis au point un dispositif fluidique permettant d'enfermer hermétiquement nos circuits de réactions sous la forme d'une fine couche de liquide de la forme désirée. Le système est alors observé au moyen d'un microscope pour résoudre les composantes spatiales: nous y installons un oscillateur biochimique et montrons qu'en contrôlant réaction et diffusion, il est possible d'observer l'émergence de motifs spatio-temporels complexes. De par la nature du matériel les constituant (ADN et enzymes), nos systèmes se situent à l'interface directe entre le vivant et le non-vivant. Notre boîte à outils s'inspire (quoique de manière très sché- matique) de la régulation de l'expression génétique : elle forme par conséquent une sorte de modèle expérimental permettant l'étude des relations entre la structure du circuit d'une part et sa fonction, d'autre part, telles qu'elles pourraient être au sein du vivant. Ces circuits pourraient aussi être utilisés pour diriger des nanorobots ADN in situ, supprimant ainsi le besoin de stimulus externe commandant leurs mouvements. D'autres applications potentielles incluent le transfert de ces systèmes in vivo, à des fins thérapeutiques par exemple (médicament intelligent). Cela reste cependant un défi, dont la première étape sera d'améliorer la robustesse de ces circuits afin qu'ils puissent fonctionner dans des milieux plus hostiles qu'un tube à essai.
130

Numerical Solution Of Nonlinear Reaction-diffusion And Wave Equations

Meral, Gulnihal 01 May 2009 (has links) (PDF)
In this thesis, the two-dimensional initial and boundary value problems (IBVPs) and the one-dimensional Cauchy problems defined by the nonlinear reaction- diffusion and wave equations are numerically solved. The dual reciprocity boundary element method (DRBEM) is used to discretize the IBVPs defined by single and system of nonlinear reaction-diffusion equations and nonlinear wave equation, spatially. The advantage of DRBEM for the exterior regions is made use of for the latter problem. The differential quadrature method (DQM) is used for the spatial discretization of IBVPs and Cauchy problems defined by the nonlinear reaction-diffusion and wave equations. The DRBEM and DQM applications result in first and second order system of ordinary differential equations in time. These systems are solved with three different time integration methods, the finite difference method (FDM), the least squares method (LSM) and the finite element method (FEM) and comparisons among the methods are made. In the FDM a relaxation parameter is used to smooth the solution between the consecutive time levels. It is found that DRBEM+FEM procedure gives better accuracy for the IBVPs defined by nonlinear reaction-diffusion equation. The DRBEM+LSM procedure with exponential and rational radial basis functions is found suitable for exterior wave problem. The same result is also valid when DQM is used for space discretization instead of DRBEM for Cauchy and IBVPs defined by nonlinear reaction-diffusion and wave equations.

Page generated in 0.1927 seconds